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1 Introduction

Complex stochastic systems that consist of a large number of interacting components naturally
arise in various research domains, such as resource allocation in computing systems, congestion
control in networks, wireless communication, machine maintenance, clinical trials, etc. The scale of
these systems, coupled with the interactions among the components, makes the dynamics within
them highly complex. Consequently, decision-making problems for such stochastic systems are often
highly challenging.

To understand and optimize these complex systems, we consider first solving a simple problem,
and then converting the policy or performance bound obtained from the simple problem back to the
complex problems. If the simple problem is properly constructed and the conversion is properly
done, we can design a policy and prove its near-optimality. We explain this framework in more
detail in Section 1.2.

This document investigates a set of example problems through some related simple systems.
These problems are briefly introduced below and will be formally defined and studied in Section 2-5.
Our studies demonstrate the effectiveness of this idea and its great potential for broader applicability.
We are also working on a few new problems and plan to finish them before thesis defense. These
problems are introduced in Section 6.

1.1 Complex stochastic systems studied in this document

Restless bandits. The restless bandit (RB) problem is a stochastic sequential decision-making
problem, which consists of multiple arms, each being an identical Markov Decision process (MDP).
In each time step, we pull a predetermined fraction of arms based on their states, which causes each
arm to generate a certain amount of reward and have a state transition. Both the amount of reward
and the distribution of the next state depend on the current state and whether the arm is pulled.
The goal of the RB problem is to find a policy that maximizes the long-run average reward. The
name “restless” comes from the fact that the state of each arm changes every time step no matter
whether it is pulled or not.

The RB problem finds applications across a spectrum of domains, including wireless communica-
tion [3], congestion control [10], queueing models [6], crawling web content [11], machine maintenance
[69], clinical trials [158], to name a few. To give a concrete example of the applications of RB,
consider the problem of job scheduling with deadlines: suppose we have a finite-size queue and a
few servers. Jobs arrive to the system over time, each associated with an unknown service time
and a known deadline. We assume that the service times of the jobs are i.i.d. and geometrically
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distributed. The scheduler needs to choose a subset of jobs to serve in each time step, with the goal
of maximizing the long-run fraction of jobs completed by the deadline.

The problem of scheduling with deadlines can be seen as an RB problem in the following sense.
Each position in the queue can be viewed as an arm. The state of the arm is whether there is a job
in this position and the time until the deadline of the job. Pulling the arm means serving the job in
this time step. The arms are restless because the times until deadlines change every time step.

In contrast to “restful” Markovian bandits whose optimal reward can be achieved with the
famous Gittins index policy, solving the optimal policy of a restless bandit problem is PSPACE-hard
in general [122]. Previous studies have focused on finding asymptotically optimal policies of restless
bandits when the number of arms scales to infinity [161, 156, 59, 60]. However, even for asymptotic
optimality, existing policies can only achieve it under a complicated assumption based on the global
convergence of some non-linear ODE.

Stochastic bin-packing with time-varying item sizes. Consider a datacenter with a large
number of servers for serving jobs submitted by users. The jobs arrive to the datacenter over time,
each requesting a certain amount of resrouces like CPU, memory, network, etc. Each job is sent to
a server by a dispatcher upon arrival, after which it immediately starts being served and remains in
service for a random amount of time. The dispatcher seeks to collocate a set of jobs based on their
resource requirements, so that the average utilization among the active servers (servers that are
serving any job) is maximized.

Prior work often assumes the resource requirements of the jobs are static throughout, so the
problem can be viewed as a stochastic bin-packing problem, where each server is a bin, each job is an
item, and the items arrive and depart dynamically. In this setting, simple dispatching policies have
been proved to be asymptotically optimal as the system scale becomes large [61, 145, 146, 147, 149].

However, in reality, the resource requirements can be time-varying. This necessitates a new
model – stochastic bin-packing with time-varying item sizes. The utilization in this new model is
significantly harder to optimize, because each dispatching decision can have a complicated effect
on the future resource requirements on a server. Unlike in the static item-size setting, in the
time-varying item-size setting, there is no intuitive heuristics policy that can be proved to be
asymptotically optimal.

Optimal scheduling in complex queueing models. Consider a queueing system with a finite
number of servers. The jobs arrive to the system over time, each with an unknown size sampled
from a certain initial distribution. During the service of each job, additional information about its
size is revealed, which causes the posterior distribution of the job size to update dynamically. The
order in which the jobs are served is determined by a scheduling policy. Then which scheduling
policy should we use to minimize the long-run expected queue length?

A policy called Gittins policy (also known as the Gittins index policy) adapted from the
Markovian bandit setting [66] has been proven to be optimal in the M/G/1 system [65, 139]. For
systems more complex than M/G/1, the optimal scheduling policy is unknown and is likely to be
pretty hard to find. Then a natural question is, can we show that Gittins policy remains near-optimal
in the queueing systems more complex than M/G/1?

Recent studies [137, 136] have proved that Gittins policy is heavy-traffic optimal in the M/G/k
system, i.e., the system with Poisson arrivals and k servers. However, allowing multiple servers
is just one way of generalizing the M/G/1 model. M/G/1 could also be generalized by allowing
non-Poisson arrivals (G/G/1), having setup times (G/G/1/setup), or a combination of multiple
complex features (e.g. G/G/k/setup). Given that Gittins policy itself is already complex, analyzing
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it in all those complex queueing models has been considered to be pretty challenging.

Multiserver-job scheduling. Existing queueing models are mainly single-server-job models,
where each job occupies one server during the service. However, in today’s datacenters, lots of
jobs require to be simultaneously served by multiple servers [151, 157, 100, 4]. Such jobs are called
multiserver jobs.

To study the effect of multiserver jobs on the datacenter, consider the following queueing model
with a centralized queue, n identical servers. In this model, jobs arrive over time according to a
Poisson process with a certain arrival rate. Each job requires to be served for an exponentially
distributed duration and occupies a predetermined number of servers (referred to as server need)
during service. There is a finite number of types of jobs, each is characterized by its arrival rate,
service rate, and server need. The order in which jobs of different types are served is determined by
a scheduling policy.

Analyzing the performance or finding an optimal scheduling policy is more challenging in a
multiserver-job system than in a traditional queueing models for many reasons. For instance, due
to the packing effect, the multiserver-job system can waste service capacity even if there are enough
jobs in the system. The capacity wasted in this way has a complex dependency on the scheduling
policy. Moreover, the heterogeneity of the different types of jobs makes the system dynamics
multi-dimensional. Although traditional queueing models can also be heterogeneous in service rates,
the heterogeneous server needs in multiserver-job systems add another layer of complexity.

1.2 Near-optimal policy design through simple systems

In this section, we will set up a technical framework for designing policies and proving their near-
optimality through understanding simple systems. This framework is underlying the technical
approach of all of our papers included in this document and represents the main innovation of some
of them.

Suppose the complex stochastic system is represented as a Markov decision process where each
policy π induces a Markov process {Xπ

t : t ∈ T }, with T = R≥0 or N. Let Xπ
∞ have the steady-state

distribution induced by π. Our goal is finding a policy π that maximizes E [h(Xπ
∞)] for some

predefined function h(·) over the state space of {Xt}. The function h(·) represents a performance
metric of the system under study – for example, the reward of bandits or the queue length of a
queueing model.

Oftentimes, it is hard to exactly optimize E [h(Xπ
∞)], and only near-optimal policies are tractable.

To find a near-optimal policy, we consider jointly constructing a policy π̂ and a Markov process
{Yt : t ∈ T } such that

• E[h(Xπ
∞)] ≤ E [h(Y∞)] for any policy π, and

•
∣∣E [h(X π̂

∞)
]
− E [h(Y∞)]

∣∣ is small.

These two conditions should imply the near-optimality of π̂. Intuitively speaking, {Yt} should be a
system that operates under a more ideal situation than {Xπ

t }, and the policy π̂ should be designed
to make {Xπ

t } mimic the behavior of Yt. When {Yt} is properly constructed, we can often find a π̂
that is both near-optimal and efficiently computable.

1.3 Techniques based on rate conservation

The framework in Section 1.2 requires calculating the steady-state expectation of a certain perfor-
mance metric of a Markov process. Such calculations can be done via a set of techniques based
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on rate conservation. The name “rate conservation” historically originates from Miyazawa’s rate
conservation law in palm calculus [115]. Here we use “rate conservation” to refer to the following
fact that underpins a more general class of techniques for stochastic analysis: roughly speaking,
for any Markov process {Xt} and function f(x) of Markov process’ state x, under mild conditions,
the long-run average rate that f(Xt) increases is equal to the long-run average rate that f(Xt)
decreases.

Lyapunov drift analysis. Rate conservation in discrete-space Markov chains can be formalized
using the notion of drift. Specifically, for a Markov chain {Xt} and a function f of the Markov
chain’s state, the drift of f at state x, denoted by GXf(x), is defined as the instantaneous rate
that f(Xt) changes conditioned on Xt = x. The operator GX that maps f to its drift is called the
infinitesimal generator of {Xt}, whose form is available from the definition of {Xt}. Then under
mild conditions on f and {Xt}, we have

E [GXf(X∞)] = 0, (1)

i.e., the long-run average rate that fh(Xt) changes is zero.
To perform the Lyapunov drift analysis, we first construct a Lyapunov function or test function

f and then plug it into (1) to get equalities about the steady-state expectations of the performance
metrics under study. Lyapunov drift analysis is also known as the drift method and has been
extensively used in queueing theory literature [see, e.g., 46, 109, 159].

Finding the right Lyapunov function is usually tricky. One possible idea is to consider a simpler
Markov process {Yt} that captures some important features of {Xt} and uses the dynamics of {Yt}
to derive the Lyapunov function. We use this idea to study restless bandits in Section 2.5.2.

Stein’s method. Stein’s method is a powerful tool invented in [144] for bounding the difference
between two distributions. There has been a large body of literature on different usages and variants
of Stein’s method [see, e.g., 21, 23, 19, 20, 170]. In this document, we only use Stein’s method in a
basic way, as briefly explained below.

For any two Markov chains {Xt} and {Yt} on the same state space and any performance metric
h, let fh be a function of the state satisfying the Poisson equation:

E [h(Y∞)]− h(y) = GY fh(y). (2)

fh is called the relative value function. Under mild conditions, we have

E [GXfh(X∞)] = 0, (3)

Taking expectations in (2) with y = X∞ and subtracting (3), we get

E [h(Y∞)]− E [h(X∞)] = E [(GY −GX)fh(X∞)] . (4)

Equation (4) allows us to relate the complex system {Xt} to a simple system {Yt}, by comparing
their generators GY −GX and analyzing properties of the relative value function fh. Intuitively,
GY −GX captures the rate that Xt deviates from Yt, while fh quantifies the consequence of per
unit of deviation based on the dynamics of Yt.

Roughly speaking, Stein’s method can be interpreted as a special case of Lyapunov drift analysis
that takes f = fh in (1). However, the two methods require insights into constructing different
types of objects and have different workflows: when performing the Lyapunov drift analysis, we first
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construct the Lyapunov function f and then manipulate GXf into a form that is related to the
performance metric under study; when using Stein’s method, we first construct the performance
metric h and then analyze properties of fh via the Poisson equation (2). Depending on the specific
problem, one method could be more convenient than the other.

Rate conservation law as in Palm calculus. Rate conservation law is the generalization of
Lyapunov drift analysis to Markov processes in general state spaces, where we could have both
continuous changes and discrete jumps. It has been used a lot in recent analysis of queueing models
with general inter-arrival times and service times [see, e.g., 116, 24, 22].

The key equation of rate conservation law is as follows: for a stochastic process Zt, under mild
conditions,

E[Z ′] + λE0[∆Z] = 0, (5)

where E[Z ′] denotes the long-run average continuous-changes of Z, E0[∆Z] denotes the long-run
average jumps of Z, and λ denotes the average rate of jumps.

To analyze a Markov process {Xt} with rate conservation law, we let Zt = f(Xt) for some f(·)
and apply (5) to get an equality. Similar to the Lyapunov drift analysis, we need to choose an
appropriate f to extract useful information about {Xt} from its continuous changes and jumps.

Little’s Law. Little’s law [92] is a fundamental tool in queueing theory. It characterizes the
relationship among the average arrival rate, λ, average waiting time, E [W ], and the average number
of jobs, E [N ], using the following equation

E [N ] = λE [W ] . (6)

Little’s law also can be interpreted as a form of rate conservation: the long-run average rate of job
arrivals, λ, is equal to the long-run average rate of job completions, E [N ] /E [W ].

Little’s law is useful even beyond queueing models, where it is applied to objects more abstract
than jobs. See Section 2.5.1 for its usage in analyzing the coupling of arms in restless bandit
problems.

1.4 Organization of the thesis proposal

In the rest of the thesis proposal, we will look into each example problem in Section 1.1. We set up
the problem in more detail, overview our results, and explain how we find the near-optimal policies
through simple systems. Each problem corresponds to one or multiple papers that we have already
finished, as summarized below:

• In Section 2, we look into the restless bandit problem studied in [83, 84];

• In Section 3, we look into the stochastic bin-packing problem with time-varying resource
requirements studied in [85];

• In Section 4, we look into the problem of optimal scheduling in G/G/k/setup studied in [81];

• In Section 5, we look into the multiserver scheduling problem studied in [82].

In Section 6, we discuss a few more problems which we plan to solve in the next year and include
in the thesis:

• In Section 6.1, we propose the problem of achieving an exponentially small optimality gap in
restless bandits. This project is 50% done.
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• In Section 6.2, we propose the problem of restless bandits with asynchronous actions. This
project is 30% done.

• In Section 6.3, we discuss the problem of improving the universal queue length bound for
G/G/n under FCFS. This project is 80% done.

1.5 Timeline

• From April to June 2024, I will work on the problem in Section 6.1.

• From July to September 2024, I will prepare for getting onto the job market and work on the
problem in Section 6.2.

• From October to December 2024, I will get onto the job market and continue working on the
problem in Section 6.2.

• From January to March 2025, I will work on the problem in Section 6.3.

• From April to June 2025, I will write the thesis.

