Average-Reward Restless Bandits: Unichain and Aperiodicity are Sufficient for Asymptotic Optimality

Yige Hong Carnegie Mellon University

INFORMS 2024

Weina Wang CMU

Qiaomin Xie
UW—Madison

Yudong Chen UW—Madison

Restless bandits:

- Restless bandits:
 - Public health

- Restless bandits:
 - Public health
 - Wireless communications

- Restless bandits:
 - Public health
 - Wireless communications
 - Machine maintenance scheduling

- Restless bandits:
 - Public health
 - Wireless communications
 - Machine maintenance scheduling
 - Machine learning

- Restless bandits:
 - Public health
 - Wireless communications
 - Machine maintenance scheduling
 - Machine learning

How to optimally allocate resources in a large system consisting of multiple dynamic components?

Arm 1

Arm 2

.

Arm N

Objective: $\max_{\pi} R_N(\pi) \triangleq \text{long-run average reward per time step and per arm$

Objective: $\max R_N(\pi) \triangleq \text{long-run}$ average reward per time step and per arm

Policy π can see all states

Objective: $\max R_N(\pi) \triangleq \text{long-run}$ average reward per time step and per arm

Policy π can see all states

Objective: $\max_{\pi} R_N(\pi) \triangleq \text{long-run average reward per time step and per arm$

Objective: $\max_{\pi} R_N(\pi) \triangleq \text{long-run average reward per time step and per arm$

• Huge joint state space, when N is large; finding exact optimal policy is in general intractable

Objective: $\max_{\pi} R_N(\pi) \triangleq \text{long-run average reward per time step and per arm$

- Huge joint state space, when N is large; finding exact optimal policy is in general intractable
- Goal: find π s.t. $R_N^* R_N(\pi) \to 0$ as $N \to \infty$

Objective: $\max_{\pi} R_N(\pi) \triangleq \text{long-run average reward per time step and per arm$

- Huge joint state space, when N is large; finding exact optimal policy is in general intractable
- Goal: find π s.t. $R_N^* R_N(\pi) \to 0$ as $N \to \infty$ Optimality gap

Prior work

GAP = Global Attractor Property UGAP = Uniform Global Attractor Property

Paper	Policy	Optimality Gap	Conditions*
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP
Verloop 16	LP-Priority	<i>o</i> (1)	GAP
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

^{*} aperiodic, unichain conditions

Paper	Policy	Optimality Gap	Conditions*
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP
Verloop 16	LP-Priority	o(1)	GAP
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate

All require GAP or UGAP to be asymptotically optimal

^{*} aperiodic, unichain conditions

GAP: empirical state distribution $\approx \mu^*$ in steady state

GAP: empirical state distribution $\approx \mu^*$ in steady state

a certain "optimal distribution"

GAP: empirical state distribution $\approx \mu^*$ in steady state

GAP: empirical state distribution $\approx \mu^*$ in steady state

GAP: empirical state distribution $\approx \mu^*$ in steady state

• Previous policies assuming GAP do not inherently guarantee the behavior outside the neighborhood of μ^* ; in particular, global convergence may not hold

GAP: empirical state distribution $\approx \mu^*$ in steady state

- Previous policies assuming GAP do not inherently guarantee the behavior outside the neighborhood of μ^* ; in particular, global convergence may not hold
- How should one control the empirical state distribution when far away from μ^* ?

GAP: empirical state distribution $\approx \mu^*$ in steady state

- Previous policies assuming GAP do not inherently guarantee the behavior outside the neighborhood of μ^* ; in particular, global convergence may not hold
- How should one control the empirical state distribution when far away from μ^* ?
- How complicated does a "globally convergent" policy need to be in the system with lots of "weakly-coupled" components?

How frequently does GAP fail?

How frequently does GAP fail?

• Each dot represents a random instance; red dots are non-GAP

How frequently does GAP fail?

- Each dot represents a random instance; red dots are non-GAP
- More non-UGAP instances when transition matrix is sparse

How frequently does GAP fail?

- Each dot represents a random instance; red dots are non-GAP
- More non-UGAP instances when transition matrix is sparse
- At least 20.2% instances violate GAP in Dirichlet(0.05), under any index (priority) policy.

