Achieving exponential asymptotic optimality in average-reward restless bandits without global attractor assumptions

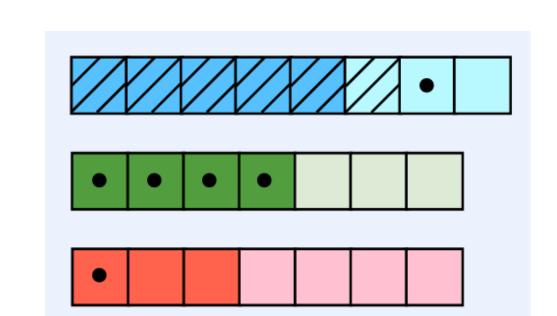
Carnegie Vellon University WISCONSIN

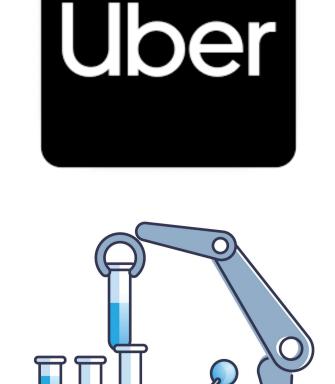
Yige Hong, Qiaomin Xie, Yudong Chen, Weina Wang

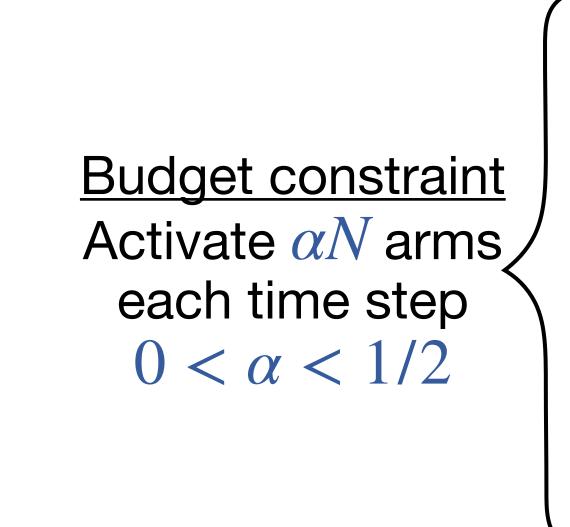
1 Restless bandits (RBs)

