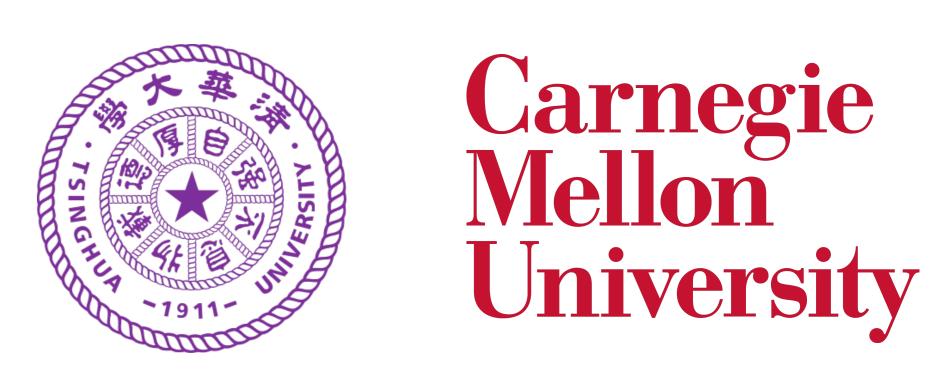
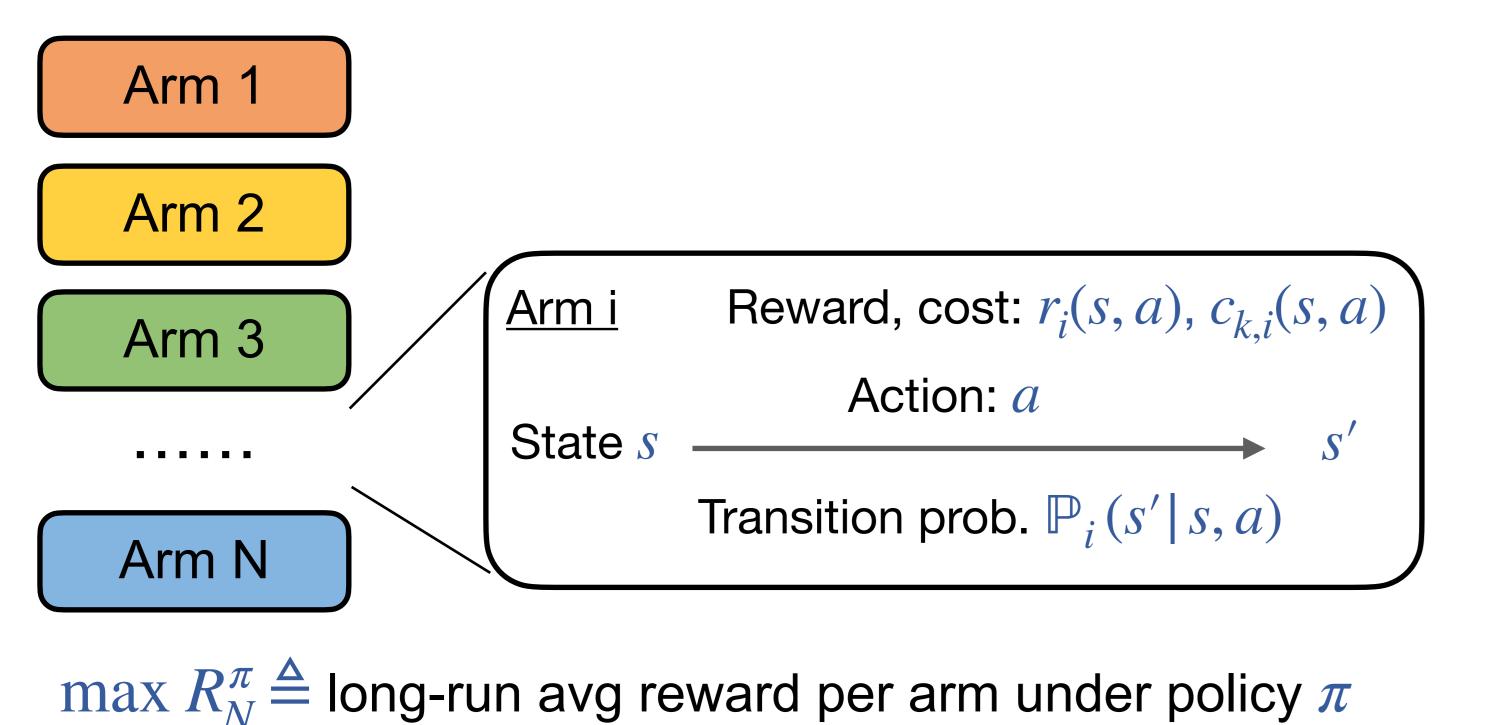
Projection-based Lyapunov method for fully heterogeneous weakly-coupled MDPs