6



……

Arm 1

Arm 2

Action
<latexit sha1_base64="EA/R/8UBfexMluQwJDZ7jUgWcBY="></latexit>

Ai(t) 2 {0, 1}
Transition probabilities 

<latexit sha1_base64="BX4t7gh89BU4HTeQwCCFVO/e38k="></latexit>

P (St(i), At(i), ·)

State
<latexit sha1_base64="awjR80uPoaSIs5tZK9YGasYv5Y4=">AAACPXicbVDLTgIxFO3gC/EFunQzSkgwIWTGEGVJcOMSozwSmJBO6UCl007ajhEn/INb/Rm/ww9wZ9y6tQOz4OFJmpyc+zo9bkCJVJb1aaQ2Nre2d9K7mb39g8OjbO64JXkoEG4iTrnouFBiShhuKqIo7gQCQ9+luO2Ob+J6+wkLSTh7UJMAOz4cMuIRBJWWWvd9VSQX/WzeKlszmOvETkgeJGj0c8ZZb8BR6GOmEIVSdm0rUE4EhSKI4mmmF0ocQDSGQ9zVlEEfSyea2Z2aBa0MTI8L/ZgyZ+riRAR9KSe+qzt9qEZytRaL/9aePQHR0vGIEYTX1G6ovKoTERaECjM0d+SF1FTcjEMyB0RgpOhEE4gE0Z8y0QjqNUpHmSksrpKoxKVXYrxeD6gTxaYC+MKnGR2qvRrhOmldlu2rcuWukq9Vk3jT4BScgyKwwTWogVvQAE2AwCN4BW/g3fgwvoxv42femjKSmROwBOP3D9VLrh4=</latexit>

St(i) Next state
<latexit sha1_base64="bViGTPkDGBDlSIk02VD8ZXe4LT4=">AAACQXicbVDLTgIxFO34RHyBLt2MEhKMhMwYoiwJblxilEeECemUDjR02knbMeJk/sKt/oxf4Se4M27d2AEWPDxJk5NzX6fHDSiRyrI+jbX1jc2t7dROendv/+Awkz1qSh4KhBuIUy7aLpSYEoYbiiiK24HA0Hcpbrmjm6TeesJCEs4e1DjAjg8HjHgEQaWlx/tepC7suEDOe5mcVbImMFeJPSM5MEO9lzVOu32OQh8zhSiUsmNbgXIiKBRBFMfpbihxANEIDnBHUwZ9LJ1oYjk281rpmx4X+jFlTtT5iQj6Uo59V3f6UA3lci0R/609ewKiheMRIwivqJ1QeRUnIiwIFWZo6sgLqam4mQRl9onASNGxJhAJoj9loiHUa5SOM52fXyVRkUuvyHitFlAnSkwF8IXHaR2qvRzhKmleluyrUvmunKtWZvGmwAk4AwVgg2tQBbegDhoAAQZewRt4Nz6ML+Pb+Jm2rhmzmWOwAOP3D+Kfr5o=</latexit>

St+1(i)

Reward:Arm  i
<latexit sha1_base64="2Occ3zKc28h8FQOQOhWCGnZDwYY="></latexit>

r(St(i), At(i))
<latexit sha1_base64="64+8KG6qjBT19HJAUARl5p16DA0="></latexit>

i

Arm N<latexit sha1_base64="gYf/AV8zayf9EccyWpY+R9ZD8IY=">AAACOHicbVDLTsJAFJ3iu75Al26qhMQFIa0hypLgxpXRRJAEGzMdbmHCdKaZmRqx4Qvc6s/4J+7cGbd+gVPsQsCTTHJy7uvMCWJGlXbdd6uwtLyyura+YW9ube/sFkt7HSUSSaBNBBOyG2AFjHJoa6oZdGMJOAoY3Aaj86x++wBSUcFv9DgGP8IDTkNKsDbS9eV9sezW3CmcReLlpIxyXN2XrMO7viBJBFwThpXqeW6s/RRLTQmDiX2XKIgxGeEB9AzlOALlp1OnE6dilL4TCmke185U/TuR4kipcRSYzgjroZqvZeK/tcdQYjJzPOWUwILaS3TY8FPK40QDJ7+OwoQ5WjhZPk6fSiCajQ3BRFLzKYcMsVmjTYp25e8qRapChVUuWq2Y+WlmKsZPYmKbUL35CBdJ56Tmndbq1/Vys5HHu44O0BE6Rh46Q010ga5QGxEE6Bm9oFfrzfqwPq2v39aClc/soxlY3z827qxa</latexit>

N

Budget constraint 
Pull       arms  

each time step

<latexit sha1_base64="NswBBYpn21o0YIBoL0vlGe2CjWk="></latexit>

↵N

Figure 1: The restless bandit problem with N arms.

2 Restless bandits

2.1 Problem setup

We consider the discrete-time, infinite-horizon restless bandit problem with the average-reward
criterion. The RB problem consists of N homogeneous arms and is henceforth referred to as the N -
armed problem. Each arm is associated with an MDP called the single-armed MDP, which is defined
by the tuple (S,A, P, r). Here S is the state space, which is a finite set; A = {0, 1} is the action
space, where the action 1 is interpreted as activating or pulling the arm; P : S×A×S→ [0, 1] is the
transition kernel, where P (s, a, s′) is the probability of transitioning to state s′ in the next time step
conditioned on taking action a at state s in the current step; r : S× A→ R is the reward function,
where r(s, a) is the expected reward for taking action a in state s. Let rmax = maxs∈S,a∈A |r(s, a)|.
The RB problem has a budget constraint, which requires that exactly αN arms must be pulled
at every time step for some given constant α ∈ (0, 1). Here αN is assumed to be an integer for
simplicity. We focus on the setting where all the model parameters, S,A, P, r, α, are known. The
problem is illustrated in Figure 1.

We index the arms in an N -armed bandit by [N ], where [n] ≜ {1, 2, . . . , n}. We refer to the
index i of arm i as its ID, to avoid confusion with the Whittle index or other index notions.

A policy π for the N -armed problem chooses in each time step the action for each of the N
arms, based on the current states of all arms and possibly an internal state maintained by the policy.
All the policies considered in this paper have at most finitely many possible internal states.

Under a policy π, we use the state vector Sπ
t ≜ (Sπ

t (i))i∈[N ] ∈ SN to represent the states of all
arms, where Sπ

t (i) ∈ S denotes the state of the i-th arm at time t. Similarly, the action vector is
defined as Aπ

t ≜ (Aπ
t (i))i∈[N ] ∈ AN , where Aπ

t (i) ∈ A denotes the action applied to the i-th arm at
time t. We use Sπ

∞ and Aπ
∞ to denote random elements following the steady-state distributions of

Sπ
t and Aπ

t , respectively. Note that in later parts of the document, we will drop all the superscripts
when the contexts are clear.

The objective of the RB problem is to find a policy that maximizes the long-run average of the
expected reward from all N arms:

maximize
policy π

R(π,N) ≜ lim
T→∞

1

T

T−1∑
t=0

1

N

∑
i∈[N ]

E [r(Sπ
t (i), A

π
t (i))] (7)

subject to
∑
i∈[N ]

Aπ
t (i) = αN, ∀t ≥ 0. (8)

The objective can be equivalently written as R(π,N) = 1
N

∑
i∈[N ] E [r(Sπ

∞(i), Aπ
∞(i))]. Let R∗(N) ≜

supπ R(π,N) denote the optimal value. The optimality gap of a policy π is defined as R∗(N) −
R(π,N). We say that a policy π is asymptotically optimal if its optimality gap vanishes as N →∞,
i.e., R∗(N)−R(π,N) = o(1).
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Solving an exactly optimal policy for the RB problem is known to be PSPACE hard [122].
Therefore, in the rest of the section, we will focus on finding asymptotically optimal policies.

2.2 Related work

Restless bandits under infinite-horizon average-reward criterion. The seminal paper on
restless bandits is the work by Whittle [167], who studied the restless bandits under infinite-horizon
average-reward criterion and proposed the celebrated Whittle index policy. Whittle index policy is
well-defined for RB instances that are indexable. For such RB instances, the asymptotic optimality
for Whittle index policy was established in [161] under a uniform global attractor property (UGAP).
Later, a more general class of policies called LP-Priority policies was proposed in [156]. LP-Priority
policies are well-defined in general and they contain Whittle index policy as a special case for
indexable RB problems. However, they still need UGAP to be asymptotically optimal.

More recent work on average-reward restless bandits studies the rate at which the optimality
gap converges to zero. The work [59] and [60] prove a striking O(exp(−cN)) optimality gap for the
Whittle index policy and LP-Priority policies, respectively, where c is a constant. In addition to
UGAP, these results require a non-singularity or non-degenerate condition.

As we can see from the review above, all the asymptotic optimality results in all prior work
require the UGAP assumption. UGAP pertains to the mean-field/fluid limit of the restless bandit
system in the asymptotic limit N → ∞; it stipulates that the system’s state distribution in the
mean-field limit converges to the optimal state distribution attaining the maximum reward, from
any initial distribution. It has been well recognized that UGAP is a highly technical assumption
and challenging to verify: the primary way to test UGAP is numerical simulations. Moreover, there
are documented RB instances where the Whittle-index and LP-priority policies fail to satisfy UGAP
and are asymptotically suboptimal [161, 57, 83].

We finishing our review of infinite-horizon average-reward RB with a minor note: some of the
papers discussed above actually study RB in the continuous-time setting. Specifically, [161, 156, 59]
include results on the continuous-time setting, while [59, 60] include results on the discrete-time
setting. Rigorously speaking, these two settings are not equivalent. However, the policies, results,
and analysis in the two settings are similar in these previous papers, so we still view them as the
same line of research.

Restless bandits under other reward criteria. There is a recent line of work on RBs with finite-
horizon total-reward criteria. This line of work establish an O(1/

√
N) optimality gap [86, 171, 26, 62],

and an O(exp(−cN)) gap assuming non-degeneracy [172, 60]. Another line of work [173, 62] focus on
the infinite-horizon discounted-reward setting, where they propose policies with O(1/

√
N) optimality

gap without assuming indexability or UGAP.

Relationship with restful Markovian bandits. While the optimality of a general RB problem
is intractable, there is a special case that has been solved optimally. Specifically, consider the case
when an arm stays in the same state when it is not pulled, and only one arm is pulled at a time.
The optimal policy for this special case is the celebrated Gittins index policy [67, 63]. A more recent
reference on this topic is [64].

Relationship with other bandit problems. The RB problem falls within the broader class
of bandit problems, for which different formulations exist including stochastic bandits, adversarial
bandits, and Bayesian bandits. The common theme in these formulations is to find a reward-
maximizing strategy of pulling arms in the presence of uncertainty in the arms’ rewards; see the
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book [95] for a comprehensive overview. Among these formulations, closely related to RBs is the
Bayesian bandit problem, where Bayesian posteriors are used to model knowledge of unknown reward
distributions. The Bayesian posterior can be seen as a state with known transition probabilities,
hence the Bayesian bandit problem can be analyzed by applying tools from RBs. Examples
demonstrating this connection can be found in [26].

2.3 Policy design through a simple system

In this section, we introduce several new policies for restless bandits developed in our two consecutive
papers [83, 84]. Through these policies, we give an affirmative answer the following long-standing
question: Is it possible to efficiently find a policy that achieves asymptotic optimality in infinite-
horizon, average-reward RBs under only standard unichain and aperiodicity assumptions, without
imposing any additional conditions like UGAP?

The section is organized as follows. In Section 2.3.1, we define a simple system using the so-called
single-armed problem. In Section 2.3.2 and 2.3.3, we introduce the policies in each of the two papers,
[83] and [84], where we demonstrate the idea of making the RB system mimic the behavior of the
simple system to achieve asymptotic optimality.

2.3.1 Defining the simple system using the single-armed problem

Consider the single-armed problem that aims to optimize the long-run average reward in the
single-armed MDP (S,A, P, r) subject to a long-run average budget constraint. Formally,

maximize
π̄

lim
T→∞

1

T

T−1∑
t=0

E
[
r(Sπ̄

t , A
π̄
t )
]

(9)

subject to lim
T→∞

1

T

T−1∑
t=0

E
[
Aπ̄

t

]
= α. (10)

Here π̄ = (π̄(a|s))s∈S,a∈A denotes a randomized Markovian policy for the single-armed MDP, where
π̄(a|s) is the probability of taking action a at state s; Sπ̄

t and Aπ̄
t denote the state and action of the

arm at time t. The constraint (10) requires that the average rate of applying the active action is α.
The single-armed problem has been shown to be a relaxation of the N -armed problem (7)–(8)

(see, e.g., [59]). Specifically, let Rrel be the optimal value of the single-armed problem and recall that
R∗(N) is the optimal value of the N -armed problem. Then we have R∗(N) ≤ Rrel. Consequently,
the optimality gap of any N -armed policy π can be upper bounded as

R∗(N)−R(π,N) ≤ Rrel −R(π,N) (11)

Therefore, to show that π is asymptotically optimal, it suffices to show that Rrel −R(π,N) = o(1).
To understand the gap Rrel −R(π,N), consider the simple system consisting of N independent

copies of the single-armed system under any fixed optimal single-armed policy, π̄∗, whose average
steady-state-expected reward per arm is equal to Rrel. Then the gap Rrel −R(π,N) can be viewed
as the difference between the average reward of this simple system and the average reward of the
N -armed RB system under the policy π.

In the next two sections, we will use the optimal single-armed policy π̄∗ as a building block to
construct RB policies, to match the dynamics of the RB system with the dynamics of the simple
system defined above. This allows us to control Rrel −R(π,N) and achieve asymptotic optimality.

To highlight the difference between our approach and the approach in prior work, we clarify that
equivalent forms of the single-armed problem have been used in prior works to prove the asymptotic

9



Algorithm 1 FTVA(π̄∗)

Input: N -armed problem (N, SN ,AN , P, r, αN), initial states S0, optimal single-armed policy π̄∗

Initialize: Virtual states Ŝ0 are N i.i.d. samples following the stationary distribution of π̄∗

1: for t = 0, 1, 2, . . . do
2: Independently sample Ât(i)← π̄∗(·|Ŝt(i)) for each arm i ∈ [N ] ▷ Generate virtual actions

3: if
∑

i∈[N ] Ât(i) ≥ αN then ▷ Select a set A of αN arms to activate

4: A ← a set of αN arms chosen from {i : Ât(i) = 1} (any tie-breaking)
5: else
6: B ← a set of αN −∑i∈[N ] Ât(i) arms chosen from {i : Ât(i) = 0} (any tie-breaking)

7: A ← {i : Ât(i) = 1} ∪ B
8: Apply At(i) = 1 and observe St+1(i) for each arm i ∈ A
9: Apply At(i) = 0 and observe St+1(i) for each arm i /∈ A

10: for i = 1, 2, 3, . . . N do ▷ Progress virtual processes

11: if Ŝt(i) = St(i) and Ât(i) = At(i) then ▷ Couple virtual and real states

12: Ŝt+1(i)← St+1(i)
13: else
14: Independently sample Ŝt+1(i) from the distribution P (Ŝt(i), Ât(i), ·)

optimality of their policies [161, 156, 57, 58]. However, previous policies are constructed heuristically
rather than based on the dynamics of the single-armed system. Consequently, these policies need
the additional assumption, UGAP, to be asymptotic optimality.

2.3.2 Policy for the complex system: Follow-the-Virtual-Advice

In our first paper on restless bandits, [83], we propose Follow-the-Virtual-Advice, a simulation-
based framework for converting a single-armed policy π̄ into a N -armed policy, denoted as FTVA(π̄).
In this section, we focus on FTVA(π̄∗), the N -armed policy converted from an optimal single-armed
policy, π̄∗.

The idea of FTVA(π̄∗) is to explicitly simulate the simple system that consists of N independent
copies of the single-armed system under π̄∗, and try to let the arms in the RB system take the same
actions as the corresponding arms in the simple system.

Specifically, FTVA(π̄∗) has two main components:

• Virtual single-armed processes. Each arm i simulates a virtual single-armed process, whose state
is denoted as Ŝt(i), with action Ât(i) chosen according to π̄. To make the distinction conspicuous,
we sometimes refer to the state St(i) and action At(i) in the original N -armed problem as the
real state/action. The virtual processes associated with different arms are independent.

• Follow the virtual actions. At each time step t, we choose the real actions At(i)’s to best match
the virtual actions Ât(i)’s, to the extent allowed by the budget constraint

∑
i∈[N ]At(i) = αN .

FTVA(π̄∗) is presented in detail in Algorithm 1. Note that we use an appropriate coupling in
Algorithm 1 to ensure that the virtual processes (Ŝt(i), Ât(i))’s are independent and each follows
the Markov chain induced by π̄∗.