Multi-component control under resource constraints

- Ride sharing system
- Scheduling
- Drug testing







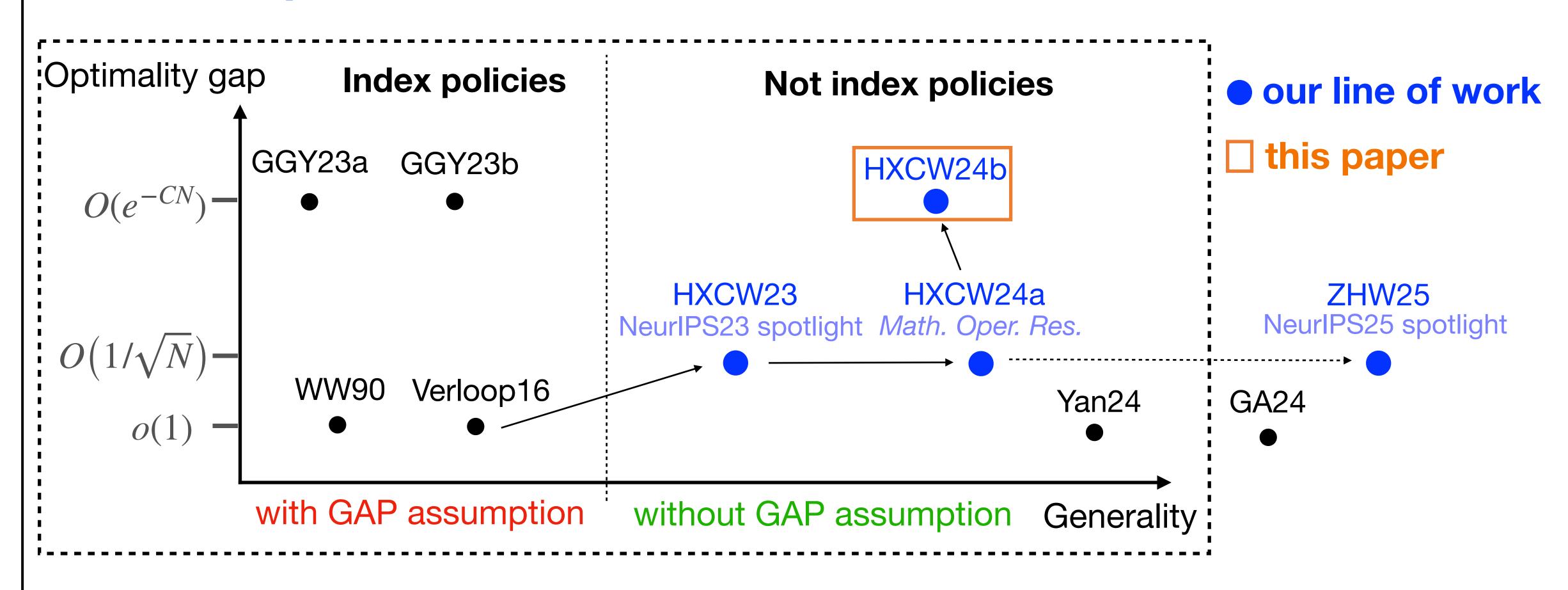


 $\max_{\pi} R_N^{\pi} \triangleq \text{long-run avg reward per arm under policy } \pi$

- Focus on planning, i.e., model is known
- Q: It's just a big MDP. Can we directly solve it?
- A: N-dimensional state space; hard if N large
- Q: Can we efficiently find a good policy?
- Q: How to define a good policy?
- A: Asymptotically optimal policy:

$$\lim_{N\to\infty} \left(R_N^* - R_N^\pi \right) = 0$$

2 Landscape of the RBs literature



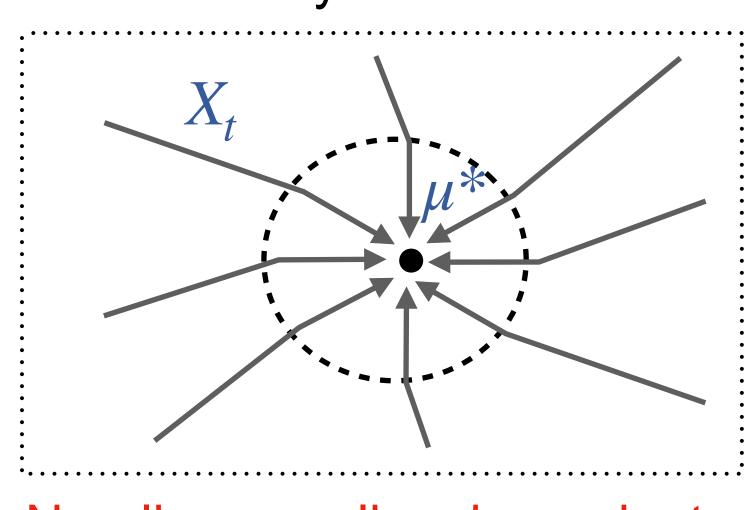
3 From global attractor to local stability

For each s,

 $X_t(s)$ = fraction of arms in state s, $\mu^*(s)$ = ideal distr. (see below)

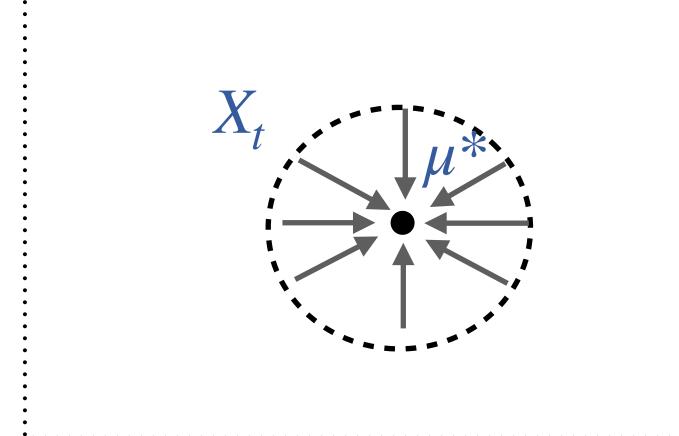
Global attractor assumption Under the given policy,

mean-field dynamics s.t.