Xiangcheng Zhang*, Yige Hong*, Weina Wang



1 Weakly-Coupled Markov Decision Processes (WCMDPs)

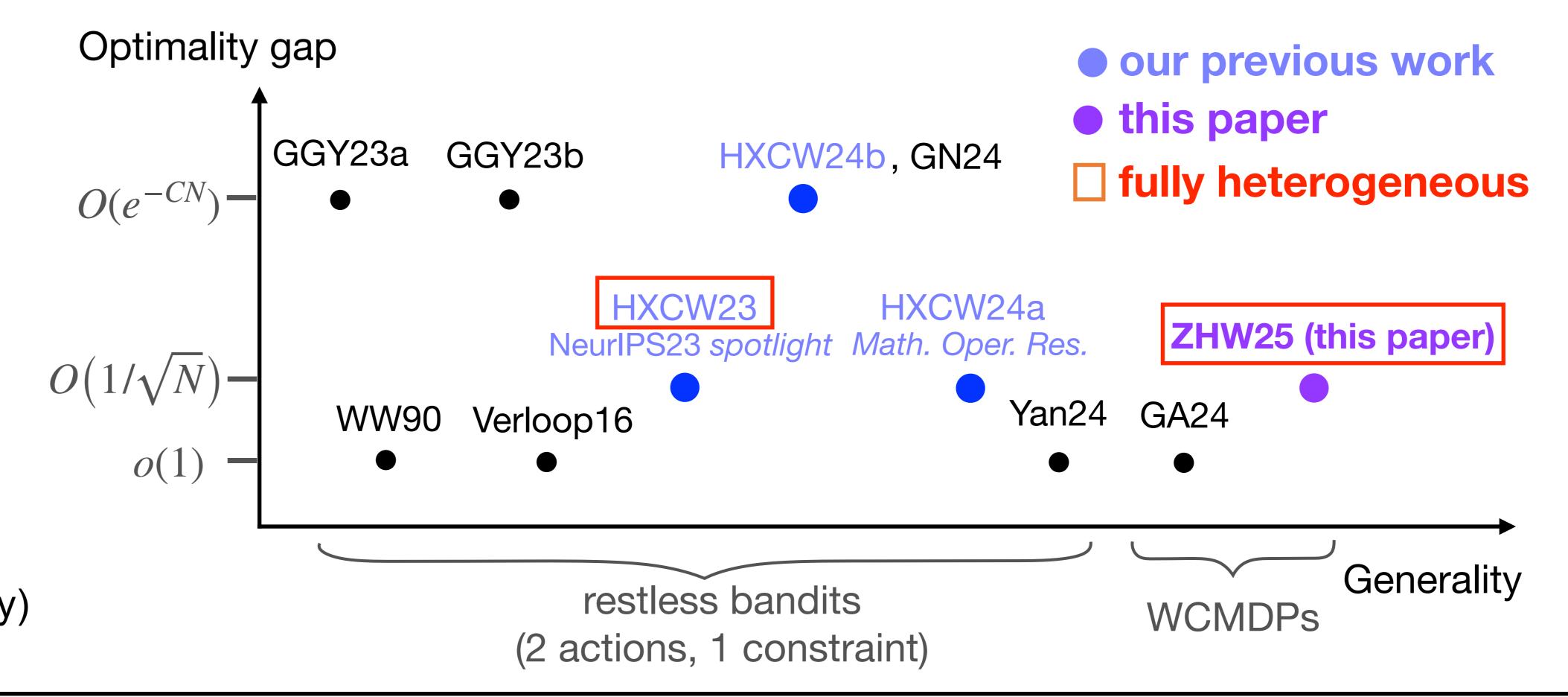


Focus on planning, i.e., model is known

- Q: It's just a big MDP. Can we directly solve it?
- A: N-dimensional state space; hard if N large
- Q: Can we efficiently find a good policy?
- Q: How to define a good policy?
- A: We want to efficiently find a policy s.t.

s.t. total type-k cost $\leq \alpha_k N$, each time step, for $k \in [K]$ $\lim_{N \to \infty} \left(R_N^* - R_N^\pi \right) = 0$ (asymptotic optimality)