10



Algorithm 2 ID policy

Input: number of arms N , budget αN , an optimal single-armed policy π̄∗,
initial state vector S0

1: for t = 0, 1, . . . do
2: Independently sample Ât(i) ∼ π̄∗(·|St(i)) for i ∈ [N ] ▷ Action sampling

3: if
∑

i∈[N ] Ât(i) ≥ αN then ▷ Action rectification

4: N π̄∗
t ← max{n ≤ N :

∑
i∈[n] Ât(i) ≤ αN}

5: At(i)← Ât(i) for i ∈ [N π̄∗
t ], At(i)← 0 for i /∈ [N π̄∗

t ]
6: else
7: N π̄∗

t ← max{n ≤ N :
∑

i∈[n](1− Ât(i)) ≤ (1− α)N}
8: At(i)← Ât(i) for i ∈ [N π̄∗

t ], At(i)← 1 for i /∈ [N π̄∗
t ]

9: Apply At(i) for each arm i ∈ [N ] and observe St+1(i)

2.3.3 Policy for the complex system: ID policy

In our second paper on restless bandits, [84], we propose three policies: ID policy, set-expansion
policy, and set-optimization policy. These three policies share similar ideas and are instances of
a larger class of policies, focus-set policies. Here we focus on the simplest one, ID policy, which
should be enough to illustrate the main idea of focus-set policies.

ID policy adopts a different idea from FTVA(π̄∗). In contrast to FTVA(π̄∗) which simulates virtual
states Ŝt(i)’s and tries to follow the virtual actions sampled from these virtual states, ID policy
directly samples some ideal actions based on the real state St(i)’s, and selects a subset of arms to
follow the ideal actions. The selection of the subset is based on the IDs of the arms, prioritizing
arms with smaller IDs. The detailed definition of ID policy is given in Algorithm 2.

ID policy matches the dynamics of the RB system with the simple system given in Section 2.3.1
in a very interesting way. Specifically, at any time step t, there is a dynamic subset Dt where the
arms in the subset look like |Dt| independent copies of the single-armed system under π̄∗. This
subset Dt is of the form [n] ≜ {1, 2, . . . , n} and can be roughly seen as a subset of [N π̄∗

t ].
Although it seems that the RB system under ID policy only partially matches the dynamics of

the RB with the dynamics of the simple system, we can show in the proof that Dt expands almost
monotonically over time and covers most arms in the steady state. Dealing with the dynamic Dt to
show asymptotic optimality is the most innovative part of ID policy’s analysis, which we briefly
discuss in Section 2.5.2.

2.4 Main results

In this section, we present the asymptotic optimality results for FTVA(π̄∗) [83] and ID policy [84].
Note that there are other results in [83] and [84] which we do not include in this document.

Specifically, in [83], we bound the loss in long-run average reward after converting π̄ to FTVA(π̄)
for any single-armed policy π̄. We also consider continuous-time RB and propose a continuous-
time analog of FTVA(π̄∗), which achieves asymptotic optimality under only the standard unichain
condition. In [84], we prove that two other policies, set-expansion policy, and set-optimization policy,
have similar optimality gap bounds as ID policy. Similar optimality gap bounds also hold more
generally for all focus-set policies satisfying three certain conditions.
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2.4.1 Asymptotic optimality result for Follow-the-Virtual-Advice

The asymptotic optimality result for Follow-the-Virtual-Advice relies on a new assumption
named Synchronization Assumption(SA), which we state below. SA is more efficient to verify than
UGAP and has some intuitive sufficient conditions. See [83] for a detailed discussion on this new
assumption.

To state Synchronization Assumption, we first define a two-armed system called the leader-and-
follower system, which consists of a leader arm and a follower arm following a given single-armed
policy π̄.

Definition 2.1 (Leader-and-follower system). Consider a two-armed system, where each arm is
associated with the MDP (S,A, P, r). At each time step t ≥ 1, the leader arm is in state Ŝt and
uses the policy π̄ to chooses an action Ât based on Ŝt; the follower arm is in state St, and it takes
the action At = Ât regardless of St. The state transitions of the two arms are coupled as follows.
If St = Ŝt, then St+1 = Ŝt+1. If St ̸= Ŝt, then St+1 and Ŝt+1 are sampled independently from
P (St, At, ·) and P (Ŝt, Ât, ·), respectively. Note that once the states of the two arms become identical,
they stay identical indefinitely.

Given the initial states and actions (S0, A0, Ŝ0, Â0) = (s, a, ŝ, â) ∈ S× A× S× A, we define the
synchronization time as the first time the two states become identical:

τ sync(s, a, ŝ, â) ≜ min{t ≥ 0: St = Ŝt}. (12)

Assumption 2.1 (Synchronization Assumption (SA) for a policy π̄). We say that a single-armed
policy π̄ satisfies the Synchronization Assumption (SA) if for any initial states and actions (s, a, ŝ, â) ∈
S× A× S× A, the synchronization time τ sync(s, a, ŝ, â) is a stopping time and satisfies

E [τ sync(s, a, ŝ, â)] <∞. (13)

Now we state Theorem 1 of [83], which shows that FTVA(π̄∗) achieves O(1/
√
N) optimality gap.

Theorem 2.1. Consider an N -armed restless bandit problem with the single-armed MDP (S,A, P, r)
and budget αN for 0 < α < 1. Assume that the single-armed problem is unichain. Given any optimal
single-armed policy π̄∗ satisfying SA(Assumption 2.1), let policy π be FTVA(π̄∗) (Algorithm 1). For
all any N ≥ 1, the optimality gap of π is bounded as

R∗(N)−R(π,N) ≤ Rrel −R(π,N) ≤ rmaxτ
sync
max√

N
, (14)

where rmax ≜ maxs∈S,a∈A |r(s, a)| and τ syncmax ≜ max(s,a,ŝ,â)∈S×A×S×A E [τ sync(s, a, ŝ, â)].

2.4.2 Asymptotic optimality result for ID policy

For ID policy, we only need to assume the unichain and aperiodicity assumptions, stated below.

Assumption 2.2 (Unichain and aperiodicity). The single-armed problem is unichain, i.e., any
policy π̄ of the single-armed problem induces a unichain Pπ̄ on S. Moreover, any optimal policy π̄∗

of the single-armed problem induces an aperiodic unichain Pπ̄∗ on S.

Definition 2.2. Let W be an |S|-by-|S| matrix given by

W =

∞∑
k=0

(Pπ̄∗ − Ξ)k(P⊤
π̄∗ − Ξ⊤)k, (15)

where Ξ is an |S|-by-|S| matrix with each row being µ∗. Let λW denote maximal eigenvalue of W .
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Now we state Theorem 1 of [84], which gives an O(1/
√
N) bound for the optimality gap of ID

policy. Remarkably, the bound is explicitly written out in terms of basic quantities like β, rmax, S,
and λW , all of which are either given in the definition of the MDP or can be easily calculated from
the single-armed Markov chain induced by π̄∗.

Theorem 2.2 (Optimality gap of ID policy). Consider an N -armed restless bandit problem with the
single-armed MDP (S,A, P, r) and budget αN for 0 < α < 1. Assume that the single-armed problem
is unichain and any optimal single-armed policy induces an aperiodic unichain (Assumption 2.2).
Let π be ID policy (Algorithm 2). The optimality gap of π is bounded as

R∗(N)−R(π,N) ≤ Rrel −R(π,N) ≤ 672rmaxλ
5/2
W |S|3/2

β3
√
N

, (16)

where β = min{α, 1− α}, and λW is the largest eigenvalue of the matrix W (Definition 2.2).

2.5 Analysis of the policies

2.5.1 Follow-the-Virtual-Advice

Proof sketch for Theorem 2.1. Here we sketch the main ideas of the proof, whose key step
involves bounding the gap loss Rrel −R(π,N) using Little’s Law [92]. Specifically, we start with the
upper bound

Rrel −R(π,N) =
1

N
E

∑
i∈[N ]

r
(
Ŝ∞(i), Â∞(i)

)
−
∑
i∈[N ]

r
(
S∞(i), A∞(i)

)
≤ 2rmax

N
E

∑
i∈[N ]

1

{(
Ŝ∞(i), Â∞(i)

)
̸=
(
S∞(i), A∞(i)

)} , (17)

which holds since the virtual process
(
Ŝt(i), Ât(i)

)
of each arm i follows the optimal single-armed

policy π̄∗. We say an arm i is a bad arm at time t if
(
Ŝt(i), Ât(i)

)
̸=
(
St(i), At(i)

)
, and a good

arm otherwise. Then E
[∑

i∈[N ] 1

{(
Ŝ∞(i), Â∞(i)

)
̸=
(
S∞(i), A∞(i)

)}]
= E

[
# bad arms

]
in steady

state.
By Little’s Law, we have the following relationship:

E [# bad arms] = (rate of generating bad arms)× E [time duration of a bad arm] .

It suffices to bound the two terms on the right-hand side. Note that the virtual actions Ât(i)’s are
i.i.d. with mean E[Ât(i)] = α; a standard concentration inequality shows that at most

∣∣∑
i∈[N ] Ât(i)−

αN
∣∣ ≈ O(

√
N) bad arms are generated per time slot. On the other hand, each bad arm stays bad

until its real state becomes identical to its virtual state, which occurs in O(1) time by virtue of SA.

2.5.2 ID policy

Detailed intuition for ID policy On a high level, at each time step, ID policy lets a subset
of arms mimic the dynamics of i.i.d. copies the single-armed system under the optimal policy π̄∗.
The subset expands progressively and covers most of the arms in the N -armed system in the steady
state, which allows the N -armed system to approach the optimal average reward of the single-armed
system. Below we elaborate more on this intuition.
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Consider the single-armed system under π̄∗. Since the transition kernel Pπ̄∗ is an aperiodic
unichain by Assumption 2.2, we know that starting from any initial distribution over S, the state
distribution of the Markov chain Pπ̄∗ converges to the steady-state distribution, denoted as µ∗.

Next, consider a subset of n arms, each taking actions according to π̄∗. Given any set of initial
states for these arms, the joint distribution of the states of these arms converges to n i.i.d. copies of
µ∗. After reaching the steady state, the budget usage of each arm in any particular time step is
a Bernoulli random variable with probability α, due to the budget constraint of the single-armed
problem. Moreover, in the steady state, the total budget usage of the n arms concentrates around
αn due to independence.

Finally, we consider the N -armed system under ID policy. Since the low-ID arms get priority
in following the ideal actions, there should exist a n, such that the arms in [n] can persistently
follow π̄∗ for a long time. Once these arms’ state distributions converge to µ∗, their budget usage
concentrates around αn, which leaves the budget to allow more arms to follow π̄∗. This way, we
progressively expand the subset of arms that can follow π̄∗.

Notational preliminary for proof ideas Before describing the proof ideas, we introduce a
useful quantity that is extensively used in the analysis. For each subset D ⊆ [N ], we define the
scaled state-count vector on D as Xt(D) = (Xt(D, s))s∈S, where

Xt(D, s) =
1

N

∑
i∈D

1{St(i) = s} .

Note that each entry of the vector Xt(D) is the number of arms in D in a given state scaled by
1/N . When D = [N ] is the set of all arms, we simply call Xt([N ]) the scaled state-count vector.

Sometimes we view Xt(D) as a vector-valued function of D ⊆ [N ]. We refer to this function
Xt as the system state at time t. The system state Xt contains the same information as the state
vector St does; in particular, from Xt one can deduce the state of each arm.

Proof overview for Theorem 2.2 As previously mentioned in an intuitive discussion, to
rigorously analyze ID policy, we need to characterize the dynamics of two processes that happen
simultaneously: the expansion of the subset of arms that follow π̄∗, and the convergence of state
distribution for the arms on the subset. For the latter, we consider a class of functions of the
system state x, {h(x, [n])}n∈[N ]. For each x and [n], h(x, [n]) can be roughly seen as a weighted
norm between x([n]) and n

N µ∗, where the weight is carefully chosen based on the dynamics of the
single-armed system under π̄∗ such that

E
[
h(X1, [n])

∣∣X0 = x,A0(i) ∼ π̄∗(·|S0(i))∀i ∈ [n]
]
≤ ρ2h(x, [n]) +

Kdrift√
N

. (18)

for some constants ρ2 ∈ (0, 1) and Kdrift > 0. In other words, h(Xt, [n]) can witness the convergence
of the scaled state-count vector Xt([n]) to

n
N µ∗ if all arms in [n] follow π̄∗ for a sufficiently long

time.
To show that the subset of arms following π̄∗ expand over time, we introduce another concept

called focus set. The focus set for ID policy is a subset of the form [n] dynamically chosen in each
time step based on the states of the arms, denoted as Dt. The focus set is chosen to satisfy three
conditions, informally described below:

• Majority conformity: all but an O(1/
√
N) fraction of arms in Dt follow π̄∗.

• Almost non-shrinking: Dt\Dt+1 contains no more than an O(
√
N) arms in expectation.
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• Sufficient coverage: the fraction of arms not in Dt is bounded by a proportional of h(Xt, Dt),
the value of the subset Lyapunov function on the focus set.

The majority conformity condition implies that the subset Lyapunov function in the focus set
converges towards a small neighborhood of zero, while the other two conditions capture the
expansion of the focus set driven by the convergence of the subset Lyapunov function. For the
precise definition of the focus set of ID policy and the proof that the focus set satisfies the three
conditions, we refer the readers to [84] for details.

After defining the subset Lyapunov functions and the focus set, we are ready to prove Theorem 2.2.
We conduct a Lyapunov drift analysis with the following Lyapunov function:

V (Xt, Dt) = h(Xt, Dt) + Lh(1−m(Dt)), (19)

where Lh is a Lipschitz constant of h(x, [n]) with respect to n/N , and m(Dt) = |Dt|/N is the
fraction of arms in Dt. By leveraging a relatively straightforward combination of the properties of
subset Lyapunov functions and the focus set, we can show the following drift condition on V (Xt, Dt):

E
[
V (Xt+1, Dt+1)

∣∣Xt = x,Dt = D
]
≤ ρ1V (x,D) +

K1√
N

, (20)

for some constants ρ1 ∈ (0, 1) and K1 > 0. Then after taking expectation with (x,D) ∼ (Xt, Dt)
and letting t→∞, we get

E [V (X∞, D∞)] ≤ K1

ρ1
√
N

.

Moreover, we show that the optimality gap is bounded by the steady-state expectation of E [V (X∞, D∞)]:

Rrel −R(π,N) ≤ rmax

(
1

Kdist
+

2

Lh

)
E
[
V (X∞, D∞)

]
+

2rmaxKconf√
N

. (21)

In this way, we can get the desired O(1/
√
N) bound on Rrel −R(π,N) as stated in Theorem 2.2.
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3 Stochastic bin-packing with time-varying resource requirements

3.1 Prior work and motivation

In modern computing systems, a job often takes the form of a virtual machine (VM) or a container
[30, 48]. Such a job comes with a resource requirement, such as a certain number of CPUs and
amount of memory, while in service. Each server in the system offers a limited amount of these
resources. When a job arrives at the system, the job dispatch policy needs to decide which server the
job should be assigned to, given the job’s resource requirement and servers’ current job configurations.
This job scheduling problem can be approached as a Stochastic Bin-Packing (SBP) problem, where
jobs are viewed as items, job resource requirements as item sizes, and servers as bins. A traditional
SBP setting considers a finite set of jobs that arrive online but do not depart from the system.
The objective is to minimize the number of servers that have jobs on them, or ‘non-empty bins’,
subject to the resource capacities of the servers. SBP, with a rich history in operations research and
theoretical computer science [33, 32, 35], is a field of continuous developments and advancements
[76, 50, 12].