Local stability assumption Under LP priority policy (see

below), mean-field dynamics s.t.



Non-linear, policy-dependent

Linear, intrinsic to problem

4 Main theorems

Theorem 1 (achievability)

Assuming unichain, non-degeneracy, and local stability, we can efficiently obtain a policy π (Two-Set Policy below) such that $R^{\text{rel}} - R_N^{\pi} = O(e^{-CN}).$

Theorem 2 (converse)

Without any of unichain, non-degeneracy, or local stability, for any policy π ,

$$R^{\mathsf{rel}} - R_N^{\pi} = \Omega(1/\sqrt{N}).$$

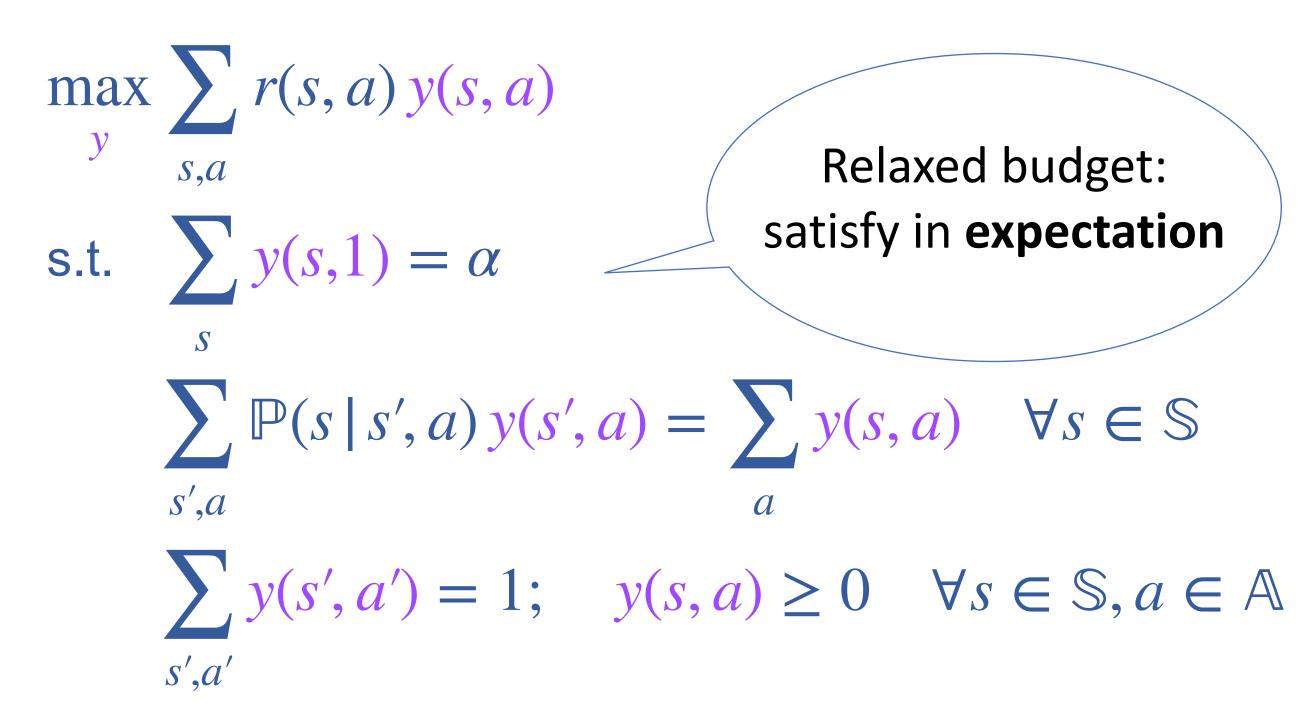
Comment:

- $R^{\text{rel}} \ge R_N^*$ is fluid upper bound (see below)
- Theorem 2: without a better upper bound, the three conditions are necessary for exp opt gap

5 Algorithm

LP relaxation

y(s, a) = steady-state probability of (state, action) = (s, a)



