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How to optimally allocate resources in a large system  
consisting of multiple dynamic components?
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UGAP = Uniform Global Attractor Property

* aperiodic, unichain conditions

Paper Policy Optimality Gap Conditions*

Weber and Weiss 90 Whittle Index Indexable & GAP

Verloop 16 LP-Priority GAP

Gast, Gaujal, and Yan 23a Whittle Index Indexable, UGAP, Non-singular

Gast, Gaujal, and Yan 23b LP-Priority UGAP & Non-degenerate

o(1)

o(1)

O (e−cN)
O (e−cN)

All require GAP or UGAP to be 
asymptotically optimal
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GAP: empirical state distribution   in steady state≈ μ*

 μ*
Initialize from any

empirical state distribution 

Mystery about global behavior of restless bandits

• Previous policies assuming GAP do not inherently guarantee the behavior outside the 
neighborhood of ; in particular, global convergence may not holdμ*

• How should one control the empirical state distribution when far away from ?μ*

• How complicated does a “globally convergent” policy need to be in the system with lots 
of “weakly-coupled” components?

a certain “optimal distribution”

nonlinear dynamic system
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How frequently does GAP fail?

8

• Each dot represents a random instance; red dots are non-GAP


• More non-UGAP instances when transition matrix is sparse


• At least 20.2% instances violate GAP in Dirichlet(0.05), under any index (priority) policy.

Uniform distribution (=Dirichlet(1))
 Dirichlet(0.2) Dirichlet(0.05)

Is it possible to achieve asymptotic optimality 
without GAP / UGAP?
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[Yan 24] [Goldsztajn and Avrachenkov 24]: further relaxes unichain

rest of the talk
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Arm 1

Arm 2

Arm N

……
Activate  arms


each time step
αN

R*N≤RN(π)

Optimality gap

≤ Rrel

N-armed problem

Arm 1 Activate  fraction of time 

steps in the long run

α

Single-armed problem

optimal reward

Suffices to bound

relax
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Yπ(s, a) ≈ μ*(s) ≜ ∑a

y*(s, a)

• Given an arm in state , prob. of action  approximates  s a π̄*(a |s) ≜ y*(s, a)/μ*(s)

“Optimal single-armed policy”

“Optimal stationary distribution”In the steady state, under , there should be:π
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What does this requirement mean for designing a policy ?π

In the steady state, under , there should be:π Global convergence

• Empirical state distribution      


• Given an arm in state , prob. of action  approximates  
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y*(s, a)

s a π̄*(a |s) ≜ y*(s, a)/μ*(s)



14

Challenge: global convergence



14

Requirement: empirical state distribution    in steady stateXπ ≈ μ*

Challenge: global convergence



14

Requirement: empirical state distribution    in steady stateXπ ≈ μ*

 μ*
Initialize from any

empirical state distribution 

Challenge: global convergence



14

Requirement: empirical state distribution    in steady stateXπ ≈ μ*

Prior work fixes a policy, and has to assume global convergence

 μ*
Initialize from any

empirical state distribution 

Challenge: global convergence



14

Requirement: empirical state distribution    in steady stateXπ ≈ μ*

Prior work fixes a policy, and has to assume global convergence

Does there exists a policy that achieves global convergence on its own?

 μ*
Initialize from any

empirical state distribution 

Challenge: global convergence
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Clue: convergence of single arm distribution
A single arm under policy  is a Markov chain with stationary distribution π̄* μ*

Arm i state distr.

arbitrary Arm i state distr. ~ μ*(s)

action ~ π̄*(a |s)

Can we utilize  to drive the state distr. of each arm to ?π̄* μ*

assume aperiodic and irreducibility

How much is controlling  “weakly coupled” arms harder than controlling one arm?N
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 armsN
states distr.
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How to design a policy to implement this intuition?
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We can also avoid using IDs; 
Essentially need persistency;

“Focus set policy”
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• Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)

• Dynamically “focus on” a subsystem with good behaviors, and gradually expand it
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• For details, see Professor Weina Wang’s talk in the session Drift Methods for Stochastic 
Systems this Tuesday 4 pm. (TE43, Summit 435)
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Thank you!