To incorporate job departures into the problem formulation, a setting referred to as stochastic
bin-packing in service systems has been proposed recently [145, 147, 148, 146, 149, 61]. In this setting,
jobs not only arrive but also depart over time. More specifically, jobs are assumed to arrive according
to Poisson processes, and each job is assumed to stay in the system for an exponentially distributed
service time. The service time of a job remains unknown until the job departs. Before delving
further into SBP in service systems, it is worth mentioning that there is a parallel thread of research
on the so-called dynamic bin-packing problem that also handles job departures (see, e.g., [31, 98, 27],
and references therein), but it is primarily from a worst-case analysis perspective. Additionally, the
virtual machine scheduling problem with objectives different from minimizing the number of active
servers has also been widely studied (see, e.g., [110, 108, 111, 169, 127, 128, 129, 130]).

For SBP in service systems, the goal is to design a job dispatch policy σ that minimizes the
expected number of active servers in steady state, denoted as N(σ). The optimality gap of a policy σ
is defined as N(σ)−N(σ∗), where σ∗ is the optimal policy. Since SBP in service systems aims to
model today’s large-scale computing systems, the optimality gap of a policy is usually studied in
the regime where the total job arrival rate becomes large. As we scale up the total job arrival rate
linearly with a scaling factor, r, the optimal value N(σ∗) can be shown to be Θ(r). 1 Therefore, we
say a policy is asymptotically optimal if its optimality gap is o(r).

The optimality gap for SBP in service systems has been characterized in the line of work
[145, 147, 148, 146, 149]. In particular, in [145] and [147], greedy policies are proposed and are
proved to be asymptotically optimal, but the scheduler that executes these policies needs to know
detailed state information, which is in a high-dimensional space. Later, policies that use much less
state information are developed in [148] and [149], which achieve Θ(r) (with an arbitrarily small
constant) and o(r) optimality gaps, respectively.

While prior work on SBP in service systems has provided substantial insights into scheduling
virtual-machine-type jobs, it primarily focuses on job resource requirements that remain fixed over
time. However, in modern computing systems, jobs’ resource requirements often vary over time
[131, 41, 105, 151, 134, 14]. For example, when a job involves providing user-facing services, the
instantaneous requirement on CPUs and memory depends on the service demand, which is subject
to fluctuation over time [41, 105]. Time-varying job resource requirements pose significant challenges

1We use the standard Bachmann–Landau notation. Consider two functions a(r) and b(r), where b(r) is positive for

large enough r. Then a = O (b) if lim supr→+∞
|a(r)|
b(r)

< ∞; a = o (b) if limr→+∞
a(r)
b(r)

= 0; a = Θ(b) if a = O (b) and

b = O (a).

16



(a) A simplified version of our job model. Each job
in service is in either an L phase or an H phase,
associated with low and high resource requirements,
respectively. When the job is completed, it is said
to be in the state ⊥. The job transitions between
the two phases while in service until it is completed,
following a continuous-time Markov chain with rates
µii′ , i, i

′ ∈ {L,H,⊥}.

(b) A system model with an infinite number of iden-
tical servers. As soon as a job arrives to the system,
the job needs to be dispatched to a server to start
service immediately. The configuration of each server
is the number of jobs in each phase on the server.

Figure 2: Job model and system model.

in optimizing system efficiency, particularly when aiming to minimize the number of active servers,
thereby improving server utilization. It is pertinent to note that low utilization has been recognized
as a significant obstacle to the continued scaling of today’s computing systems.

Motivated by this gap, in this paper, we propose a new setting of stochastic bin-packing in
service systems that allows job resource requirements, or ‘item sizes’, to vary over time.

3.2 Problem formulation: a simplified version

We first describe our job model that features time-varying resource requirements. For ease of
exposition, here we present a simplified setting where each job in service can be in one of the two
phases, L and H, associated with low and high resource requirements, respectively. Our full model,
presented in [85, Section 2] allows more than two phases and more than one type of resources. To
model the temporal variation in the resource requirement, we assume that each job transitions
between the two phases while in service until it is completed, following a continuous-time Markov
chain illustrated in Figure 2a. We use an absorbing state ⊥ to denote that the job is completed. A
job can initialize in either phase L or phase H, and they are referred to as type L and type H jobs,
respectively. Note that the setting where a job’s resource requirement does not vary over time is a
special case of our job model where the transition rates between phases are 0.

We consider a system with an infinite number of identical servers, illustrated in Figure 2b. We
assume jobs arrive according to a Poisson process as existing work on SBP in service systems. In
particular, we assume that the two types of jobs arrive at the system following two independent
Poisson processes, with rates ΛL and ΛH , respectively; i.e., the interarrival times of type L and type
H jobs are i.i.d. following exponential distributions with means 1/ΛL and 1/ΛH , respectively. Upon
arrival, a job needs to be dispatched to a server according to a dispatch policy, and the job enters
service immediately. The goal is to design a policy σ to minimize the expected number of active
servers (servers currently serving a positive number of jobs) in steady state, denoted as N(σ).

As job resource requirements vary over time, situations can arise where the total job resource
requirement on a server exceeds the server’s resource capacity, resulting in resource contention.
Modern computing systems can tolerate temporary overruns of resource capacity, though they often
incur performance degradation or other costs [29, 49]. In our model, we incorporate a rate at which
the cost accumulates due to resource contention. We first represent the state of a server by its
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configuration, a vector k = (kL, kH) where kL and kH are the numbers of jobs in phase L and phase
H, respectively. Then a cost rate function h(·) maps a server’s configuration to a cost rate. We allow
the cost rate function to be any function satisfying h(0) = 0. In particular, it can be proportional
to how much the total resource requirement of the jobs on the server exceeds this server’s resource
capacity. We assume that the resource contention does not affect the transition rates in the job
model nor prompt jobs to be terminated, suitable for the application scenarios where the contention
level is low and manageable. Let C(σ) denote the ratio between the steady-state expected cost rate
and the steady-state number of active servers.

Now our bin-packing problem can be formulated as follows:

minimize
σ

N(σ)

subject to C(σ) ≤ ϵ,
(22)

where ϵ > 0 is a budget for the cost rate of resource contention. We denote the optimal value of
this bin-packing problem as N∗.

We are interested in solving this problem in the asymptotic regime where the arrival rates (ΛL,ΛH)
scale to infinity [147, 148, 146, 149], motivated by the ever-increasing computing demand that drives
today’s computing systems to be large-scale. Specifically, we assume (ΛL,ΛH) = (λLr, λHr) for
some fixed coefficients λL and λH and a scaling factor r, and we study the asymptotic regime where
r →∞. We say a policy σ is asymptotically optimal if

N(σ) ≤
(
1 +O

(
r−0.5

))
·N∗ (23)

C(σ) ≤
(
1 +O

(
r−0.5

))
· ϵ. (24)

3.3 Policy design through a simple system

In this section, we construct an asymptotic optimal policy for our stochastic bin-packing problem
set up in the last section. We break down the policy design into two steps: First, in Section 3.3.1,
we define a simple system through a certain single-server problem. Then in Section 3.3.2, we
construct a meta-policy called Join-Requesting-Server, which converts an optimal solution to
the single-server problem to a policy in the original system to achieve asymptotic optimality.

3.3.1 Defining the simple system using the single-server problem

To facilitate proving asymptotic optimality, we want to define the simple system to be more “efficient”
than original infinite-server system under any feasible policy. To do so, consider the following
motivating question: suppose that our goal is to maximize the throughput of one specific server
while keeping its steady-state expected cost rate of resource contention below ϵ, how should we send
jobs to this server? Note that in this case, we can potentially send jobs to the server at almost an
infinite rate when the scaling factor r →∞. However, the throughput of the server is limited by
the phase-transition dynamics of the jobs and the structure of its cost rate function h(·).

To capture the throughput limit of one server under the steady-state expected cost-rate constraint,
we define the following single-server problem, illustrated in Figure 3: There is an infinite supply of
jobs of all types, so the server can start the service of any number of new jobs of any type at any
time. We say the server requests a job from the infinite supply whenever it starts serving a new job.
The job-requesting decisions are made by a single-server policy, denoted as σ̄, under two constraints:

• The steady-state expected cost rate of resource contention is no more than ϵ.
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Figure 3: The single-server problem has an infinite supply of jobs. A single-server policy decides
when to request jobs and how many jobs of each type to request.

• The long-run average rates of requesting each type of jobs, (λ̄L, λ̄H), is proportional to the
arrival rate vector (λLr, λHr).

Let N̄ be the positive number such that (λ̄LN̄ , λ̄HN̄) = (λLr, λHr). The objective of the single-
server problem is to minimize N̄ . Let N̄∗ be the optimal value of the single-server problem, and let
σ̄∗ be an optimal Markovian policy of the single-server problem.

Now we are ready to define the simple system. Consider the system with N̄∗ servers 2, where
each server has independent phase transitions and independently requests jobs using a optimal
single-server policy σ̄∗. Then in this system, the total rates of requesting each type of jobs is equal
to (λLr, λHr), and the steady-state expected cost rate per server is no more than ϵ. Moreover, since
each server in this simple system requests jobs with the optimal single-server policy, and we can
show that N∗ ≥ N̄∗, i.e., the number of active servers in this simple system is a lower bound to our
bin-packing problem (22) (Theorem 3.2).

In the next section, we will define a dispatching policy in the infinite-server system to mimic the
dynamics of the simple system defined above. To see why this simple system serves as a reasonable
target to mimic, we observe that the stochastic processes of when type i jobs arrive to the two
systems are similar for each type i. Specifically, in the infinite-server system, the process is a Poisson
process with rate λir; in the simple system, the process is the superposition of N̄∗ independent point
processes, each corresponds to the job requests from one server and has the average rate λ̄i = λir/N̄

∗.
Intuitively, when r and N̄∗ are large, these two processes should be close due to concentration of
independent random variables. Therefore, intuitively, there should exists a dispatching policy in
the infinite-server system that make the dynamics of the first N̄∗ approximate the dynamics of the
simple system.

3.3.2 Policy design in the complex system: Join-Requesting-Server

In this section, we define a dispatching policy that makes the infinite-server system mimic the simple
system defined in the last section. This is done through a meta-policy named Join-Requesting-
Server (JRS), which converts any single-server policy σ̄ to a dispatch policy in the infinite-server
system. We say that JRS takes σ̄ as a subroutine. The subroutine of particular interest is the
optimal single-server policy σ̄∗, which will be converted to an asymptotically optimal dispatching
policy. We will fix the subroutine as σ̄∗ when we describe JRS in this section.

The basic idea of JRS is simple: Under JRS, each of the first N̄∗ servers requests jobs using
σ̄∗, and each request for a type i job generates a type i token. When a type i job arrives, the
dispatcher sends the job to any server with a type i token and removes the token; if there is no type
i token in the system, the job goes to any server outside the first N̄∗ servers. In this way, if each

2Because N̄∗ → ∞ as r → ∞, without loss of generality, we assume N̄∗ to be an integer.
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token is matched with a job soon after it is generated, the dynamics of the first N̄∗ servers in the
infinite-server system approximates the dynamics of the simple system.

Next, we state the definition of JRS. For the ease of presentation, we state a slightly simplified
version under the assumption that σ̄∗ induces a unichain in the single-server problem. The general
definition of JRS can be found in [85, Appendix B.3].

Definition of Join-Requesting-Server The inputs of JRS include: (i) the optimal single-server
policy σ̄∗, (ii) the optimal value of the single-server problem N̄∗, and (iii) the transition rates of the
job model.

We first divide the servers into two sets based on the server’s index ℓ. We call servers with index
ℓ ≤ N̄∗ normal servers; we call servers with index ℓ > N̄∗ backup servers.

The JRS is specified in two steps.

• Step 1 (Job Requesting on a Normal Server): We let each normal server request jobs using
its σ̄∗. The input to the policy σ̄∗ is what we refer to as the observed configuration of the server,
which will be further explained below. When σ̄∗ requests a = (ai)i∈I jobs, ai type i tokens are
generated for each i ∈ I to store the job requests. The server pauses the job requesting process if
it already has any type of tokens, and resumes when all the tokens that it generated are removed.

• Step 2 (Arrival Dispatching):

– Real jobs. When a type i job arrives, the dispatcher chooses a type i token uniformly at
random, removes the token, and assigns the job to the corresponding server. When there are
no type i tokens, the dispatcher sends the job to an idle backup server.

– Virtual jobs. When the total number of type i tokens throughout the system exceeds the

token limit, ηmax =
⌈(
N̄∗)1/2⌉, a type i virtual arrival is triggered, which causes the dispatcher

to choose a type i token uniformly at random, remove the token, and assign a virtual job to
the corresponding server. A virtual job has the same transition dynamics as a real job but
does not consume physical resources.

The observed configuration of a normal server in Step 1 is the configuration resulting from real jobs
and virtual jobs combined. That is, it is a vector whose i-th entry represents the total number of
real and virtual jobs in phase i on this server. The observed configuration changes when there is a
new real or virtual job arrival assigned to the server, or when a real or virtual job on the server has
a phase transition or departs. We update the input to σ̄∗ when the observed configuration changes.

Discussion on the detail of JRS. Note that rather than matching all tokens with job arrivals,
JRS opts to convert some of the tokens into virtual jobs to keep the total number of tokens within
an upper limit ηmax. By capping the number of tokens, JRS ensures that the job requests generated
by each server get fulfilled quickly (either by a real job or a virtual job), and thus the dynamics of
the observed configurations of the normal servers maintain proximity to the dynamics of the simple
system that we want to match with.

The choice of the token limit ηmax =
⌈(
N̄∗)1/2⌉ balances two key considerations. On the one

hand, a smaller ηmax brings the observed configurations closer to the simple system. On the other
hand, if ηmax is overly small, the rate of generating virtual jobs becomes high and the probability
for a job arrival to see no tokens is also high. As a result, the observed configurations, which include
both real and virtual jobs, deviate from the real-job configurations.

See [85, Section 5.5] for a more in-depth discussion on the role of tokens and virtual jobs and
whether they are fundamental.
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3.4 Main result

In our main result is stated below as Theorem 3.1, where we show that JRS with the subroutine σ̄∗,
defined in Section 3.3.2, is asymptotically optimal. Theorem 3.1 corresponds to Theorem 1 in our
full paper [85].

Theorem 3.1 (Asymptotic Optimality). Consider a stochastic bin-packing problem in service
systems with time-varying job resource requirements stated in (22), with arrival rates (λLr, λHr)
and the cost rate budget ϵ > 0. Let N∗ be the optimal value of the problem. Let the policy σ be
Join-Requesting-Server (JRS) with the subroutine σ̄∗, where σ̄∗ is an optimal single-armed
policy. Then

N(σ) ≤
(
1 +O

(
r−0.5

))
·N∗ (25)

C(σ) ≤
(
1 +O

(
r−0.5

))
· ϵ. (26)

3.5 Proof roadmap

Now we outline the main steps of our analysis.
In Theorem 3.2 below, we prove a lower bound to the bin-packing problem. Theorem 3.2

corresponds to Theorem 2 in our full paper [85].