 $\implies y^*(s,a)$: ideal state-action frequency R^{rel}: fluid upper bound $\mu^*(s) \triangleq \sum_{\alpha} y^*(s, \alpha)$: ideal state distribution $\bar{\pi}^*(a \mid s) \triangleq y^*(s, a) / \mu^*(s)$: opt single-armed policy

but infeasible

Assume relaxed budget constraint,

Consistently following $\bar{\pi}^*$:

Each arm in state s, activate with prob. $\bar{\pi}^*(1|s)$

 \Longrightarrow Drive X_t close to μ^* (By Markov chain mixing)

Both optimal

Subroutine 1: control distribution

Subroutine 2: exploit reward

Assume X_t is sufficiently close to μ^* ,

Consistently following "LP Priority policy":

- i. Activate all arms in state s such that $\bar{\pi}^*(1 \mid s) = 1$
- ii. Activate no arms in state s such that $\bar{\pi}^*(1 \mid s) = 0$
- iii. Spend remaining budget on $0 < \bar{\pi}^*(1 \mid s) < 1$
- \implies Expected reward = R^{rel} , use budget = αN

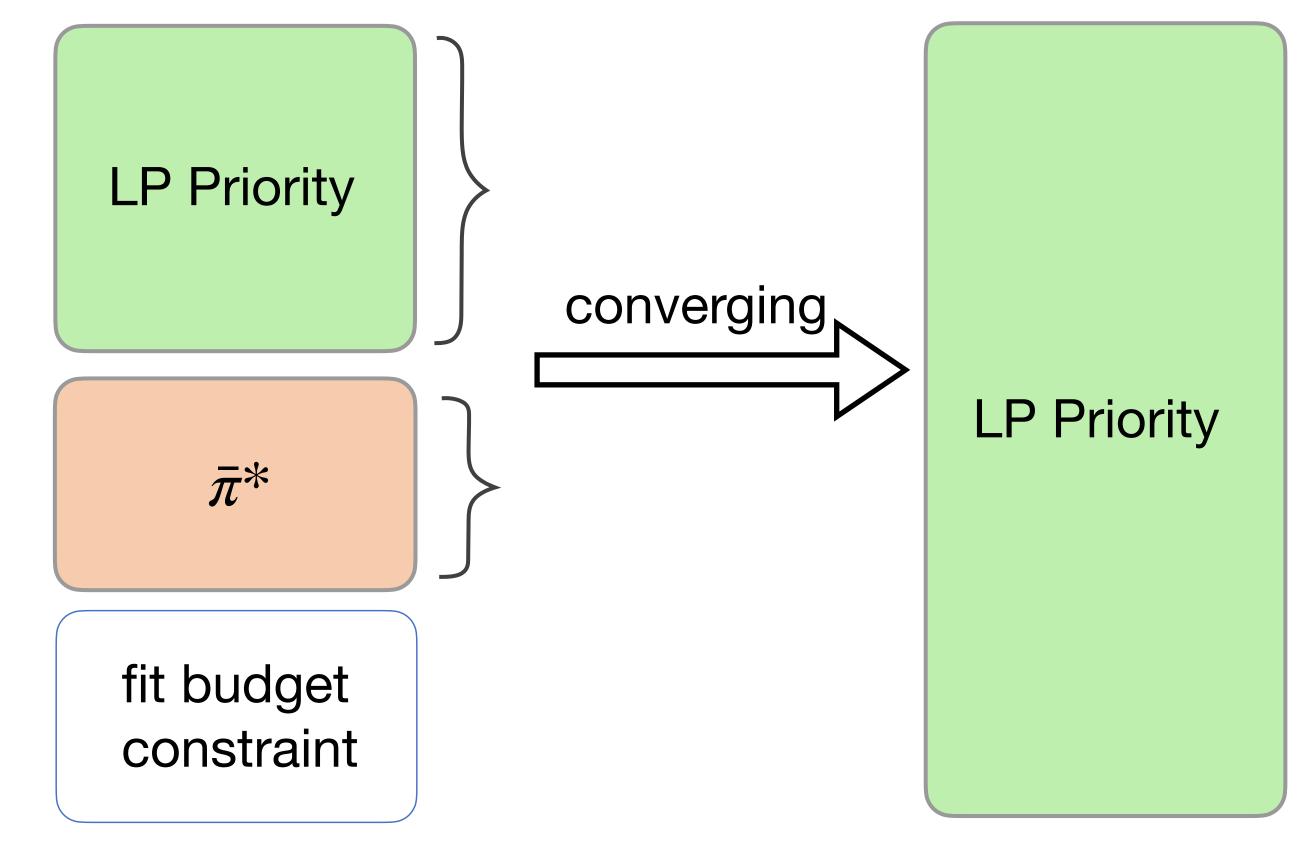
(Intuitively, activate all "valuable states"; "neutral states" are flexible)