2 Prior work and this paper



3 Challenge: heterogeneity

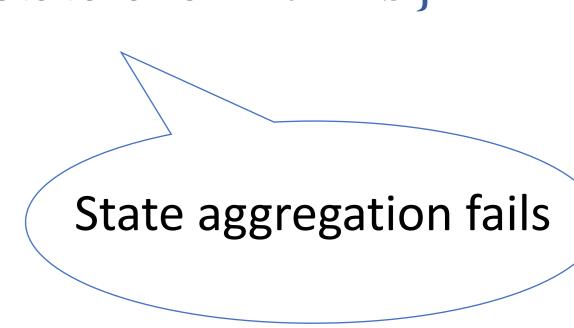
Different system state representations:

Homogeneous: for each s

 $X_t(s)$ = fraction of arms in state s

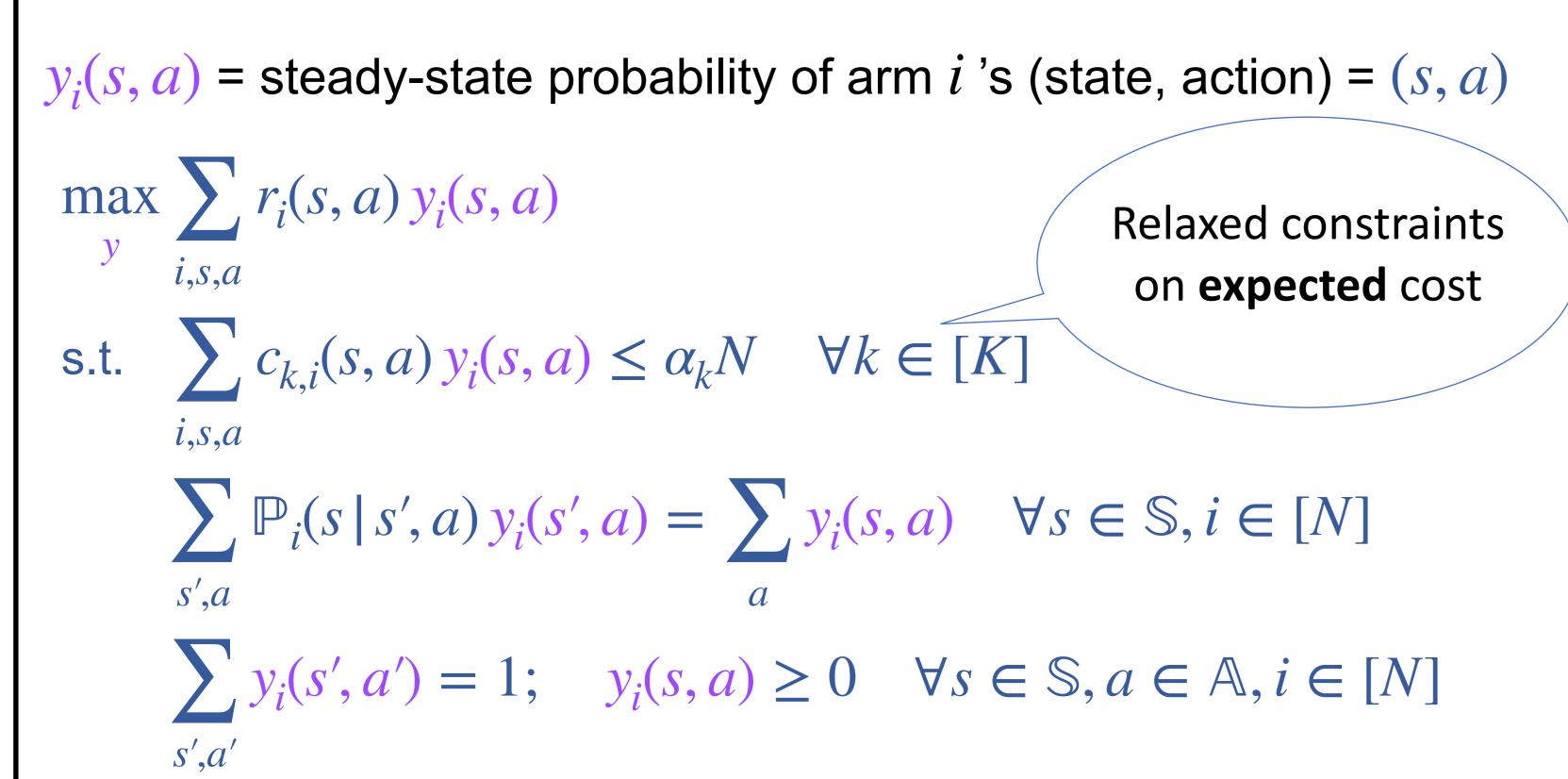
Heterogeneous: for each s and $i \in [N]$

