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Abstract

In this paper, an analytical approach is proposed for
obtaining finger position regions of an object with multi-
fingered hand. At first, a method to obtain which com-
bination of the object edges is possible to be used for
grasping, is given. Then, Graspable Finger Position
Region on a combination of edges is defined where the
object can be held successfully. It is shown that the re-
gion is bounded by plural boundary hyperplanes. With
the combining these boundary hyperplanes, two propo-
sitions for ezactly obtaining the Graspable Finger Po-
sition Region by using analytical method, are proposed.
Lastly, numerical examples are performed to show the
effectiveness of the proposed approach.

1 Introduction

The grasp of an object by a robot hand is a primitive
but very important subtask in automatic systems. Ad-
vanced applications sometimes require multiple robotic
fingers to perform a task coordinately. If a multifin-
gered robot hand is used to grasp an object, synthe-
sizing successful grasps is required. Therefore, deter-
mination of the graspable finger position regions of an
object is a fundamental and important issue.

In literatures, finger position and finger force on an
object were treated as variables simultaneously. The
problem of solving the graspable finger position regions
of an object was dealt with as a nonlinear problem.
The finger positions were computed by the method of
scanning every sample points selected on the object,
which is complicated and the computing load is large.

About the finger forces, the methods for constructing
of the force-closure and the form-closure were proposed
in [1]~[4]. About finger position regions for multifin-
gered hand, many attempts have been made by ana-
lytical method. Omata proposed an algorithm for ap-
proximately computing the positions of fingertips with
maintaining equilibrium when a polyhedral object is
grasped [5]. But the object grasp regions has not been
exactly solved by analytical method yet.

The purpose of this paper is to exactly determine
the graspable finger position regions of a given object.
In this paper, we distinguish candidates from combina-
tions of the object edges touched by fingertips. Then,
we propose an analytical method to solve the problem
of the finger position regions for grasping the object.

A brief preview of this paper is as follows: Section 2
explains how to select graspable candidates from all of
the combinations of the object edges by using the force
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equilibrium. For a selected candidate, Section 3 ana-
lyzes that the regions of graspable finger position are
bounded by boundary hyperplanes induced by using
the moment equilibrium and length bounds of object
edges. Two propositions for obtaining the exect regions
by using analytical method are proposed. Section 4
gives an algorithm for the fingertip forces correspond-
ing to a finger position vector of the finger position
regions obtained. In Section 5 numerical examples are
performed to show the effectiveness of the proposed ap-
proach. Section 6 summarizes our contributions. The
main feature of our proposed approach is that the fin-
ger position regions on grasped object are determined
by using analytical method, and the obtained solution
set of finger position regions is exact.

2 Graspable Edge Candidates
2.1 Force and Moment Equilibrium

The following discussion is performed in planar mo-
tion and based on two assumptions: (1) The object is a
2D polygon with definite geometric shape, (2) The fin-
gertips of a hand touch the object by point contact with
Coulomb friction and the contact point of ﬁngertlps on
each edge is not more than one.

With respect to a coordinate frame ¥, as shown in
Fig.1, f, € R? is the applied force of ith finger, and
the direction of f; is toward the object. e:; € R? and
ei2 € R? are the edge vectors (toward the object) of the
friction cone. ki1 and k> denote the magnitudes of the
force f; in e;1 and e;; respectively. f, can be described
by the form

fi=kien+kizeiz, ki, ki2 > 0. (1)

For a successful grasp with n fingers, the force equilib-
num a.nd moment equilibrium conditions

Z .f Z(kilell"'ktZCzZ) 0e R ki1, kiz >0, (2)

i=1 i=1

Z"'i xf; =Z7'ix(ki18n+k~;zei2)=0 € R, ki1, kiz 20. (3)

i=1 i=1

Finger1

Fingern
Object
Finger:

Figure 1: Fingertip forces and fingertip positions
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must be satisfied, where r; € R? is the position vector
of ith finger.