How frequently does GAP fail?

- Each dot represents a random instance; red dots are non-GAP
- More non-UGAP instances when transition matrix is sparse
- At least 20.2% instances violate GAP in Dirichlet(0.05), under any index (priority) policy.

Paper	Policy	Optimality Gap	Conditions*	
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP	
Verloop 16	LP-Priority	o(1)	GAP	
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular	
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate	

^{*} aperiodic, unichain conditions

Paper	Policy Optimality Gap		Conditions*	
Weber and Weiss 90	Whittle Index $o(1)$		Indexable & GAP	
Verloop 16	LP-Priority	o(1)	GAP	
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular	
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate	
Hong et al. 23	FTVA	$O(1/\sqrt{N})$	Synchronization Assumption	

^{*} aperiodic, unichain conditions

Paper	Policy	Optimality Gap	Conditions*	
Weber and Weiss 90	Weiss 90 Whittle Index $o(1)$		Indexable & GAP	
Verloop 16	LP-Priority $o(1)$		GAP	
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular	
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate	
Hong et al. 23	FTVA $O(1/\sqrt{N})$		Synchronization Assumption	
Hong et al. 24a	Focus-set	$O(1/\sqrt{N})$		

^{*} aperiodic, unichain conditions

Paper	Policy	Optimality Gap	Conditions*
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP
Verloop 16	LP-Priority	o(1)	GAP
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Hong et al. 23	FTVA	$O(1/\sqrt{N})$	Synchronization Assumption
Hong et al. 24a	Focus-set	$O(1/\sqrt{N})$	
Hong et al. 24b	Two-Set	$O(e^{-cN})$	Local stability & Non-degenerate

^{*} aperiodic, unichain conditions

GAP = Global Attractor Property UGAP = Uniform Global Attractor Property

Paper	Policy	Optimality Gap	Conditions*
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP
Verloop 16	LP-Priority	o(1)	GAP
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Hong et al. 23	FTVA	$O(1/\sqrt{N})$	Synchronization Assumption
Hong et al. 24a	Focus-set	$O(1/\sqrt{N})$	
Hong et al. 24b	Two-Set	$O(e^{-cN})$	Local stability & Non-degenerate

[Yan 24] [Goldsztajn and Avrachenkov 24]: further relaxes unichain

* aperiodic, unichain conditions

GAP = Global Attractor Property UGAP = Uniform Global Attractor Property

Paper	Policy	Optimality Gap	Conditions*
Weber and Weiss 90	Whittle Index	<i>o</i> (1)	Indexable & GAP
Verloop 16	LP-Priority	<i>o</i> (1)	GAP
Gast, Gaujal, and Yan 23a	Whittle Index	$O\left(e^{-cN}\right)$	Indexable, UGAP, Non-singular
Gast, Gaujal, and Yan 23b	LP-Priority	$O\left(e^{-cN}\right)$	UGAP & Non-degenerate
Hong et al. 23	FTVA	$O(1/\sqrt{N})$	Synchronization Assumption
Hong et al. 24a	Focus-set	$O(1/\sqrt{N})$	
Hong et al. 24b	Two-Set	$O(e^{-cN})$	Local stability & Non-degenerate
	Weber and Weiss 90 Verloop 16 Gast, Gaujal, and Yan 23a Gast, Gaujal, and Yan 23b Hong et al. 23 Hong et al. 24a	Weber and Weiss 90 Whittle Index Verloop 16 LP-Priority Gast, Gaujal, and Yan 23a Whittle Index Gast, Gaujal, and Yan 23b LP-Priority Hong et al. 23 FTVA Hong et al. 24a Focus-set	Weber and Weiss 90 Whittle Index $o(1)$ Verloop 16 LP-Priority $o(1)$ Gast, Gaujal, and Yan 23a Whittle Index $O\left(e^{-cN}\right)$ Gast, Gaujal, and Yan 23b LP-Priority $O\left(e^{-cN}\right)$ Hong et al. 23 FTVA $O\left(1/\sqrt{N}\right)$ k Hong et al. 24a Focus-set $O\left(1/\sqrt{N}\right)$