 $X_{i,t}(s) = 1\{\text{state of arm } i = s\}$



4 Algorithm

4.1 Linear programming relaxation



4.2 What LP relaxation gives us...

Each arm:

- i. Ideal state distribution: $\mu_i^*(s) = \sum_{a} y_i^*(s, a)$
- ii. Ideal policy:: $\bar{\pi}_{i}^{*}(a \mid s) = y_{i}^{*}(s, a) / \mu_{i}^{*}(s)$

Policy is good if: as $t \to \infty$

- State distribution approximates $\mu_i^*(s)$
- ii. Action distribution approximates $\bar{\pi}_i^*(a \mid s)$

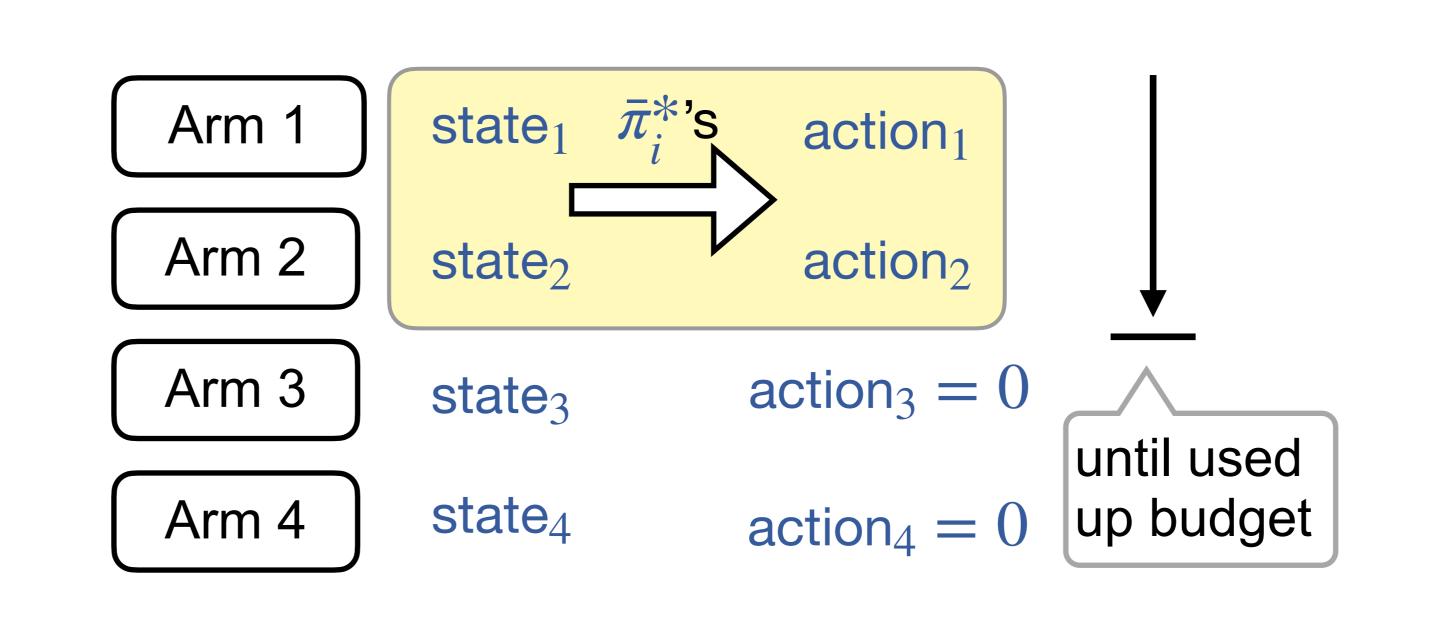
• (a) and (b) have same fractions of arms in blue and red

• Which of (a) and (b) is closer to $(\mu_i^*)_{i \in [N]}$?

If arm i takes actions using $\bar{\pi}_i^*(a \mid s)$,

its stationary state distribution is $\mu_i^*(s)$

4.3 ID policy



5 Main theorem

Assumption 1: For each arm i, let τ_i be its mixing time under the optimal single-armed policy $\bar{\pi}_{i}^{*}$. Assume that there exists a constant τ such that $\tau_i \leq \tau$ for $i = 1, 2, \dots$

Theorem 1: Let π be the ID policy. Under Assumption 1, there exists a constant C_{ID} s.t. $R_N^* - R_N^{\pi} \le C_{\text{ID}}/\sqrt{N}$.