2.2 Selecting Edge Candidates

We will select candidates for the successful grasp
from all combinations of the object edges by using the
force equilibrium condition. The force equilibrium con-
dition of eq.(2) for n fingers can be rewritten as

Eik=0e¢ R? k>0, ()
Eiflen ez en ez -+ ent ena) € RP™, (5)
ké[k“ kiz k21 ka2 - ka1 kn2] € R*™. (6)

In order to select the edge candidates, we have to solve
the k in eq.(4). The solution set of k is convex polyhe-
dral cone [6] and can be given as

k=H1a=[h11, h12, Tty hlm]cz, C!ZO, (7)

aé[al s am]TeR'", (8)
where hy;, j =1, 2,---, m are span vectors of the poly-
hedral cone. o is a coefficient vector representing the
component of k in hij, j = 1,2,---,m. If k does not
exist, the combination of edges can be excluded. If k
exists, the combination of edges will be one of gras-
pable candidates. Consequently, the finger position re-
gions for grasping are computed only for the selected
candidates by using the moment equilibrium condition.

3 Graspable Finger Position Regions
3.1 Boundary Hyperplans of Finger Posi-
tion Region
The fingertip position vector on ith edges can be
described as

ri = roi + lits,

i=1,2,---,m, (9)

where ro; € R? is a vertex position vector of ith edge,
t; € R? the direction vector of the edge, and I; the
position variable (see Fig.1). When the length of ith
edge is L:, the bound of ; is 0 < l; < L;

For n edges touched by n fingers, let

TN )" € R (10)
refer to a Finger Position Vector, whose bounds are

0 <1l<L, (11)

L& [L L L.)T € R™. (12)

e IA

In this paper, the permissible region of Il is called as
Graspable Finger Position Region (GFPR hereafter)
that meets the force equilibrium, the moment equilib-
rium and the edge length bounds for the stable grasp
of a object.

Substituting eqs.(7) and (9) into eq.(3), the equation
of variables I and o can be obtained as

(TA+bk=(1TA+b)Hia =0, a>0, (13)

where A and b are denoted as

[t1®] Oix2 - - Oixz
a2 lez [t2®] v O1x2

. | Bae R (14)
01x2 01><2 [tn'®]

e1; ez 02a Oza -+ O2a O

ax1 O2qa €21 ez -+ Oza O2a
[ ) eR*™3™ (15)

02 02x1 02><1 02x1 ‘it en1l en

b2 by by -

[[7'01®] "‘oz®] ["‘0n®]]E2€ RYx% (16)
ft: ® ] = [~tiy tiz] € R**?, (17)
[ro: ® | = [~roiy Toiz] € RM2. (18)

Eq.(13) shows a nonlinear problem with respect to the
variables | and a. To solve the problem linearly, we
introduce boundary hyperplanes of I corresponding to
the span vectors of polyhedral cone of eq.(7). Then, we
derive an algorithm to determine the GFPRs using the
boundary hyperplanes.

Eq.(13) represents a hyperplane of I for a given a.
From eq.(7), the solution set of k is a convex polyhe-
dral expressed by m span vectors hyj, j = 1,2,---,m.
For one span vector hi; where a; = 1, as =0, s =
1,2,---,m, s # j, we can obtain one hyperplane P;.
For m span vectors of k, we can obtain m hyperplanes
of I as

P;={ljITA+bhy; =0}, j=1,2,---,m. (19)

Each P; for span vector h,; is a boundary hyperplane
of the GFPRs and divides the space R" into two hemi-
spaces

P ={ll(("A+b)h1; 20}, j=1,2,-,m, (20)
P; = {lj(iTA+b)hy; <0}, j=1,2,---,m.  (21)

3.2 Graspable Finger Position Regions
Formed by Two Hyperplanes

According to eq.(13), the graspable finger position
vector ! corresponding two span vectors hiq and hi. of
k exists in the following set

W or={l|(TA+b)h1gag + (ITA+b)h1ra,=0, aq,ar20} (22)