[Yan 24] [Goldsztajn and Avrachenkov 24]: further relaxes unichain

* aperiodic, unichain conditions

 $R_N(\pi) \leq R_N^*$

Optimality gap

Optimality gap

Optimality gap

 $Y^{\pi}(s,a)$

State-action frequency under policy π $Y^{\pi}(s,a)$

State-action frequency under policy π

 $Y^{\pi}(s,a)$

y*(s,a)

State-action frequency under policy π

 $Y^{\pi}(s,a)$

y*(s,a)

State-action frequency under policy π

$$Y^{\pi}(s,a)$$

y*(s,a)

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$y*(s,a)$$

$$R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$

 \approx

$$y*(s,a)$$

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$y*(s,a)$$

$$R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

State-action frequency under policy π

ction frequency der policy
$$\pi$$
 $Y^{\pi}(s,a)$ \approx $y^*(s,a)$ state-action frequency $R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$ \approx $R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$

What does this requirement mean for designing a policy π ?

State-action frequency under policy π

ction frequency der policy
$$\pi$$
 $Y^{\pi}(s,a)$ \approx $y^*(s,a)$ state-action frequency $R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$ \approx $R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

State-action frequency under policy π

Tetion frequency ler policy
$$\pi$$
 $Y^{\pi}(s,a)$ \approx $y^*(s,a)$ state-action frequency $R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$ \approx $R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

Optimal

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

• Empirical state distribution
$$X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s,a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s,a)$$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$
 \approx $y^*(s,a)$

Optimal state-action frequency

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$\stackrel{\textstyle \bigcap}{\approx} \qquad R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

"Optimal stationary distribution"

• Empirical state distribution $X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s,a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s,a)$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$
 \approx $y^*(s,a)$

Optimal state-action frequency

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$\stackrel{\textstyle \bigcap}{\approx} \qquad R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

"Optimal stationary distribution"

- Empirical state distribution $X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s, a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s, a)$
- Given an arm in state s, prob. of action a approximates $\bar{\pi}^*(a \mid s) \triangleq y^*(s, a)/\mu^*(s)$

State-action frequency under policy π

$$Y^{\pi}(s,a) \approx y^*(s,a)$$

Optimal state-action frequency

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$\stackrel{\frown}{\approx} R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

"Optimal stationary distribution"

- Empirical state distribution $X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s,a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s,a)$
- Given an arm in state s, prob. of action a approximates $\bar{\pi}^*(a \mid s) \triangleq y^*(s, a)/\mu^*(s)$

"Optimal single-armed policy"

State-action frequency under policy π

Tetion frequency ler policy
$$\pi$$
 $Y^{\pi}(s,a)$ \approx $y^*(s,a)$ state-action frequency $R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$ \approx $R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$

Optimal

What does this requirement mean for designing a policy π ?

In the steady state, under π , there should be:

- Empirical state distribution $X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s,a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s,a)$
- Given an arm in state s, prob. of action a approximates $\bar{\pi}^*(a \mid s) \triangleq y^*(s, a)/\mu^*(s)$

State-action frequency under policy π

$$Y^{\pi}(s,a)$$
 \approx $y^*(s,a)$

Optimal state-action frequency

$$R_N(\pi) = \sum_{s,a} r(s,a) Y^{\pi}(s,a)$$

$$\approx R^{rel} = \sum_{s,a} r(s,a) y^*(s,a)$$

What does this requirement mean for designing a policy π ?

- In the steady state, under π , there should be: Global convergence . Empirical state distribution $X^{\pi}(s) \triangleq \sum_{a} Y^{\pi}(s,a) \approx \mu^{*}(s) \triangleq \sum_{a} y^{*}(s,a)$
- Given an arm in state s, prob. of action a approximates $\bar{\pi}^*(a \mid s) \triangleq y^*(s, a)/\mu^*(s)$

Challenge: global convergence

Requirement: empirical state distribution $X^{\pi} \approx \mu^*$ in steady state

Requirement: empirical state distribution $X^{\pi} \approx \mu^*$ in steady state

Requirement: empirical state distribution $X^{\pi} \approx \mu^{*}$ in steady state

Prior work fixes a policy, and has to assume global convergence

Requirement: empirical state distribution $X^{\pi} \approx \mu^{*}$ in steady state

Prior work fixes a policy, and has to assume global convergence

Does there exists a policy that achieves global convergence on its own?