Theorem 3.2 (Lower Bound). Consider a stochastic bin-packing problem in service systems with
time-varying job resource requirements stated in (22), with arrival rates (λLr, λHr) and the cost
rate budget ϵ > 0. Let N∗ be the optimal value of the problem. Let N̄∗ be the optimal value of the
corresponding single-server problem. Then N∗ ≥ N̄∗.

Next, we show that the meta-policy JRS preserves the performance when converting σ̄∗ to a
policy in the infinite-server system, as stated in Theorem 3.3 below. Theorem 3.3 corresponds to
Theorem 3 in our full paper [85].

Theorem 3.3 (Conversion Theorem). Consider a stochastic bin-packing problem in service systems
with time-varying job resource requirements stated in (22), with arrival rates (λir)i∈I and the cost
rate budget ϵ > 0. Let σ̄∗ be an optimal single-server policy with objective value N̄∗. Let the
infinite-server policy σ be JRS with the subroutine σ̄∗. Then under σ, we have

N(σ) ≤
(
1 +O

(
r−0.5

))
· N̄∗, (27)

C(σ) ≤
(
1 +O

(
r−0.5

))
· ϵ. (28)

Theorem 3.2 and 3.3 together imply Theorem 3.1. In addition, we show that an optimal
single-server policy σ̄∗ can be efficiently solved from a linear program, as stated in the Theorem 3.4
below. Theorem 3.4 corresponds to Theorem 4 in our full paper [85].

Theorem 3.4 (Solving the single-server problem, Informal). The single-server problem defined in
Section 3.3.1 is equivalent to a linear program whose complexity is independent of the scaling factor
r. Specifically, the optimal solution of the linear program can be used to construct an optimal policy
of the single-server problem.

The most interesting step in the analysis is the proof of Theorem 3.3, where we compare the
infinite-server system under JRS with subroutine σ̄∗ (the complex system) with the system where
N̄∗ servers independently request jobs using σ̄∗ (the simple system). In the proof, we bound the
Wasserstein distance between the steady-state distributions of the server-configurations in these
two systems. We utilize some nice structures of JRS with a combination of multiple techniques,
including Stein’s method, Lyapunov drift analysis, and Little’s law. Interested readers can see the
proof in Section 5 of our full paper [85].
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4 Optimal scheduling in G/G/k/setup

4.1 Background and motivation

We consider the classic problem of preemptively scheduling jobs in a queue to minimize mean
number-in-system, or equivalently mean response time (a.k.a. sojourn time). Even in single-server
queueing models, this can be a nontrivial problem whose answer depends on the information available
to the scheduler. The simplest case is when the scheduler knows each job’s size (a.k.a. service time),
for which the optimal policy is Shortest Remaining Processing Time (SRPT) [135]: always serve
the job of least remaining work.

In the more realistic case of scheduling with unknown or partially known job sizes, the optimal
policy is only known for the M/G/1. It is called the Gittins policy (a.k.a. Gittins index policy)
[1, 2, 65, 139]. Based on whatever service time information is available for each job, Gittins assigns
each job a scalar rank (i.e. priority), then serves the job of least rank. For example, SRPT is
the special case of Gittins where job sizes are known exactly, and a job’s rank is its remaining
work. More generally, a job’s rank is, roughly speaking, an estimate of its remaining work based on
whatever information is available.

The Gittins policy is known to be optimal in the M/G/1 [65, 139]. But plenty of systems and
models have more complex features, including:

(a) Multiple servers, such as the M/G/k.

(b) Non-Poisson arrival processes, such as the G/G/1 (more specifically, the GI/GI/1).

(c) Periods of server unavailability, such as models with setup times.

Either (a) or (b) alone makes optimal scheduling intractable. Combining all three, as in the G/G/k
with setup times (G/G/k/setup), only adds to the challenge.

With optimality out of reach, we are left to find a tractable near-optimal policy. We thus ask:

How well does Gittins perform in systems with features (a), (b), and (c) like the
G/G/k/setup?

Gittins policy is a natural candidate because its definition naturally generalizes beyond the M/G/1,
even if its optimality proof does not [65]. For instance, in a G/G/k, Gittins policy simply serves the
k jobs of k least ranks, or all jobs if there are fewer than k.

Only feature (a) has been addressed in full generality in prior work [137, 74, 136], where Gittins
policy is proved to be heavy-traffic optimal as the load ρ→ 1, with explicit bounds on the optimality
gap. Analyzing Gittins in models with features (b) and (c) has been open and cannot be directly
done using existing techniques.

4.2 Related work

Gittins policy in single-server models The Gittins policy was originally conceived to solve the
Markovian multi-armed bandit problem [65, 66], but it was soon adapted to also solve the problem
of scheduling in an M/G/1 to minimize mean number of jobs and similar metrics. See [139] and the
references therein for a review of Gittins in the M/G/1. However, aside from some particular cases
[135, 132], the degree to which Gittins performs well in the G/G/1 or G/G/1/setup was previously
unknown.

The SOAP technique of [140] can be used to analyze the performance of the Gittins policy
in the M/G/1. However, while SOAP is convenient for analyzing any fixed size distribution (e.g.
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numerically), using it to prove theorems that hold for all size distributions is cumbersome [141,
Section 1.1]. Moreover, SOAP is limited to the M/G/1 and, thanks to an extension by [155], the
M/G/1/setup. Analyzing Gittins with G/G arrivals or multiple servers seems to be beyond SOAP
[138, Appendix B].

Gittins policy in multiserver models Gittins is known to be suboptimal with multiple servers
[65], but researchers have studied the extent to which the optimality gap is large or small. The
earliest results of this type analyzed an M/M/k with Bernoulli feedback [70] and nonpreemptive
M/G/k with Bernoulli feedback [68]. These results proved (in the latter case, under an additional
assumption) constant optimality gaps for Gittins in these systems. But both models are somewhat
restrictive, excluding, for instance, heavy-tailed job size distributions that are common in computer
systems [79, 78, 34, 123, 125]. More recent work, which we discussed in Section 1, overcomes these
limitations to bound the performance of Gittins in the M/G/k for general job sizes, including
heavy-tailed sizes [142, 74, 136]. However, all of the above work assumes M/G arrivals with no
server unavailability.

Setup times in single-server models Single-server models with setup times has been extensively
studied and are relatively well-understood [162, 42, 17, 28, 80, 96, 114, 52, 51, 43, 152]. See [43] for
a survey of the work before 1986 and [152] for a more recent survey. These works consider various
arrival and service processes, as well as other types of server unavailability in addition to setup
times.

However, none of the above works discuss optimal scheduling in the presence of setup times.
Progress was made by [155], who obtains the mean response time of Gittins in the M/G/1/setup as
a special case of a more general analysis. But the analysis does not show that other policies might
outperform Gittins, nor does it apply to the G/G/1/setup.

Setup times in multiserver models Compared with single-server models, multiserver models
with setup times are less well-understood. A significant line of previous work has studied the
M/M/k/setup with exponential setup times and FCFS scheduling [7, 54, 56, 55, 53, 124]. Among
those works, [54] and [55] also demonstrate that their results generalize to M/G/k/setup with
exponential setup times via simulation or analyzing special examples. Recently, [168] go beyond
exponential setup times, studying M/M/k/setup with deterministic setup times and FCFS scheduling.
However, none of these prior works apply to general setup times, non-Poisson arrivals, or scheduling
policies beyond FCFS.

We note that [68], who studies the nonpreemptive M/G/k with Bernoulli feedback, actually
studies a more general model that allows for certain types of server unavailability, such as server
breakdowns. However, setup times are not covered by [68]. It is likely that more general future work
could simultaneously cover setup times, server breakdowns, and other types of server unavailability.
See [81, Section 10.3] for an additional discussion.

Work decomposition law An important ingredient of our analysis is a new work decomposition
law, which we explain in Section 4.5. There is a long tradition of proving work decomposition laws
for queueing systems [51, 52, 18, 114, 70, 68, 137, 136, 44]. Most of these laws take the form

E [work in complex system with M/G arrivals] = E [work in M/G/1]+E [extra work due to complexity] .

For example, if the complex system is an M/G/1/setup, the extra work from complexity depends
on the setup time distribution. Most work decomposition laws are actually even stronger, holding
distributionally instead of just in expectation.
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We need a work decomposition law where the complexity includes, among other factors, having
multiple servers. Such a result for M/G arrivals is relatively recent [137, 136], and no such result
exists for G/G arrivals. While there are work decomposition laws for G/G arrivals in the literature
[42, 44, 114], to the best of our knowledge, they apply only to single-server models with vacations.
To the best of our knowledge, we prove the first work decomposition law for G/G arrivals that holds
for multiserver systems like the G/G/k.

4.3 Model

4.3.1 Core queueing models: G/G/k, G/G/1, M/G/k, and M/G/1

We consider a G/G/k queueing model with a single central queue and k identical servers. The
system experiences G/G arrivals : jobs arrive one-by-one with i.i.d. interarrival times, and each job
has an i.i.d. size, or service requirement. Interarrival times and job sizes are independent of each
other. We denote a generic random interarrival time by A and a generic random job size by S.3

At any moment of time, a job in the system can be served by one server. Any jobs not in service
wait in the queue. Once a job’s service is finished, it departs. We follow the convention that each of
the k servers has service rate 1/k. A job of size S thus requires kS time in service to finish. This
convention gives all systems we study the same maximum total service rate, namely k · 1/k = 1,
and thereby the same stability condition.

The name “G/G/k” denotes the fact that the system has G/G arrivals and k servers. When A
is exponentially distributed, we write M/G in place of G/G, as in “M/G/k”.

Scheduling policies The scheduling policy decides, at every moment in time, which job is in
service at which server. We consider a preempt-resume model where preemption occurs without
delay or loss of work.

The scheduling objective is minimizing the mean number of jobs in the system. We denote
the mean number of jobs in system SYS under scheduling policy π by E [N ]πSYS, omitting the
“SYS” and/or “π” if there is no ambiguity. By Little’s law [92], minimizing E [N ] is equivalent to
minimizing mean response time, the average amount of time a job spends between its arrival and
departure.

We assume that the job sizes are unknown to the scheduler, so the scheduler makes decisions
based on only the amount of service each job has received, which we refer to the job’s state and
denote as x. In our full paper [81], we consider a more general job model where the scheduler could
have partial size information.

We restrict attention to non-idling policies, which are those that never unnecessarily leave
servers idle. Nevertheless, our results have implications even for idling policies.

Load and stability We write λ = 1/E [A] for the average arrival rate and ρ = λE [S] for the
system’s load, or utilization. One can think of ρ as the average fraction of servers that are busy. It
is clear that ρ < 1 is a necessary condition for stability (unless both A and S are deterministic), so
we assume this throughout.

Some of our results are stated for the heavy-traffic limit. For our purposes, this limit, denoted
ρ→ 1, refers to a limit as the job size distribution S remains constant, and the interarrival time

3This arrival process is often referred to more specifically as GI/GI arrivals, with the “I” emphasizing the
independence assumption. Under this convention, G/G arrivals include even more general stationary arrival processes
where independence does not hold. In this work, we focus only on the independent case, so we write simply “G/G”
instead of “GI/GI” for brevity.
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distribution A is scaled uniformly down with its mean approaching the mean job size. That is,
the system with load ρ has interarrival time Aρ = A1/ρ for some fixed distribution A1, where
E [A1] = E [S].

It seems intuitive that ρ < 1 should be sufficient for stability under non-idling policies, and it is
in the G/G/1 [107]. But to the best of knowledge, there are no results characterizing stability of
the G/G/k under complex scheduling policies. Even under FCFS, proving stability of the G/G/k is
not simple, because the system can be stable even when it never empties [90, 165, 143, 118]. Setup
times further complicate the matter.

We consider the question of proving stability of the G/G/k/setup under arbitrary non-idling
scheduling policies to be outside the scope of this work, so we simply assume stability when ρ < 1.
We expect this is indeed the case, giving the initial steps of a proof sketch in the appendix of [81].

Assumption 4.1. For all ρ < 1, the G/G/k/setup is stable under all non-idling scheduling policies,
including the Gittins policy.

Additional assumption on interarrival times Our results for G/G arrivals depend on “how
non-Poisson” arrival times are, which we quantify using the following assumption.

Assumption 4.2. There exist Amin, Amax ∈ R≥0 such that E [A− a |A > a] ∈ [Amin, Amax] for all
a ≥ 0. That is, letting the interarrival age Aage be the time since the last arrival and residual
interarrival time Ares be the amount of time until the next arrival, we have

E [Ares |Aage] ∈ [Amin, Amax] with probability 1.

One may always use Amin = infa≥0 E [A− a |A > a] and Amax = supa≥0 E [A− a |A > a], so this
assumption boils down to the latter being finite.

Our results use Assumption 4.2 via the quantity λ(Amax − Amin), which we can think of as
measuring “how non-Poisson” arrival times are. In the Poisson case, one may use Amin = Amax = 1/λ,
so λ(Amax −Amin) = 0.

Many interarrival distributions A satisfy Assumption 4.2, such as all phase-type distributions.
One can also think of Assumption 4.2 as a relaxation of the well-known New Better than Used in
Expectation (NBUE) property, which is the special case where Amax = E [A]. The main distributions
ruled out by Assumption 4.2 are various classes of heavy-tailed distributions, e.g. power-law tails.

4.3.2 Setup times

In addition to the basic G/G/k model defined above, we also consider models in which servers
require setup times to transition from idle to busy. We denote these models with an extra “/setup”,
as in G/G/k/setup. Whenever a server switches from idle to busy, it must first complete an i.i.d.
amount of setup work, denoted U . Like work from jobs, servers complete setup work at rate 1/k, so
setup work U results in setup time kU . Setup work amounts are independent of interarrival times
and job sizes.

For the purposes of stating our results and proofs in a unified manner, we consider the G/G/k
without setup times to be the special case of the G/G/k/setup where U = 0 with probability 1.

In our model, a server can be in one of three states:

• Setting up, i.e. doing setup work.

• Busy, i.e. serving a job.
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• Idle, i.e. neither serving a job nor doing setup work.

In the G/G/k/setup, a server transitions

• from setting up to busy when it finishes its setup work,

• from busy to idle when the system has fewer jobs than busy servers, and

• from idle to setting up when the system has fewer busy or setting up servers than jobs.

Note that once a setup time begins, it is never canceled, even if the job whose arrival triggered the
setup time begins service at another server. Unless another job arrives during the setup time, the
server will transition from setting up to busy, then immediately back to idle.

4.3.3 Gittins policy

The scheduling policy we focus on in this work is the Gittins policy (a.k.a. Gittins index policy).
Gittins is primarily known for the fact that it minimizes E [N ] in the M/G/1 [65, 139]. In formulas,
we abbreviate Gittins to “Gtn”, as in E [N ]Gtn

G/G/k/setup.
The Gittins policy assigns each job a numerical priority, called a rank, where lower rank is better.

Gittins always serves the job or jobs of least rank,4 and it is non-idling, serving as many jobs as the
number of available servers allows. Gittins policy determines ranks using a rank function [65]

rankGtn(x) = inf
y>x

E [min{S, y} − x |S > x]

P (S ≤ y |S > x)
,

assigning rankGtn(x) to a job in state x ∈ X.

4.4 Main results

In this section, we present our main results: the optimality gap bounds and the asymptotic optimality
of Gittins policy in G/G/k/setup.