(see Fig.2). Eq.(22) shows that W, is the linear com-
bination of (ITA+b)h,, and (ITA+b)h;. depending on
aq and a,. Because of a4, a- > 0, the set of I satisfying
€q.(22) can be obtained by the following proposition.
Proposition 1: Corresponding to the region be-
tween the two span vectors hy and h, of k, the GFPR
W .. can be represented using the set of U, enclosed
by boundary hyperplanes P, and P,, where U is ex-
pressed as follows
Uqr = U};rUU?;rv (23)

Ul =PinP;, U =P;nP}. (24)
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T

Force polyhedral cone

Boundary hyperplanes

Figure 2: Force polyhedral cone and boundary hyper-
planes

Proof [Necessary condition] In eq.(22), aq, o >0,
thus an arbitrary I. € W, must satisfy

(T A+b)h1, >0, (ITA+b)hy, <0, (25)

or
(T A+b)hiy <0, (ZA+b)hy, > 0. (26)

According to egs.(20), (21), (23) and (24), l: € Uqr is
obtained, so that we can conclude that
W C Ugr. @7)

[Sufficient condition] Eqgs.(23) and (24) for an arbi-
trary I, € U}, give

(lfA'f‘b)hlq ~Y=0, (l§A+b)h1'+’Yr =0, g7 = 0.(28)
Then, substituting eq.(28) into the equality in the right
side of eq.(22), we have

1;,aqr=0, agr=|og a,]TZO, (29)

oA —wh Ya w20 (30)

According to egs.(29) and (30) for an arbitrary pair of
Ygr ¥rr the agr € {Qgr|vir@er =0, oqr > 0} exists to
satisfy eq.(22), Thus, I, € W can be obtained. In the
same way, l, € W, can be obtained for an arbitrary
l, € UZ.. Hence, we have

Uy C W (31)

According to eqs.(27) and (31), we can conclude that
Uy = W o (32)

The length bounds of object edge are 0 < I < L
from eq.(11). In the case of threé¢ fingers as shown in
Fig.3, the length bounds of edges are represented as the
rectangular parallelepiped. The length bounds divide
the region bounded by two boundary hyperplanes P,,
P. into two convex polyhedrons as the following:

V3={l|(1TA+b)h1s>0, ((TA+b)h1.<0, 0KILL}, (33)

V2 ={1|(1TA+b)h1,<0, ({"TA+b)h1,>0, O<ISL}.  (34)

Thus, the GFPR can be represented by
Ve =V3iuvi. (35)

B Ed eboundsl J

i (b) v

Ly
(a) Var UV

1 (c) Vi
Figure 3: Two convex polyhedrons

3.3 Graspable Finger DPosition Regions
Formed by m Hyperplanes

Now, we consider deriving a method for obtaining
GFPRs formed by m hyperplanes. Substituting eq.(7)
into eq.(13), for the set of k formed by m span vectors,
the set of I can be represented by

Wi={l| Y ((TA+b)h1;0,=0, 0,20, j=1,2,--,m}. (36)

ij=1

From m span vectors of k, m hyperplanes of P;,j =
1,2,--.,m are obtained.

Proposition 2: For the set of k formed by m span
vectors, the GFPRs W, can be expressed by the union
of all of the set U,

U wiuui, (37)

q,r=1,q%r

U, =

where U, is formed by two arbitrary hyperplanes P,
and Py, q,7r=1,2,---,m, ¢F#T.

Proof [Necessary condition] From eq.(36) with o, >
0, j=1,2,---,m, we can see that for an arbitrary I. €
W, the signs of two terms (IZA + b)h;, and (ITA4 +
b)hi, in (ITA+b)hys, j=1,2,---,m, must be opposite,
however the signs of the other terms (ITA + b)hi,, s =
1, 2,---, m, s # g, s# r can be positive or negative.
Thus, according to egs.(20), (21), (24) and (37) the I.
exists in the sets