Remark: $C_{\text{ID}} = O(K^5 \max\{r_{\text{max}}, c_{\text{max}}\}^7 \tau^4 / \alpha_{\text{min}}^6)$

6 Analysis: a projection-based Lyapunov method

6.1 Lyapunov analysis overview

Define $V(X_t)$ as "distance" between

 $\implies y_i^*(s,a)$ = ideal state-action frequency

 $X_{t} = (X_{i,t}(s))_{i,s}$ and $(\mu_{i}^{*}(s))_{i,s}$ s.t. (C1) Drift condition: for some $\rho < 1$ $\mathbb{E}[V(\mathbf{X}_{t+1}) \mid \mathbf{X}_t] \le \rho V(\mathbf{X}_t) + O(1/\sqrt{N})$

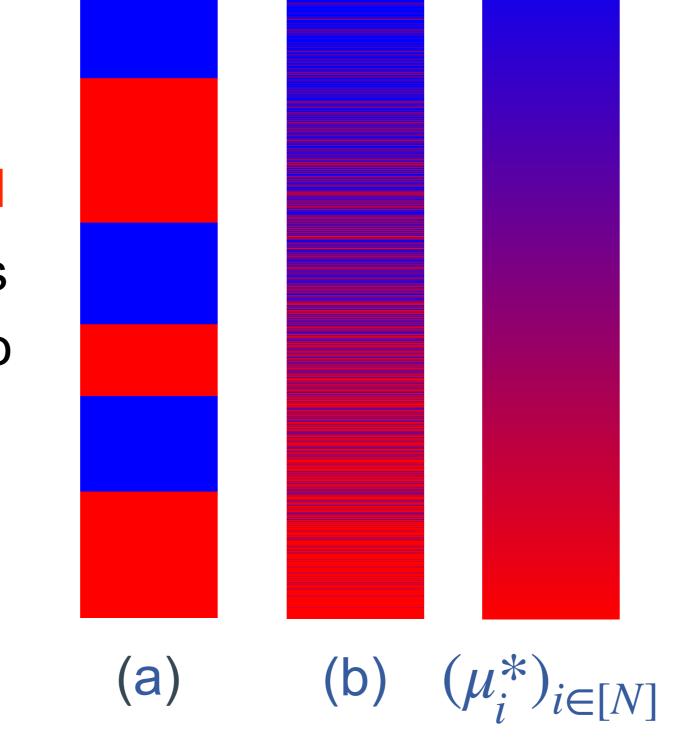
 $R_N^* - R_N^{\pi} \le \mathbb{E}[V(\mathbf{X}_t)] + O(1/\sqrt{N})$

(C2) Dominance condition:

$$R_N^* - R_N^{\pi} \le \mathbb{E}[V(\mathbf{X}_t)] + O(1/\sqrt{N})$$
$$\le O(1/\sqrt{N})$$

Example:

- Two states, blue and red
- Arm i = i-th row of pixels
- (a) and (b) represent two realizations of X,



6.2 Defining "distance" to $(\mu_i^*)_{i\in[N]}$ assuming all arms independently follow $\bar{\pi}_i^*$

reward / cost as features:

Future expected

- है 1350- $-----(\mu_{i}^{*})_{i \in [N]}$ 요 1200 Future time step ℓ
- Lyapunov function based on feature projections:

$$h(\mathbf{X}_t) = \frac{1}{N} \max_{g \in \mathcal{G}} \sup_{\ell \in \mathbb{N}} e^{\ell/(2\tau)} \left| \sum_{i \in [N]} \left\langle \left(X_{i,t} - \mu_i^* \right) P_i^{\ell}, g_i \right\rangle \right|$$

For each arm $i, g_i \in \mathbb{R}^{\mathbb{S}}$ is expected reward / cost function, P_i is transition matrix, $\langle X_{i,t} P_i^{\ell}, g_i \rangle$ is expected reward / cost ℓ steps later

• (C1) (C2) satisfied by $h(X_t)$ if all arms independently follow $\bar{\pi}_t^*$'s

6.3 One more hurdle: not all arms follow $\bar{\pi}^*$

Observation: a small enough subset of arms can follow $\bar{\pi}_{\cdot}^{*}$

 $h(\mathbf{X}_t, m) = m h(\mathbf{X}_t)$ evaluated on first m fraction of arms