All of our results hold under the assumptions of Section 4.3, and in particular Assumption 4.1
and 4.2. As in Section 1, we can view a G/G/k/setup system, or any special case thereof, by
whether it has (a) multiple servers, (b) non-Poisson arrivals, and (c) setup times. Our bounds use
the quantities

ℓ(a) = C(k − 1) log
1

1− ρ
,

ℓ(b) = λ(Amax −Amin),

ℓ(c) = 1{P (U > 0) > 0}
(
2(k − 1) + λ(Amax + kE [Ue])

)
,

where C = 9
8 log 1.5 + 1 ≈ 3.775, Ue denotes the excess distribution of the setup work U . The idea

is that ℓ(a) is the loss due to feature (a), as it is nonzero only for systems with k ≥ 2 servers, and
similarly for ℓ(b) and ℓ(c).

Theorem 4.1. The performance gap between the Gittins policy in G/G/k/setup and the optimal
policy in G/G/1 is bounded by

E [N ]Gtn
G/G/k/setup − inf

π
E [N ]πG/G/1 ≤ ℓ(a) + ℓ(b) + ℓ(c).

4Much literature on the Gittins policy uses the opposite convention, where higher numbers are better. These works
typically call a job’s priority its index [65, 1, 2], which is the reciprocal of its rank [139].
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Note that although Theorem 4.1 is not directly about the optimality gap of Gittins policy
in G/G/k/setup, it still provides an upper bound on the optimality gap, because the optimal
performance of G/G/1 is a lower bound to G/G/k/setup. This is because servers in G/G/k/setup
have speed 1/k (Section 4.3.1), so the G/G/1 can mimic any policy in the G/G/k/setup through
processor sharing and idling.

With that said, in the special case of the non-idling G/G/1/setup, we can prove a stronger result
that drops the ℓ(c) term by comparing to a G/G/1/setup instead of a G/G/1.

Theorem 4.2. In the G/G/1/setup, the performance gap between the Gittins policy and the optimal
non-idling policy is bounded by

E [N ]Gtn
G/G/1/setup − inf

π
E [N ]πG/G/1/setup ≤ ℓ(b).

In particular, in the M/G/1/setup, the Gittins policy minimizes E [N ] among non-idling policies.

The optimality gap in Theorem 4.1 is constant when k = 1 and O
(
log 1

1−ρ

)
when k ≥ 2. In

both cases, the gap grows more slowly in the ρ→ 1 limit than E [N ]πG/G/1, implying heavy-traffic
optimality.

Theorem 4.3. In the G/G/k/setup, if either k = 1 or E
[
S2(logS)+

]
<∞, and if either S or A is

not deterministic, the Gittins policy is heavy-traffic optimal. Specifically,

lim
ρ→1

E [N ]Gtn
G/G/k/setup

infπ E [N ]πG/G/1

= 1.

4.5 Proof overview and technical contributions

In this section, we give an overview of the proofs of our main results: bounds on Gittins’s optimality
gap (Theorems 4.1 and 4.2) and Gittins’s heavy-traffic optimality (Theorem 4.3). Note that each
of these results had already been stated in the form of a comparison between a complex system
(G/G/k/setup) and a simpler system (G/G/1 or G/G/1/setup). Next, we outline how we prove
these bounds that involve the comparisons between complex and simple systems.

Our proofs work by combining two queueing identities: Work Integral Number Equality (WINE),
which is from prior work; and a novel work decomposition law, which is built on similar decomposition
results from prior work (Section 4.2).

The first tool, WINE, expresses the mean number-in-system in terms of mean r-work E [Wr]
[136, 137, 139]:

E [N ] =

∫ ∞

0

E [Wr]

r2
dr.

A system’s r-work, Wr, is the total service required to serve all jobs in the system until they all
either complete or reach a rank greater than r, as determined by rankGtn. For example, ∞-work is
the total remaining work of all jobs, which we call total work or simply work.

The second tool, the work decomposition law, bounds the difference in E [Wr] between G/G/k/setup
under Gittins, and G/G/1 (or G/G/1/setup) under any policy. Combining this with WINE yields
bounds on E [N ]. Our proof thus boils down to three steps:

• Proving the work decomposition law (Section 4.5.1).

• Using the work decomposition law to bound Gittins’s optimality gap (Section 4.5.2).

• Using the optimality gap bounds to show Gittins is heavy-traffic optimal (Section 4.5.3).
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4.5.1 New tool: work decomposition law for G/G arrivals

Our work decomposition law characterizes mean r-work E [Wr] in the G/G/k/setup. For simplicity
of presentation, below we focus on the special case of mean total work E [W ]. We refer the readers
to Theorem 7.2 of our full paper [81] for the full version of our work decomposition law.

Our work decomposition law implies that in the G/G/k/setup under any policy π,

E [W ]π − E [W ]G/G/1 ≤
E [JidleW ]π

1− ρ
+

E [JsetupW ]π

1− ρ
+ ρ(Amax −Amin).

Above, E [W ]G/G/1 is the mean work in a non-idling G/G/1, which is policy-invariant; and Jidle
and Jsetup are the fraction of idle and setting-up servers, respectively. Flipping the sign on the
ρ(Amax −Amin) term yields a lower bound instead of an upper bound.

The work decomposition law decomposes work E [W ]π into the policy-invariant term E [W ]G/G/1,
plus error terms that can depend on the policy π. Each error term characterizes the consequence of
a complicating factor that G/G/k/setup has on the top of the G/G/1 system: [(a)] The first term
is due to having multiple servers. It vanishes when k = 1, as then Jidle = 0 if W > 0.5

• The second term is due to the setup time. It vanishes if servers do not need setup, as then
Jsetup = 0.

• The third term is due to non-Poisson arrivals. It vanishes for Poisson arrivals, as then
Amax = Amin.

How we prove the work decomposition law The proof of work decomposition laws in prior
work involves viewing W as a process in the steady state and analyzing its continuous changes and
jumps. This strategy works well in M/G systems, because all times have an equal chance of seeing
W jump up due to an arrival. But in G/G systems, the chance of having an arrival in the next
moment depends on Aage, the amount of time since the previous arrival. The jumps of W are thus
more complicated to analyze.

The key idea in our proof is to smooth out the non-constant jumping rate of W . Specifically, we
consider the process W − ρAres, which only differs from W by one interarrival time. This process
decreases at a constant rate of 1− ρ. When an arrival happens, the process jumps, but the expected
change is E [S]−ρE [A] = 0. Therefore, arrivals only have a “second-order” effect on W , which makes
them easier to analyze. This idea builds upon similar smoothing approaches in recent queueing
literature [24, 116].

4.5.2 From work decomposition to optimality gap bounds

We focus here on proving Theorem 4.1, commenting only briefly on the similar proof of Theorem 4.2.
Combining our work decomposition law with WINE gives a formula for Gittins’s optimality

gap that has the same types of error terms as (4.5.1). Each error term in the work decomposition
law will result in one term in the optimality gap ℓ(a) + ℓ(b) + ℓ(c) in Theorem 4.1, after doing the
integration and applying some additional treatments that are specific to each term.

Among the three error terms, ℓ(a) can be derived similarly to prior work on the M/G/k
[137, 136, 74], and ℓ(b) follows from Assumption 4.2. But the term corresponding to setup, ℓ(c),

5When generalizing Section 4.5.1 from total work to r-work, there are actually two terms due to having multiple
servers. But both vanish when k = 1.
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requires a new analysis. We demonstrate the intuition by bounding E [JsetupW ] in Section 4.5.1. First,

we write E [JsetupW ] = 1
k

∑k
i=1 E [Jsetup,iW ], where Jsetup,i = 1{server i is setting up}. Observe that

E [Jsetup,iW ] = P (Jsetup,i = 1) E [W | Jsetup,i = 1] .

Intuitively, P (Jsetup,i = 1) should be diminishing as the load gets heavy because the queue length
will get longer the server i will be turned off less frequently. The second factor, E [W | Jsetup,i = 1],
should be bounded because given that the server i is setting up, the work in the system should be
no more than the work that arrives during the setup, plus the work that already exists when the
setup happens.

For the proof of Theorem 4.2, which gives a tighter bound for the single-server case, we apply
WINE and work decomposition law in the same way as above. We will get an expression for
E [N ]Gtn

G/G/1/setup in terms of one G/G/1 term, and two error terms corresponding to non-Poisson
arrivals and setup times. Instead of analyzing the setup term as in the proof of Theorem 4.1, we
make the simple observation that the setup term is the same for all non-idling policies, so it does
not contribute to the optimality gap.

4.5.3 From optimality gap bounds to heavy-traffic optimality

Theorem 4.1 provides an upper bound on the optimality gap of Gittins policy in G/G/k/setup.
To show that the optimality gap is small compared with infπ E [N ]πG/G/k/setup and establish heavy-

traffic optimality of the Gittins policy, we need a lower bound on infπ E [N ]πG/G/k/setup. This lower

bound can be obtained by analyzing E [N ]SRPT
G/G/1 because SRPT gives the optimal number-in-system

in G/G/1 with known job sizes [135], which is no more than the optimal number-in-system in
G/G/k/setup achievable by a policy that does not know the job size.

We use WINE and work decomposition law, in a similar way as in the proofs in the optimality
gaps, to connect SRPT’s performance in the G/G/1 to its performance in the M/G/1. Our end
result ([81, Theorem 9.1]) shows that E [N ]SRPT

G/G/1 is a constant factor away from E [N ]SRPT
M/G/1 as

ρ→ 1. This lets us to use the known heavy-traffic asymptotics of SRPT in the M/G/1 [99] to lower
bound E [N ]SRPT

G/G/1 and thus show Gittins’s heavy-traffic optimality in the G/G/k/setup.
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5 Multiserver-job scheduling

5.1 Background and motivation

In today’s large-scale computing clusters behind cloud platforms, multiserver jobs have become
increasingly prevalent, where a multiserver job is a job that demands to occupy multiple “servers”
(which can be multiple physical servers, multiple CPU cores, etc.) simultaneously during its runtime
[151, 157, 100, 4]. For example, cloud platforms allow users to specify the number of CPU cores in
their virtual machines or containers, and this information can be utilized by centralized schedulers to
make scheduling decisions [see, e.g. 157, 71]. Moreover, the number of “servers” that a multiserver
job requests, which we refer to as the server need, is becoming increasingly large. This trend is
driven by machine learning jobs from applications like TensorFlow in [4], where the jobs are highly
parallel and require synchronization. According to the statistics from Google’s Borg Scheduler in
[157], the server needs in Borg can vary across six orders of magnitudes.

In this work, we study the impact of multiserver jobs on the delay performance of large-scale
computing systems using queueing models. Queueing models with multiserver jobs have been studied
in the literature, but quantifying the delay performance is notoriously hard. Exact steady-state
distributions can only be derived in highly simplified settings with two servers [25, 47], while the
majority of prior work has focused on characterizing stability conditions [117, 133, 5, 72, 121].
However, even for stability, exact conditions are known only for the special cases where all jobs have
the same service rate or where there are two job classes. We comment that concurrent to our work
[82], [73] and [75] study the delay performance of multiserver jobs in the traditional heavy-traffic
regime. A more detailed review of related work is provided in Section 5.3.

A recent advance in understanding the delay of multiserver jobs is a characterization of the
queueing probability in a large system in [160], where the queueing probability is the probability that
an arriving job has to queue rather than entering service immediately. Specifically, they consider a
multiserver job system with n servers, and study the asymptotic scaling regimes where n becomes
large. The scaling regimes allow different job types to have different arrival rates, server needs
and service rates. Among those parameters, server needs and arrival rates can scale up with n.
Such scaling regimes capture the trend that different multiserver jobs can be highly heterogeneous,
especially in terms of server needs. They establish an upper bound on the queueing probability,
based on which they give a sufficient condition for the queueing probability to diminish as n→∞.

Although the work of [160] identifies when the queueing probability diminishes in large systems,
which is a much desirable operating scenario, it does not provide much insight for differentiating
between scheduling policies. In particular, their queueing probability upper bound holds for any
scheduling policy that is reasonably work-conserving (although the bound is presented only for the
First-Come-First-Serve policy). Moreover, the queueing probability does not directly translate to
the delay of jobs.

In this work, we focus on the waiting time of jobs, which is the total time a job spends waiting
in the queue (not receiving any service), under various scheduling policies. The waiting time is a
performance metric that is directly related to job delay. Our goal is to establish bounds on the
mean waiting time that are order-wise tight as the number of servers, n, scales. Such tight bounds
will enable us to differentiate between policies based on their delay performance. We comment that
there has been a line of work in the literature [101, 104, 103, 102, 153, 163, 164] that focuses on
quantifying when the mean waiting time diminishes in large systems for various queueing models.
However, little is known on how fast the mean waiting time diminishes due to the lack of lower
bounds. Our results provide the rate of diminishing when the mean waiting time does diminish, but
our tight bounds on the mean waiting time are not limited to the “diminishing” scenario.
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Figure 4: A multiserver-job system with two types of jobs. Type 1 jobs have arrival rate λ1, service
rate µ1, and server need ℓ1 = 2. Type 2 jobs have arrival rate λ2, service rate µ2, and server need
ℓ2 = 3.

Since the First-Come-First-Serve (FCFS) policy is widely used as a default policy in practice and
also receives the most attention from theoretical studies of multiserver jobs [25, 47, 72, 5, 117, 133],
in this work, we will first examine FCFS and understand the exact order of the mean waiting time
under it. Then a natural question that arises is: can any policy outperform FCFS in terms of the
mean waiting time? More generally, we aim to answer the following fundamental questions:

• What is the optimal order of the mean waiting time as the system scales?

• Which policy achieves the optimal order?

5.2 Model

We consider a system that consists of n servers and I types of jobs. An example is illustrated in
Figure 4. Suppose type i jobs need the simultaneous service of ℓi servers. We sort the job types
such that their server needs ℓi’s satisfy ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓI . Let the maximal server need ℓmax be
ℓmax = maxi∈{1,2,...,I} ℓi = ℓI , and we call type I jobs the maximal-need jobs.

The dynamics of the system are as follows. For each i = 1, 2, . . . , I, type i jobs arrive to the
system following a Poisson process with arrival rate λi. Upon arrival, a job either starts service
immediately or waits in a centralized queue. When a type i job starts service, it leaves the queue
and makes exclusive use of ℓi servers. The job leaves the system after receiving enough service. The
service time of a type i job follows an exponential distribution with service rate µi. The service
times and arrival events are independent. During the operation of the system, a scheduling policy is
used to determine which set of jobs to serve at any time. The scheduling policy is allowed to be
preemptive, i.e., we can put a job in service back to the queue and resume its service later.

We measure the performance of our scheduling policy based on mean waiting time as defined
below: let Tw

i (∞) denote the expected waiting time of type i jobs in steady-state, then the mean
waiting time is defined as the steady-state expected waiting time averaged over all job types, i.e.,

E
[
Tw(∞)

]
=

1

λ

I∑
i=1

λiE [Tw
i (∞)] ,

where λ ≜
∑I

i=1 λi is the total arrival rate.
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Scheduling policies. A scheduling policy decides which jobs to put into service at any moment
of time. We are interested in the following two policies:

• First-Come-First-Serve (FCFS): Jobs are placed onto servers in a First-Come-First-Serve
fashion until either the next job in queue does not fit or all the jobs are in service.