U:,=U;,n(ﬂ(P:uP;)>=Ué,, s#q, s#r, (38)
s=1

or

m

r‘fﬁ,:ui,n(ﬂ(P:uP;)) =Uj., s#q, s#7, (39)

s=1

which denotes I, € (U,,uT?>) = (UL, uUZ). Thus,
for all of the q,7=1,2, ---,m, ¢ # r, we have
U wiuui. (40)

qr=1,g9%#r

I €

As eq.(40) stands up for an arbitrary I. € Wi, we can
conclude that

W,cU.. (41)
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[Sufficient condition] According to eq.(37), for an ar-
bitrary I, € Uy, in the case of I, € U},, we have

(I3A+b)h1g~74=0, (Ig A +b)h1r+7=0, 74,720,

(TA+b)h1s4+7s=0, vs20 or 7:<0, s=1,2,---,m, (42)
s#q, S#T,
and in the case of I, € UZ,, we have
(ITA+B)h1g+74=0, [TA+b)h1r—7=0, 7g, 720,
(TA+b)h1a+7,=0, 720 or 7,<0, s=1,2,---,m, (43)

s#q, S#T.

Substituting eq.(42) into the right equality of eq.(36),
we have

v,0" =0, a>0, (44)
N

M= o v Fml}s (45)

at [aa Qg - ar o am]T. (46)

Because of 74, v~ > 0 of eq.(44), the a € {a|y,aT =
0, a>0} exists to satisfy eq.(36). Thus, I, €U}, means
l, € W,. Similarly l, € U2, means [, € W,. Therefore,
for all of the ¢, =1, 2,---, m, g#r, ly €W, can be
obtained, so that

U cw. (A7)

According to eqgs.(41) and (47), we can conclude that
U =W, o (48)

Moreover, by considering the length bounds of object
edges, from proposition 2 and eq.(35), the GFPRs are
expressed as

m

U weuvi)

q,r=1,9#7

Vi= (49)

3.4 Computational Load

To determine the GFPRs on an object, at first, we
use the force equilibrium condition to select the grasp-
ing candidates from combinations of the object edges.
It is expected that the computational load can be re-
duced by this computing step. For a selected com-
bination of edges, furthermore, we use the analytical
method to determine the GFPRs exactly, where the
computational load can be reduced significantly. The
upper bound of computational load of the proposed ap-
proach for 2~4 fingers is evaluated by the number of
multiplications and additions and shown in Table 1,
where the computation load only depends on the num-
ber of fingers.

Literature [5] proposed an algorithm for computing
the positions of fingertips. As shown in Fig.4, each of
the finger forces acting on edges equals two forces acting
on both vertices resultantly. The actual n finger posi-
tions are represented by X;, 0 <A\; €1, i =1,2,---,n.
The maximum value and minimum value of X can be

Table 1: Computational load of proposed approach

| Finger number | Multiplications Additions
n=2 4.736 x 10° 1.740 x 10°
n=3 4.878 x 10° 1.832 x 10°
n=4 1.184 x 107 4.441 x 10°

Table 2: Computational load of method of {5] (N > 2)

Finger number | Multiplications Additions
n=2 3.780 N x 10° 1.680 N x 10
n=3 4.010 N* x 10° 1.782 N* x 10°
n=4 1.966 N° x 10° 8.736 N° x 10°

Finger force
Jia £ %
" 1-Mi j i

A .
A fis ﬁzﬁ/\?‘e" fisen /\ i

Figure 4: Composition and decomposition of f; in [5]

Rusen

solved by linear programming method. The range be-
tween the maximum value and minimum value of X\
represents the range of ith finger position. However,
the range of a finger position is dependent on the other
finger positions. To obtain the whole of finger position
regions, N sample points on each edge are needed to
be selected. One finger is considered as the moving fin-
ger, the other fingers are touched fixedly at the selected
sample points on different edges. By the algorithm in
[5], the GFPR. can be obtained approximately, and as
the larger number of N is selected, the computational
load will increase sharply with the growth of N. The
upper bound of computational load of the algorithm not
only depends on the number of fingers but also depends
on the number of N. The upper bound of computation
load of 2~4 fingers are shown in Table 2.