A single arm under policy $\bar{\pi}^*$ is a *Markov chain* with stationary distribution μ^*

A single arm under policy $\bar{\pi}^*$ is a *Markov chain* with stationary distribution μ^*

assume aperiodic and irreducibility

A single arm under policy $\bar{\pi}^*$ is a *Markov chain* with stationary distribution μ^*

assume aperiodic and irreducibility

Arm i state distr. arbitrary

lack How much is controlling N "weakly coupled" arms harder than controlling one arm?

lack How much is controlling N "weakly coupled" arms harder than controlling one arm?

Can we utilize $\bar{\pi}^*$ to drive the state distr. of each arm to μ^* ?

states distr. arbitrary

Let all arms follow $\bar{\pi}^*$?

$$\alpha = \frac{1}{2}$$

$$\alpha = \frac{1}{2}$$

Expand the subset

Expand the subset

Expand the subset

How to design a policy to implement this intuition?

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

• Fix an arbitrary IDs for the arms;

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

- Fix an arbitrary IDs for the arms;
- Prioritize arms with smaller IDs to follow $\bar{\pi}^*$

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

- Fix an arbitrary IDs for the arms;
- Prioritize arms with smaller IDs to follow $\bar{\pi}^*$

We can also avoid using IDs;

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

- Fix an arbitrary IDs for the arms;
- Prioritize arms with smaller IDs to follow $\bar{\pi}^*$

We can also avoid using IDs; Essentially need persistency;

Let as many arms follow $\bar{\pi}^*$ as possible, in a fixed order.

ID Policy:

- Fix an arbitrary IDs for the arms;
- Prioritize arms with smaller IDs to follow $\bar{\pi}^*$

We can also avoid using IDs; Essentially need persistency; "Focus set policy"

• Step 1: Formalize *focus set*: set of arms that will follow $\bar{\pi}^*$ in near future

• Step 1: Formalize *focus set*: set of arms that will follow $\bar{\pi}^*$ in near future

• Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)

• Step 1: Formalize *focus set*: set of arms that will follow $\bar{\pi}^*$ in near future

- Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)
 - Dynamically "focus on" a subsystem with good behaviors, and gradually expand it

• Step 1: Formalize *focus set*: set of arms that will follow $\bar{\pi}^*$ in near future

- Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)
 - Dynamically "focus on" a subsystem with good behaviors, and gradually expand it

• For details, see Professor Weina Wang's talk in the session *Drift Methods for Stochastic Systems* this Tuesday 4 pm. (TE43, Summit 435)

• We consider average-reward restless bandits.

- We consider average-reward restless bandits.
- We propose asymptotically optimal policy without assuming global attractor. The policy

- We consider average-reward restless bandits.
- We propose asymptotically optimal policy without assuming global attractor. The policy
 - globally drives the distribution to μ^* on its own,

- We consider average-reward restless bandits.
- We propose asymptotically optimal policy without assuming global attractor. The policy
 - globally drives the distribution to μ^* on its own,
 - utilizing the optimal single-armed policy $\bar{\pi}^*$ to drive each arm to μ^* , following a simple schedule.

- We consider average-reward restless bandits.
- We propose asymptotically optimal policy without assuming global attractor. The policy
 - globally drives the distribution to μ^* on its own,
 - utilizing the optimal single-armed policy $\bar{\pi}^*$ to drive each arm to μ^* , following a simple schedule.
- We have a novel Lyapunov analysis of the policy using "focus sets" and bivariate Lyapunov functions.

- We consider average-reward restless bandits.
- We propose asymptotically optimal policy without assuming global attractor. The policy
 - globally drives the distribution to μ^* on its own,
 - utilizing the optimal single-armed policy $\bar{\pi}^*$ to drive each arm to μ^* , following a simple schedule.
- We have a novel Lyapunov analysis of the policy using "focus sets" and bivariate Lyapunov functions.

Thank you!