• Smallest-Need-First (SNF): Recall that the job types are indexed in a way such that ℓ1 ≤
ℓ2 ≤ · · · ≤ ℓI . We assign priorities to job types such that a smaller index has a higher
priority. Whenever there is a job arrival or departure, SNF preempts all the jobs in service
and determines a new schedule from scratch. SNF starts from job type 1 and places as many
type 1 jobs as possible onto servers. After this, if there are still servers available, SNF goes to
the next priority level, type 2, and places as many type 2 jobs as possible onto servers. This
procedure continues until no more jobs in the queue can fit into the servers.

Scaling regimes. We consider scaling regimes where the number of servers, n, goes to infinity,
and the arrival rates λi and server needs ℓi are allowed to scale with n, while the service rate µi

and the number of job types I stay constant. The scaling regimes are specified by the slack capacity
δ ≜ n−∑I

i=1
λiℓi
µi

, the maximal server need ℓmax ≜ maxi∈[I] ℓi = ℓI and another parameter called

the work variability : σ2 ≜
∑I

i=1
λiℓ

2
i

µ2
i
. Work variability reflects the variability of the “work” caused

by job arrivals in terms of server–time product, which is ℓi
µi

in expectation for each type i job. To

help later presentation, we define the load ρ as ρ =
∑I

i=1
λiℓi
nµi

; we define the load brought by type i

jobs ρi as ρi =
λiℓi
nµi

.
We state our assumptions below. Throughout the section, log n denotes natural logarithm.

Assumption 5.1 (Heavy traffic assumption). The slack capacity δ is small relative to
√
σ2:

δ = o

(√
σ2

log n

)
. (29)

Assumption 5.2 (Maximal server need assumption). There exists a constant ϵ0 ∈ (0, 1) s.t.

ℓmax ≤ ϵ0δ. (30)

Assumption 5.3 (Commonness assumption). The load brought by the maximal-need jobs is not
too small (note that ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓI = ℓmax):

ρI ≜
λIℓI
nµI

= ω

(√
δ log n√

σ2
· ℓmax

n
log n

)
. (31)

Assumption 5.1 guarantees that the traffic is not too light, while Assumption 5.2 guarantees
that the system is stable under FCFS and SNF. Assumption 5.3 states that the load brought by the
maximal-need jobs are not too small. To understand the right hand side expression in Assumption 5.3,

note that it is automatically satisfied when ρI = ω

(√
ℓmax
n log n

)
due to Assumption 5.1. For

example, when ℓmax = Θ(
√
n), then it suffices to have ρI = ω

(
n−1/4 log n

)
.

To have an intuitive view of the magnitudes of the parameters, we give the following asymptotics:

σ2 = O (nℓmax), δ = o
(

n
(logn)2

)
, and ℓmax ≤ ϵ0δ = o

(
n

(logn)2

)
. They can be verified using the

definitions and assumptions.
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The asymptotic regimes that we consider can be viewed as the many-server heavy-traffic scalings
in traditional multiclass M/M/n models, where the load ρ→ 1 and the number of servers n→∞
jointly. In particular, when we set ℓi = 1 and let λi = Θ(n) for all i ∈ Θ(n), because δ = n(1− ρ),
one can verify that the Assumptions 5.1, 5.2, and 5.3 are equivalent to

1− ρ = o

(
1√

n log n

)
and 1− ρ = Ω

(
1

n

)
.

In other words, in this special case, our scaling regimes are lighter than the Non-Degenerate
Slowdown (NDS) regime introduced in [9], and at least as heavy as the Halfin-Whitt (HW) regime
introduced in [77].

Subsystems. When we analyze SNF and prove the lower bound for all policies, we frequently
use the concept of the i-th subsystem, which is the system that has all type j jobs in the original
system with j ≤ i and removes all type k jobs with k ≥ i. In the i-th subsystem, the slack capacity

becomes δi = n−∑i
j=1

λjℓj
µj

, and the work variability becomes σ2
i =

∑i
j=1

λjℓ
2
j

µ2
j
. Note that δ = δI

and σ2
I = σ2. The maximal server need in the i-th system is ℓi since ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓi.

As i increases, the load of the i-th subsystem gets heavier since δi becomes smaller. There is a
critical index i∗ such that

i∗ = min

i ∈ [I]

∣∣∣∣∣∣ δi = o


√

σ2
i

log n

 , (32)

i.e., the i∗th subsystem is the smallest subsystem whose traffic regime is as heavy as that of

the original system. Recall that we have assumed δ = o
(√

σ2

logn

)
, so the set in (32) contains at

least the index I and thus i∗ is well-defined. Note that δi is monotonically decreasing while σ2
i is

monotonically increasing. Thus the index i∗ serves as a division point: for any i with i∗ ≤ i ≤ I, we

have δi = o

(√
σ2
i

logn

)
, resulting in a heavier traffic regime; and for any i with 1 ≤ i < i∗, we have

δi = Ω

(√
σ2
i

logn

)
, resulting in a lighter traffic regime.

5.3 Related work

In this section, we give a more detailed review of the prior work on multiserver-job models as well
as some related models that are not covered in the introduction.

Multiserver-job model.

As mentioned in the introduction, the majority of prior work on the multiserver-job model has either
focused on characterizing stability conditions [117, 133, 5, 72, 121], or been restricted to the highly
specialized settings with two servers [25, 47]. There are relatively fewer papers that study the delay
of the multiserver-job model, with different performance metrics. [160] characterizes the queueing
probability in a large multiserver-job model. [175] studies the optimal cumulative holding cost in
a finite-horizon setting. The papers whose performance metrics are closest to ours are [73] and
[75]. In [73], the mean response time in a multiserver-job model under a policy called ServerFilling
is characterized. In [75], a variant of ServerFilling called ServerFilling-SRPT is proposed, which
optimizes the mean response time in the traditional heavy traffic regime. The biggest distinction
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between their work and our work is the scaling regimes: in their work, the analysis of mean response
time is asymptotically tight when the load of the system approaches one and the number of servers
remains fixed ; in contrast, we consider the scaling regimes where the load, number of servers and
server needs scale jointly. Another distinction is the distributional assumptions on the server needs:
their work assumes that the server needs can divide the total number of servers, while our work
assumes that the maximal server need is small compared with the slack capacity.

Virtual machine (VM) scheduling.

A problem related to the multiserver-job scheduling problem studied in this work is the virtual
machine (VM) scheduling problem (see, e.g., [110, 108, 111, 169, 127, 128, 149]). For the VM
scheduling problem, typically the system consists of multiple servers, where each server has certain
units of each type of resource (e.g., CPU, memory, storage). A VM job demands to occupy multiple
units of each type of resource. Each VM job will be served on a single server. Some results for the
VM scheduling problem in the traditional heavy-traffic regime can be specialized to the multiserver
job scheduling problem. To see this, consider a VM scheduling problem where the system consists
of a single server and there is a single resource type. Then each unit of resource can be viewed as
a server in the multiserver-job scheduling problem. With this specialization, the results in [111]
provide bounds on a linear combination of the queue lengths of different types of jobs. However,
these bounds do not directly translate into bounds on mean job response time.

Multitask job model.

A multitask job is a job that consists of a batch of tasks that can run on servers in parallel, which is
similar to a multiserver job in that both can occupy multiple servers at the same time. However,
unlike a multiserver job, the tasks of a multitask job can have different runtimes and do not need
to be executed simultaneously. Multitask job model has been considered under a wide variety of
settings, and is sometimes referred to as batch arrival model [see, e.g., 113, 40, 38, 39]. Recently,
multitask job model is also extensively studied under the setting of parallel computing due to the
popularity of large-scale data processing systems such as MapReduce, Apache Hadoop and Apache
Spark. [see, e.g., 163, 174]. The work closest to our work is [163], which shows diminishing queueing
time for multi-server jobs in a load-balancing system where tasks of a job need to be dispatched to
the queues at the servers upon arrival.

Dropping model.

When the multiserver-job system does not have any queueing space and allows incoming jobs to
be dropped, it becomes a model that has been studied in the literature and we refer to it as the
dropping model. In this model, one can design a dropping policy that decides whether to drop an
incoming job or not based on the types of the incoming job and of the jobs currently in service.
Under the policy that drops an incoming job only when it cannot fit into the servers, i.e., when
its server need is larger than the number of available servers, the stationary distribution has a
product form under exponentially distributed service times, as observed in [8]. The results have
been generalized by [166] to allow jobs to demand multiple resource types (e.g., both CPU and
I/O) and by [154] to allow general service time distributions. In [150], aspects of [166] and [154] are
further combined. Different dropping policies, which mostly fall within the class of trunk reservation
policies, have been designed to minimize the cost associated with dropping [87, 15, 88].
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Streaming model.

The streaming model for a communication network resembles the multiserver-job model in many
aspects. In a streaming model, the “servers” correspond to the bandwidth in the network and
the “jobs” are data flows such as audio or video flows. Then flows that require a fixed amount of
bandwidth [112, 37, 16, 126], sometimes referred to as streaming flows, can be viewed as multiserver
jobs. However, a communication network also features a network structure that the multiserver-job
model does not have. A communication network usually has both streaming flows and flows that
are flexible in their bandwidth needs, and streaming flows again operate in the dropping model.
The performance metric in such a system typically combines the cost associated with dropping for
streaming flows and the cost associated with delay for other flows.

5.4 Main results

In this section, we present our main results under the scaling regimes we specify in Section 5.2 as
Theorems 5.1, 5.2, and 5.3.

Theorem 5.1 (Mean waiting time under FCFS). Consider the multiserver-job system with n servers
satisfying Assumptions 5.1 and 5.2. Under the FCFS policy, for each i ∈ [I], the expected waiting
time of type i jobs satisfies

E
[
Tw
i (∞)

]FCFS ≥ σ2

n(δ + ℓmax)
· (1− o(1)) , (33)

E
[
Tw
i (∞)

]FCFS ≤ σ2

n(δ − ℓmax)
· (1 + o(1)) . (34)

Consequently,

E
[
Tw(∞)

]FCFS
= Θ

(
σ2

nδ

)
, E

[
Tw
i (∞)

]FCFS
= Θ

(
σ2

nδ

)
. (35)

Theorem 5.2 (Mean waiting time lower bound). Consider the multiserver-job system with n servers
satisfying Assumptions 5.1 and 5.2. Under any policy, the mean waiting time is lower bounded as

E
[
Tw(∞)

]
≥ max

i∗≤i≤I

1

λ

µminσ
2
i

ℓiδi
· (1− o(1)) = Ω

(
max
i∗≤i≤I

1

λ

σ2
i

ℓiδi

)
(36)

where i∗ is the critical index defined in (32) and µmin = mini∈[I] µi, and the expression represented
by o(1) is independent of the policies.

Theorem 5.3 (Mean waiting time under SNF). Consider the multiserver-job system with n servers
satisfying Assumptions 5.1, 5.2, and 5.3. Under the SNF policy, the mean waiting time satisfies

E
[
Tw(∞)

]SNF ≤ 1

λ

I∑
i=i∗

µmaxσ
2
i

ℓi(δi − ℓi)
· (1 + o(1)) = O

(
max
i∗≤i≤I

1

λ

σ2
i

ℓiδi

)
, (37)

where i∗ is the critical index defined in (32) and µmax = maxi∈[I] µi. Consequently, the SNF policy
achieves the optimal order of the mean waiting time.
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5.5 Key ideas in the analysis

In this section, we give an overview of our analysis of the multiserver-job system, centered around a
key quantity called normalized work. The consideration of the normalized work is loosely related to
the idea of understanding a complex system through a simple system.

Below we first introduce some preliminaries; then we define the normalized work and comment
on its relationship with the mean waiting time; finally, we give some intuitions on the dynamics of
normalized work to show why it is simple.

Preliminaries. We first define a few necessary notations. For any time t and for each job type
i = 1, . . . , I, let Xi(t) denote the steady-state number of type i jobs in the system; let Zi(t) denote
the steady-state number of type i jobs in service; let Qi(t) denote the steady-state number of type i
jobs waiting in the queue. We use Xi(∞), Qi(∞) and Zi(∞) to denote the steady-state distributions
of Xi(t), Qi(t), and Zi(t).

By the definitions of Xi(t), Zi(t) and Qi(t), we have the relation Xi(t) = Qi(t) + Zi(t). In
addition, note that since the total number of servers in use cannot exceed n, and we cannot serve
more jobs than there are in the system, we have the following constraints:

I∑
i=1

ℓiZi(t) ≤ n for all t ≥ 0,

Zi(t) ≤ Xi(t) for all t ≥ 0, i = 1, 2, . . . , I.

(38)

We will consider a class of policies called ℓmax-work-conserving policies, which keeps no more
than ℓmax servers idle whenever there are enough jobs in the system. Formally, under a ℓmax-work-
conserving policy, we have

∑I
i=1 ℓiZi(t) ≥ n− ℓmax whenever

∑I
i=1 ℓiXi(t) ≥ n− ℓmax.

Normalized work and mean waiting time. A key quantity in our analysis is the normalized
work, W (t), given by

W (t) ≜
I∑

i=1

ℓi
µi

(
Xi(t)−

λi

µi

)
.

The normalized work is closely related to the mean waiting time. To see this, we first show that
E [Zi(∞)] = λi/µi. Then the expectation of the normalized work is equal to

E
[
W (∞)

]
=

I∑
i=1

ℓi
µi

E [Qi(∞)] .

On the other hand, by Little’s law,

E
[
Tw(∞)

]
=

1

λ

I∑
i=1

E [Qi(∞)] .

As we can see, E
[
W (∞)

]
and E

[
Tw(∞)

]
are both linear combinations of E [Qi(∞)]’s.

The benefit of considering W (t) is that it has simple dynamics under a large class of policies,
allowing its steady-state distribution to be characterized in a relatively precise way. In our analysis in
[82], the characterization of W (∞) serves as a basis and starting point for the analysis of other more
complicated quantities, like total server needs of the jobs, the total queue length and E

[
Tw(∞)

]
.

We refer the readers to [82] for details of going from normalized work to mean waiting times.
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Dynamics of W (t). We show that under a ℓmax-work-conserving policy, the dynamics of W (t)
is approximately 1-dimensional in some sense. To see this, consider the drift of W (t), which we
informally write as GW (t). Because type i jobs arrive at the rate λi and complete at the rate µiZi,
the drift of W (t) should be

GW (t) =
I∑

i=1

ℓi
µi

(λi − µiZi(t)) =
I∑

i=1

λiℓi
µi
−

I∑
i=1

ℓiZi(t).

Note that
∑I

i=1 ℓiZi(t) on the right-hand side equals the number of busy servers at time t. On the

one hand, we have
∑I

i=1 ℓiZi(t) ≤ n, so the drift of W (t) is at least

GW (t) ≥
I∑

i=1

λiℓi
µi
− n = −δ, (39)

by the definition of δ. On the other hand, under a ℓmax-work-conserving policy, when
∑I

i=1 ℓiXi(t) ≥
n+ δ, the drift of W (t) is at most

GW (t) ≤
I∑

i=1

λiℓi
µi
− (n− ℓmax) = −δ + ℓmax. (40)

By Assumption 5.2, ℓmax ≤ ϵ0δ for some ϵ0 < 1. Therefore, W (t) decreases at the rate approximately
equal to δ when

∑I
i=1 ℓiXi(t) ≥ n+ δ, under a ℓmax-work-conserving policy.

Moreover, through some state-space concentration arguments, we can show that in the steady-
state,

∑I
i=1 ℓiXi(t) ≥ n+ δ is roughly equivalent to W (t) ≥ r̄ for some threshold r̄. We can also

show that W (t) will not be too much smaller than the threshold r̄ with high probability in the
steady state, again through a state-space concentration argument.