From Table 1 and Table 2, it can be seen that for
the same combination of edges, the computational load
of the proposed approach is evidently fewer than that
of the algorithm from (5].

4 Determining Grasp Finger Forces

An element of GFPR V', represents a finger position
of a successful grasp. Now, we show how to obtain the
finger forces for the finger position. According to eqgs.(4)
and (7), the finger forces of n fingers can be represented
by

b

f

E;k = E;Hio € R*™™, a >0,
(fy £2 - £

where E; was given by eq.(15) and H; had been ob-
tained by eq.(7). Note that the obtained set of f rep-
resents the possible forces where some f may not be
permissible for grasping since the moment equilibrium
condition is not considered.

(50)
(1)

el
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The substitution of an l; of V, into the moment
equilibrium condition of eq.(13), gives
(fA+b)Hia = 0, a>0. (52)
Then, the a meets the moment equilibrium of eq.(52),
and

a=Hzas = [hy1, hy, -+, hajloy oy >0, (53)

L T
ay = [afl Qafa Otf./] € R’ (54)

can be obtained. Substituting the obtained « into
q.(50), corresponding finger forces

fi = E:H1Haap € R™, ay >0, (55)
can be obtained, where £, is the successful grasp finger
forces that meet the force equilibrium and the moment

equilibrium. For an element of V', the set of f, can be
expressed as

F, = {E2H1H2C¥f | af 20} (56)

5 Numerical examples

We will give numerical examples using the proposed
approach to determine the GFPRs with 3 fingers.

For the object shown in Fig.5, the vertex positions
of the object with respect to =, are:

_[poool 20000 _[13.000 _ _[8.000
o= 17,000 "% 12,000 3= 2.000|" "°*=|7.000] -
The direction vectors of the edges are:
¢,=[ 00001 _fi000] . _[-0.707) . _[-1000

=000 ¥ (0.000]° *=| 0.707)" *=| 0.000| -
The lengths of the edges are:
L, =5.000, Ly =11.000, L3 = 7.071, L4 = 6.000.

Vertex } i)

Vertex 4
t

€3l

Vertex 2! i Vi
Y t \ Vertex 3
$00 X Object

Figure 5: Polygonal object of example

ls Edge bounds
L2

(0,0,6)

(5,0,0) N N L

1 77 7 \
Y PP P A
Boundary hyperplanes

Figure 6: Boundary hyperplanes and edge bounds of
three finger grasp

The coefficient of friction between the object and fin-
gers is set as 0.5, so that we have

| 0-894 _[o.894 _[0.447 _[~0.447
UT|0.447) 17504470 €2 |0.804]0 ©22=| g.894]
=] 0999 _ _[-0316] _ _[0447 ene| 0447
317 1-0.316)" 32| 0.949)" 17| _0.894|® €2=|_.go4|"
5.1 Selecting Edge Candidates

The combinations of edges are 4C; = 4 when the
object is grasped by a robot hand with three fingers.
According to eq.(7), all combinations of edges are the
candidates. For example, for the combination of the
edges 1-2-4, its k is given as

k1 0.000 0.000 0.000 0.566
k12 0.000 0.000 0.566 0.000
ka1 0.000 0.707 0.000 0.000
= 1k |=] 0707 0,000 0.424 0.707 [ @20 (57)
kg 0.000 0.707 0.707 0.424
ka2 0.707 0.000 0.000 0.000

a = [011 a2 a3 a4]T. (58)
5.2 Determining Finger Position Regions

For edges 1-2-4, corresponding to the four span vec-
tors of k in eq.(57), four boundary hyperplanes are ob-
tained from eq.(19) as follows:

Py = {1]]0.0000.894 0.894]l — 7.602 = 0}, (59)
P2 = {1]{0.000 0.894 0.894] ~ 3.130 = 0}, (60)
P3 = {1][0.716 0.537 0.894]! — 6.708 = 0}, (61)
Py = {1][1.192 1.491 0.894] — 9.091 = 0}, (62)

where l = [l I L7 and shown in Fig.6. Taking into
account 0 < I; < Li, i = 1,2, 4, and according to proposi-
tion 2 as well as eqs.(35) and (49), we can obtain convex
polyhedrons Vi, and VZ,, (¢, r = 1,2, 3, 4, g # 7), from
each of both hyperplane combinations, which are