Put together: Two-Set Policy

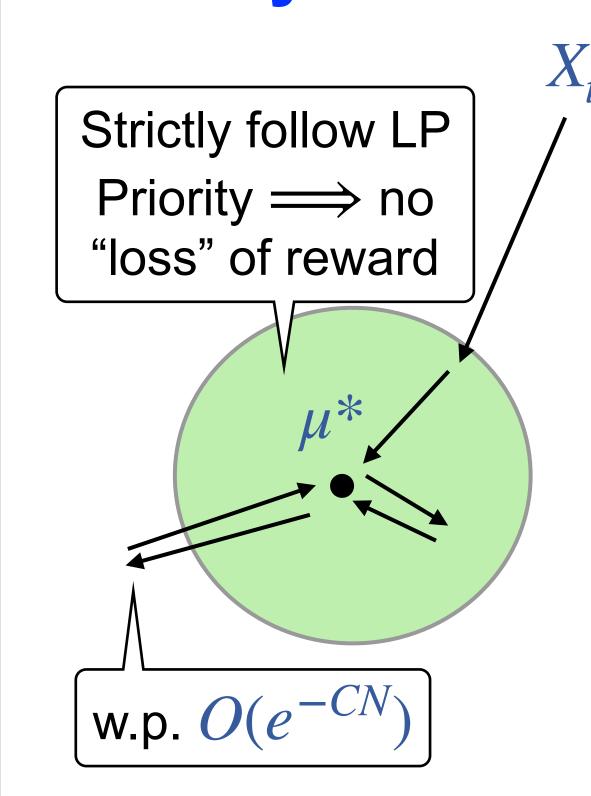
Partition arms into three sets:

- A maximal set of arms follows LP Priority, strictly expand or shrink in the next time step
- A subset follow $\bar{\pi}^*$, subject to budget
- The rest arms fit the constraint

Arms in ____ merge into ____



6 Analysis



 $R^{\text{rel}} - R_N^{\pi} = R^{\text{rel}} - \mathbb{E}[r^{\pi}(X_t)]$, where $r^{\pi}(x)$ is instantaneous expected reward under π There exists V(x) that satisfies $R^{\text{rel}} - r^{\pi}(X_t) \leq \mathbb{E}[V(X_{t+1}) | X_t] - V(X_t) + O(e^{-CN})$

Specifically, $V(x) = (V_1(x) - 1/2)^+ + V_2(x)$

- $V_1(x)$: Lyapunov function for proving global attraction; it's "a multivariate Lyapunov function"
- $V_2(x)$: solution to the Poisson equation $V_2(x\Phi) V_2(x) = -R^{\text{rel}} + r(x)$;
- Φ: mean-field transition map in the local region

We can show $(R^{\text{rel}} - r(X_t))1\{\text{inside}\} = (\mathbb{E}[V_2(X_{t+1}) | X_t] - V_2(X_t))1\{\text{inside}\}$ $(R^{\text{rel}} - r(X_t))1\{\text{outside}\} \le \mathbb{E}[(V_1(X_{t+1}) - 1/2)^+ | X_t] - (V_1(X_t) - 1/2)^+$ $+O(e^{-CN}) + (\mathbb{E}[V_2(X_{t+1})|X_t] - V_2(X_t))1\{\text{outside}\}$

 $V_1(x) = \|X_t(D^{\mathsf{LP}}) - m(D^{\mathsf{LP}})\mu^*\|_U + \|X_t(D^{\bar{\pi}^*}) - m(D^{\bar{\pi}^*})\mu^*\|_W + L(1 - m(D^{\mathsf{LP}}) - m(D^{\bar{\pi}^*}))$ where D^{LP} is the set of arms \square , $D^{\bar{\pi}^*}$ is the set of arms \square , m(D) = |D|/N, U and W are weight matrices, L is a large const