Given the above intuitions and facts, we can approximately view W (t) as a one-dimensional
quantity that decreases at a constant rate δ whenever it is larger than the threshold r̄. The formal
analysis of W (t) is through Lyapunov drift analysis and iterative state-space concentration. We
refer the readers to [82] for details.
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6 Proposed work

6.1 Achieving exponential optimality gap for restless bandits without UGAP

6.1.1 Motivation

In our work on restless bandits included in Section 2, we have constructed policies that achieve
asymptotic optimality under only minimal conditions (namely, unichain and aperiodicity). Moreover,
we have shown that the optimality gap converges to zero at the rate O(1/

√
N) as the number of

arms N →∞. In this work, we plan to investigate if O(1/
√
N) is the “optimal convergence rate”,

in an appropriate sense that we elaborate below.
Recall that in Section 2, we construct a simple system using the single-armed problem (Sec-

tion 2.3.1) to facilitate proving optimality gaps and constructing policies. In particular, we consider
the optimal value of the single-armed problem, Rrel, which is an upper bound of the optimal value of
the N -armed problem, R∗(N), under mild conditions. We relax the optimality gap R∗(N)−R(π,N)
to Rrel −R(π,N) and show that a policy π under study satisfies Rrel −R(π,N) = O(1/

√
N).

In this work, we plan to use the same approach to bound the optimality gap of a policy. In this
case, the best possible optimality gap that we can prove is no less than Rrel −R∗(N). Naturally, we
could ask the following questions:

How large is the gap Rrel −R∗(N)?
Can we tightly characterize the order of Rrel −R∗(N)?

In the literature, it has been proved that in general, the gap Rrel −R∗(N) is at most O(1/
√
N)

under unichain and aperiodicity conditions [59, Theorem 1]. With two additional assumptions,
UGAP and non-degeneracy (Assumption 6.2), [59, 60] show that Rrel −R∗(N) is O(exp(−CN)) for
some constant C > 0.

Based on these existing results, a natural next step is to study the order of Rrel −R∗(N) in the
cases without UGAP or non-degeneracy. For these cases, we can either prove that Rrel −R∗(N) is
exponentially small, or figure out the exact order of Rrel −R∗(N) as N →∞.

In addition to understanding the order of Rrel − R∗(N), we will also consider the following
question:

Can we efficiently compute the policy π such that
Rrel −R(π,N) has the same order as Rrel −R∗(N)?

Note that the requirement of “efficiently computing the policy” prohibits directly using the exact
optimal policy, which is PSPACE hard to find. Answering this question under general conditions
not only improves our fundamental understanding of restless bandits, but also leads to some new
policies that could potentially be useful in practice.

6.1.2 Expected result

We consider the N -armed restless bandit problem with the single-armed MDP (S,A, P, r) and
budget αN for 0 < α < 1. We fix an optimal policy for the single-armed problem π̄∗. The policy π̄∗

induces a Markov chain with transition kernel, Pπ̄∗ .
We consider the following three assumptions.

Assumption 6.1 (Unichain and aperiodicity for the optimal single-armed policy). Assume that π̄∗

induces an aperiodic unichain Pπ̄∗ on S.
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Under Assumption 6.1, the Markov chain Pπ̄∗ has a unique stationary distribution, which we
can represent as a row vector, µ∗ = (µ∗(s))s∈S, where µ∗(s) is the stationary probability of state s
in the Markov chain. Let y∗ ≜ (y∗(s, a))s∈S,a∈A, where y∗(s, a) is the stationary probability of being
in state s and taking action a in this Markov chain.

Assumption 6.2 (Non-degeneracy). There exists a unique state s̃ s.t. y∗(s̃, 1) > 0 and y∗(s̃, 0) > 0.

Assumption 6.3 (Local stability). When non-degeneracy (Assumption 6.2) holds, let

Φ = Pπ̄∗ − 1⊤µ∗ − (cπ̄∗ − α1)⊤(P1(s̃)− P0(s̃)),

where cπ̄∗ ≜ (π̄∗(1|s))s∈S and Pa(s̃) ≜ (Pa(s̃, s))s∈S are both row vectors; 1 is the all-one row vecctor.
We assume that the modulus of each eigenvalue of Φ is strictly less than 1.

Remark 6.1. The emphasis of Assumption 6.2 is on the existence of a state s̃ such that y∗(s̃, 1) > 0
and y∗(s̃, 0) > 0. In fact, one can always find an optimal single-armed policy π̄∗ such that the
corresponding y∗ satisfies y∗(s̃, 1) > 0 and y∗(s̃, 0) > 0 for at most one s̃ ∈ S [60, Proposition 2].

Remark 6.2. Assumption 6.3 is a necessary condition for the LP-Priority policy to satisfy UGAP
and plays an important role in the proof that the LP-Priority policy achieves an exponentially small
optimality gap [60]. In particular, Φ defines the local dynamics of the mean-field difference equation
induced by the LP-Priority policy around the fixed point of the difference equation.

We conjecture that Assumption 6.1, 6.2 and 6.3 are sufficient for efficiently finding a policy with
an exponentially small optimality gap.

Conjecture 6.1. Consider an N-armed restless bandit problem with the single-armed MDP
(S,A, P, r) and budget αN for 0 < α < 1. Assuming Assumption 6.1, 6.2 and 6.3, we can
construct a policy π such that

Rrel −R(π,N) = O
(
exp(−CN)

)
, (41)

for some C > 0. The complexity for finding π is similar to solving the single-armed problem (9)-(10).

Moreover, we conjecture that the set of assumptions, Assumption 6.1, 6.2 and 6.3, are necessary
for achieving o(1/

√
N) optimality gap.

Conjecture 6.2. Consider an N-armed restless bandit problem with the single-armed MDP
(S,A, P, r) and budget αN for 0 < α < 1. Without any of Assumption 6.1, 6.2 or 6.3, one
can find an RB instance such that for any policy π,

Rrel −R(π,N) = Ω
( 1√

N

)
. (42)

6.1.3 Status and timeline

Here is a summary of the status of the project by the time the thesis proposal is written.

• We have a proof sketch for Conjecture 6.2. Specifically, we are working on proving a lower bound
for Rrel−R(π,N). Once the lower bound is proved, it should imply Rrel−R(π,N) = Ω

(
1/
√
N
)

whenever Assumption 6.2 or 6.3 does not hold.

• We have a proof sketch for Conjecture 6.1. Specifically, we have designed a policy that
generalizes the focus-set policies in [84]. We wrote a proof outline to decompose the optimality
gap analysis of the policy into verifying three conditions, with a similar structure as our
analysis of the ID policy (Section 2.5.2). To finish the proof, we only need to fill in the proofs
for each condition.

We plan to finish the project in the next three months, by the end of June 2024.
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6.2 Restless bandits with asynchronous actions.

6.2.1 Motivation

Restless bandits can be viewed as a set of independent MDPs coupled together by a budget constraint
on their joint actions. In discrete-time restless bandits, the actions are required to be synchronous –
exactly αN arms are pulled at the same time in each time step. For continuous-time restless bandit
problems, although they are referred to as being asynchronous in some literature [e.g. 59] because
different arms transition at different time points, they are still synchronous in the sense of actions –
the decision maker needs to keep αN arms activated at the same time.

However, in many resource allocation problems, sometimes it makes more sense to model the
actions as asynchronous rather than synchronous. Specifically, we can consider the following variant
of the standard restless bandit problem: Suppose we have a set of N arms. Budgets arrive unit
by unit following a stochastic point process in continuous time. When a unit of budget arrives,
exactly one arm should be pulled, which causes the state of the arm to change immediately according
to a predefined transition probability matrix. For arms that are not pulled, they could jump to
another state according to some predefined transition rates. The state transition of different arms is
independent of each other. We call this model restless bandits with asynchronous actions since the
arms are pulled one at a time.

To give an example of restless bandits with asynchronous actions, consider the basic continuous-
time load-balancing model in queueing theory, where jobs arrive over time according to a Poisson
process and require exponentially distributed service times. Each job needs to be dispatched to a
suitable queue upon arrival, with the goal of minimizing the steady-state expected queue length. We
can view this load-balancing model as a special case of restless bandits with asynchronous actions,
where each queue is an arm whose state is the number of jobs in the queue, and each job arrival is
a unit of budget that allows you to change the state of an arm. The state of each arm can also
change on its own due to job completions.

The formulation of restless bandits with asynchronous actions allows us to study many problems
with similar structures in a unified way. For example, it allows us to directly study load balancing
whose service time distribution is an arbitrary phase-type distribution, by incorporating the service
phase as part of the arms’ state. It also allows servers to have setup times, again by incorporating the
relevant information into the arms’ state. Even the stochastic bin-packing problem with time-varying
resource requirements (Section 3) can be viewed as a type of restless bandits with asynchronous
actions, after doing appropriate modifications.

Similar to standard restless bandits, the goal of studying restless bandits with asynchronous
actions is to identify asymptotic optimal policies and find algorithms for computing these policies
efficiently. We will precisely define the notion of asymptotic optimality when we formally set up the
model in the next section.

6.2.2 Model

A restless bandit problem with asynchronous actions bandit problem consists of N homogeneous
arms. Each arm can be viewed as a continuous-time MDP with impulsive controls (see, e.g., [45]).
Specifically, each arm is specified by the tuple (S,A, Q, P, r), where S is a finite state space, A = {0, 1}
denotes the action space, Q = (Q(s, s′))s,s′∈S is a transition rate matrix, P = (P (s, s′))s,s′∈S is a
transition probability matrix, and r = (r(s))s∈S is a reward function. The action 1 corresponds to
pulling the arm, and is referred to as the impulse action; the action 0 corresponds to not pulling
the arm and is referred to as the passive action. Each impulse action only lasts for an instance and
causes the state of the arm to transition immediately according to the transition probability matrix

40



P ; a passive action is applied whenever the impulse action is not applied, under which the state
of the arm transitions according to the transition rate matrix Q. When an arm is in state s, it
generates rewards at the rate r(s).

We assume that budgets arrive over time following a Poisson process with rate Nλ for some
constant λ > 0. When each unit of budget arrives, the decision maker needs to immediately choose
an arm and apply the impulse action to the arm. The decision is made based on the states of all
arms, using a certain policy, whose performance is quantified by its long-run average reward. Let
R(π,N) be the long-run average reward per arm and per unit time under a policy π, and let R∗(N)
be the maximal value of R(π,N) over all possible policies. We call R∗(N)−R(π,N) the optimality
gap of π, and call a policy π asymptotically optimal if R∗(N)−R(π,N)→ 0 as N →∞.

6.2.3 Expected results

We plan to find asymptotic optimal policies for restless bandits with asynchronous actions in a
similar way to how we do it in discrete-time restless bandits (Section 2). Specifically,

1. We will first define a single-armed problem and optimal single-armed policy, π̄∗.

2. Then we can try to construct a policy π using π̄∗ as building blocks, perhaps in a way similar
to the FTVA policy or ID policy defined in Algorithm 2).

3. Finally, we bound the optimality gap for the policy π is asymptotic optimal, under certain
conditions.

Rrel −R(π,N) = O

(
1√
N

)
. (43)

6.2.4 Status of the project

Here we give a summary of the status of this project.

• We have defined the single-armed problem and optimal single-armed policy.

• We have constructed a policy inspired by FTVA(Algorithm 1).

• We are writing the proof that the policy has O
(
1/
√
N
)
optimality gap assuming a certain

unichain condition. The proof is almost complete, though some details need to be double-
checked.

While it seems that we have already got most of the results we want, the definitions of the policy
and the proofs are complicated and notationally heavy. Therefore, in the next step, we plan to try
a different policy adapted from ID policy, which we expect to be simpler to define and analyze. We
plan to work on the project starting from July 2024 and finish it by December 2024.

6.3 Improving the universal queue length bound for G/G/n

6.3.1 Motivation

In the study of multi-server queueing models, one of the most basic and extensively studied objects
is the GI/GI/n (or simply G/G/n) model. The G/G/n model has one centralized queue and n
identical servers; jobs arrive following a renewal process with a general interarrival time distribution,
whose service times are also i.i.d. with a general distribution. The jobs in the queue are served in a
First-Come-First-Served order. The performance of a G/G/n model is often measured in terms of
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its steady-state queue length, denoted as Q, which is the number of jobs waiting in the queue (not
in service) in the steady state.

Although the G/G/n model has been studied for decades, there are still some fundamental
mysteries about the steady-state distribution of its queue length – even the first moment, E [Q],
does not have a very tight upper bound. The current state-of-the-art bounds on E [Q] are proved in
[97], which show that

E [Q] ≤ C

1− ρ
, (44)

for some C > 0. Notably, the numerator C in (44) is independent of the number of servers n and
the load ρ, so the bound in (44) scales as 1/(1− ρ) universally in any scaling regimes where ρ→ 1
or n → ∞. The 1/(1 − ρ)-scaling matches with the tightest bounds or approximations in a few
special cases, for example, the Kingman’s bound for G/G/1 [91], the results for G/G/n when ρ→ 1
and n remains fixed [93, 94, 106, 119, 120, 89], and the results in Halfin-Whitt regime [see, e.g.
36, 21, 23, 13] (We refer the readers to [97] for a more comprehensive review of these prior works).

Although the bound in (44) achieves the universal 1/(1− ρ)-scaling in any limiting regimes, the
constant C can be huge. Specifically, it is proved in Corollary 3 of [97] that

E [Q] ≤ 10450
(
E
[
(SµS)

3
]
E
[
(AµA)

3)
] )3 × 1

1− ρ
, (45)

where S and A are the service time distribution and inter-arrival time distribution; µS = 1/E [S]
and µA = 1/E [A]. While [97] also provides a set of other bounds of the form (44), those bounds
have similarly large constants.

In this project, we plan to improve upon the work of [97], proving a bound on E [Q] with
1/(1 − ρ)-scaling in any scaling regimes while making the constant C smaller. We also hope to
give a simpler proof than the one given in [97], so that we can get a more intuitive understanding
of the G/G/n model. To set a tractable goal, we focus on a less general but not too restrictive
setting where the service times S and inter-arrival times A are “light-tailed” in the sense stated in
Assumption 6.4.

6.3.2 Expected results

Assumption 6.4 (Bounded expected remaining times). We assume that there exists a constant
M > 0 such that

sup
t≥0

E [AµA − t |AµA ≥ t] ≤M (46)

sup
t≥0

E [SµS − t |SµS ≥ t] ≤M. (47)

Note that Assumption 6.4 is not a very restrictive assumption. For example, it holds for all
phase-type distributions.

We plan to prove the following bound on E [Q]:

Conjecture 6.3. Consider a G/G/n model satisfying Assumption 6.4. We have

E [Q] ≤ Var[AµA] +Var[SµS ] + 2M

2(1− ρ)
+

1

2
+M, (48)

where A denotes the inter-arrival time distribution, S denotes the service time distribution, µA =
1/E [A], µS = 1/E [S], ρ = µA/(nµS), M is given in Assumption 6.4.
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6.3.3 Status and timeline

We have written a proof sketch for Conjecture 6.3, using rate conservation law and coupling with
some simpler systems. The proof sketch is close to a full proof, except that some Palm expectation
arguments need to be more rigorously written. We plan to write a paper from January 2025 to
March 2025.
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