Viz = ¢, (63)
0.000 5.000 0.000 5.000 0.000
3.500 3.500 0.000 0.000 8.500
0.000 0.000 3.500 3.500 0.000

8.500 2.500 2.500 0.000 0.000

5.000 0.000 5.000 0.000 5.000] A
0.000 6.000 6.000 6.000 6.000

Be
Bi,-+,0s >0, Bi+--+Fs=1}, (64)

Vi, = {l]|t= {2500 0.000 0.000 0.000

| 6.000 3.500 6.000 6.000 ﬂQ

Bri,Ba20, Pit-+fi=1}, (65)

r0.000 5.000 1.125 0.000
2.500 0.000 11.000 6.098
| 6.000 3.500 0.000 0.000

[0.000 5.000 3.125 1.875} B

Vie={1]l=
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Edge bounds

l
: ;. + % |3 2
1 4 1

b @wvy 1 (e) V3
I 14 ls

Iz LIRS
L (h) ‘1314

b @) v

Figure 7: Graspable finger position regions for three
fingers

2.099 5.833 11.000 11.000
0.000 0.000 0.900 0.000

)

5.000 5.000 0.000 0,000} B

Bs

1611"‘168205 61+“'+ﬁs=1}~ (66)
The GFPR V, therefore has the following form
vi= |J (veuvy) (67)

q,r=1,q#7

The regions of V., and V2 (g7 = 1,2,3,4, ¢ # 1)
and V, are illustrated in F%g.?, where V), and V2,
(g, = 1,2,3,4, g # r) are convex polyhedrons respec-
tively, while the union set V, is a polyhedron but not
a convex one.

5.3 Determining Grasp Finger Forces

The V', is the whole GFPR in finger position space.
For an arbitrary element of the V,, the grasp finger
force can be obtained correspondingly. For example, in
V3, of eq.(66), when 1 = B2 = --- = s = 0.125, the
correspondingly finger positions I, is

lo=1[h L )T =[2.016 6.191 1.300]7, (68)

which is shown as Fig.7(i) and (j). According to eq.(55),
the grasp finger force f,, for l. is a polyhedral cone as

0.528 0.157 0.436 0.000
0.127 ~0.078 0218  0.000
[ |-0232 —0340 —0.104 —0.202 6
fio = |T2|=| 0464 0679 0446 0678 (69
—0.205 0.182 —0.332 0.202
—0.591 —0.600 —0.665 —0.675
ay = [a;l a2 Qf3 Ot_f4]T, as > 0.

The finger forces for the edge span of f,, are shown
in Fig.8. For Fig.8(a), (b) and (c), at least one finger
force is located on the boundary of the friction cone re-
spectively. For Fig.8(d), finger force f, is zero, f, and
f, meet the force equilibrium and the moment equilib-
rium and friction condition. Therefore, we can see that
these span vectors are the boundaries of the set f,,.

(d)

Figure 8: Fingertip forces for I,

6 Conclusion

We have presented an analytical method to deter-
mine candidates of graspable edges and graspable finger
position regions on a given object.

At first, we used the force equilibrium condition to
select graspable candidates from all of the combinations
of the object edges. Then, for a selected candidate, the
regions of graspable finger position was analyzed by
using the moment equilibrium condition. It was shown
that the region is bounded by plural boundary hyper-
planes. Furthermore, with the combining these bound-
ary hyperplanes, two propositions for exactly obtaining
the Graspable Finger Position Region were proposed.
Lastly, numerical examples were performed to show the
effectiveness of the proposed approach.

The features of the analytical method presented in
this paper are summarized as follows: (1) The gras-
pable edge candidates can be selected firstly, and (2)
For a selected combination of edges, we use the analyt-
ical method to determine the graspable finger position
regions exactly, so that the computational load can be

reduced significantly.
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