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* Restless bandits:
 Public health
* Wireless communications
 Machine maintenance scheduling

 Machine learning

How to optimally allocate resources In a large system

consisting of multiple dynamic components?
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Budget constraint

Activate a/V arms
each time step

O<a<l
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Full information

Arm | Reward: (s, a)

Action: a € {0,1} ,
State: § ——————o— Next state: s

Transition probability
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Budget constraint

Activate a/V arms
each time step

O<a<l

<

Arm | Reward: r(s, a)

Action: a € {0,1}

State: s —— —» Next state: s’
Transition probability

P(s,a,s’)

Objective: max Ry(r) £ long-run average reward per time step and per arm
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* Huge joint state space, when /V is large; finding exact optimal policy is in
general intractable

- Goal: find 7 s.t. RY — Ry(7) > Oas N — o0
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r -7
All require GAP or UGAP to be
asymptotically optimal
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* aperiodic, unichain conditions
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GAP: empirical state distribution &~ u* in steady state

e [{E:ertain “optimal distribution”]
Initialize from any \ ......

empirical state distribution

* Previous policies assuming GAP do not inherently guarantee the behavior outside the
neighborhood of 14*; in particular, global convergence may not hold

« How should one control the empirical state distribution when far away from p*?

* How complicated does a “globally convergent” policy need to be in the system with lots
of “weakly-coupled” components?
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relax N
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Activate alN arms< Activate a fraction of time
. Arm 1
each time step |:{> _f steps in the long run

_ @ optimal reward

Ry(mr) < RS
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“Optimal single-armed policy”
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When is R)(r) close to R"'2

State-action frequency B TR R : Optimal

under policy 7 Y s,a) N y*(s,a) state-action frequency

Ry(m) = Z r(s,a)Y”(s, a)

What does this requirement mean for designing a policy z?

In the steady state, under &, there should be: Global convergence

V
. Empirical state distribution X*(s) = Z Y*(s,a) = u¥(s)= Z y*(s, a)

- Given an arm in state s, prob. of action a approximates 7*(a|s) = y*(s, a)/u*(s)

13
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Challenge: global convergence

Requirement: empirical state distribution X* & u™ in steady state

Initialize from any \ ......

~ A
-------

Prior work fixes a policy, and has to assume global convergence

Does there exists a policy that achieves global convergence on its own?

14
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A single arm under policy 7™ is a Markov chain with stationary distribution p*

A

assume aperiodic and irreducibility

action ~ 7*(a | s)

: state distr. - state distr. ~ y*(s
arbitrary |:{> H(S)

‘ How much is controlling NV “weakly coupled” arms harder than controlling one arm?

Can we utilize 7* to drive the state distr. of each arm to u*?

15
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How to design a policy to implement this intuition?
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Let as many arms follow 7* as possible, in a fixed order.

ID Policy: We can also avoid using IDs;
Essentially need persistency;

* Fix an arbitrary IDs for the arms; “Focus set policy”

e Prioritize arms with smaller IDs to follow 7z

19



Lyapunov analysis



Lyapunov analysis

» Step 1: Formalize focus set: set of arms that will follow 7* in near future :I :I

20



Lyapunov analysis

» Step 1: Formalize focus set: set of arms that will follow 7* in near future :I :I

» Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)

20



Lyapunov analysis

» Step 1: Formalize focus set: set of arms that will follow 7* in near future :I :I

» Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)

 Dynamically “focus on” a subsystem with good behaviors, and gradually expand it

20



Lyapunov analysis

» Step 1: Formalize focus set: set of arms that will follow 7* in near future :I :I

» Step 2: Define Lyapunov function with inputs: (states in the focus set, size of the focus set)

 Dynamically “focus on” a subsystem with good behaviors, and gradually expand it

* For details, see Professor Weina Wang’s talk in the session Drift Methods for Stochastic
Systems this Tuesday 4 pm. (TE43, Summit 435)
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Summary

* \We consider average-reward restless bandits.

* We propose asymptotically optimal policy without assuming
global attractor. The policy

Thank you!

» globally drives the distribution to #™* on its own,
» utilizing the optimal single-armed policy 7 to drive each
arm to u*, following a simple schedule.

* We have a novel Lyapunov analysis of the policy using
“focus sets” and bivariate Lyapunov functions.
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