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ABSTRACT

The design of acoustic models involves two main tasks: feature ex-
traction and data modeling; and hidden Markov modeling (HMM)
is commonly used in contemporary automatic speech recognition.
In the past, discriminative training has been applied successfully
to refine HMM parameters that are initially trained by EM algo-
rithm. Recently, we applied discriminative training in the feature
extraction process. We proposed a novel Discriminative Auditory
Feature extraction method (DAF) in which filters are discrimina-
tively trained from data. In DAF, we do not make any assumptions
on the functional form of the auditory filters except that they have
to be smooth and triangular-like. On the method of discriminative
training, we also proposed an alternative approach to finding the
competing hypotheses which we call N-nearest hypotheses (as op-
posed to the traditional N-best hypotheses). By applying the two
new ideas and the new robust auditory features proposed by Li et
al. of Bell Labs, we reduce the overall word error rate (WER)
by 30.27% over ICSLP2002 Aurora2 baseline on multi-condition
training. Similarly, we obtain a relative WER reduction of 38.42%
over ICSLP2002 Aurora3 baseline.

1. INTRODUCTION

Discriminative training [1] has been widely used in automatic speech
recognition (ASR) in the area of estimating HMM parameters [1],
speaker verification [2], estimation of multi-band weightings [3],
etc. Recently, we made two contributions to the area of discrimi-
native training:

1. Discriminative Auditory Feature (DAF) [4]: discrimina-
tive training is applied to estimate the auditory filters during
acoustic feature extraction. Most previous works of apply-
ing discriminative training on feature extraction involved
feature transformation [5, 6, 7]. The most related work was
done by Alain Biem et al. [8] who assumed the filters to
be either Gaussians or totally free-formed, but the results
were unsatisfactory. We postulate that the shape of human
auditory filters is not arbitrary and their properties should
be observed in auditory filter design. Guided by psychoa-
coustics evidence, we require the filters to be smooth and
triangular-like. We derive a mathematical expression for
such a filter through two parameter-space transformations.

2. N-nearest Hypotheses [9]: During MCE discriminative train-
ing, competing hypotheses against the correct one are com-
monly derived from the N-best algorithm. One problem
with the N-best algorithm is that, in practice, some misclas-
sified data can have very large misclassification distances
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from the N-best competitors and fall out of the steep train-
able region of the sigmoid function, and thus cannot be uti-
lized effectively. Recently, we proposed using the N near-
est competing hypotheses instead to increase the amount of
“effective” training data.

this paper, we apply both techniques and derive discrimina-
ditory features (DAF) based on the robust auditory features
y proposed by Li et al. of Bell Labs [10]. HMM trained
derived DAF are tested on both Aurora2 (multi-condition
) and Aurora3 corpora. In both corpora, we find that DAF

dditional improvement over Li’s original auditory features.

2. DISCRIMINATIVE AUDITORY FEATURE

criminative auditory feature extraction is a data-driven method
ate auditory filters. It can be applied to any filters involved

feature extraction process. For instance, one may replace
ventional triangular filters in the extraction of MFCCs us-
F. However, we will describe our DAF in the context of

ing Li’s auditory features as the ensuing DAF were used for
evaluation in this paper.

uditory Filter Design

w robust auditory features are designed by closely mimick-
feature extraction process of the human peripheral auditory
[10]. The new auditory feature was found to outperform

, LPCC, and PLP in noisy environments, and the major im-
ent was attributed to the new auditory filters. Currently, Li
these filters from psychoacoustics literature and all chan-

the cochlea share one filter.
our DAF extraction, a 128-point Bark spectrum output from
er and middle ear is fed to 32 auditory filters in the cochlea.
ters are equally spaced at an interval of 4 points apart in
ctrum. An auditory filter of our system has the design

icted in Fig. 1(a). The weight wβk represents the gain of
itory filter while the weights wαk are the normalized fil-
ghts. To ensure the filter being triangular-like and differ-
e, two successive parameter-space transformations are em-
. For a digital filter with (2L + 1) points, we associate the
s { w−L, . . . , w−1, 1.0, w1, . . . , wL} with a set of deltas,
. . . , δ−1, δ1, . . . , δL} so that after parameter transformation
per scaling, δi will be equivalent to ∆wi (see Fig. 1(b)).

ely-indexed weights are related to the positively-indexed
s follows:

wj = 1 − F (

j∑
i=1

H(δi)) , j = 1, . . . , L (1)



utk ( overall filter output )

e tk ( FFT inputs )

αk ( weights )w

ytk ( filter output )

βkw ( gain )

(a) An auditory filter
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(b) Math representation

Fig. 1. A constrained auditory filter of the k-th channel

where F (·) and H(·) are any monotonically increasing func-
tions such that 0.0 ≤ F (x) ≤ 1.0 and 0.0 ≤ H(x) . Negatively-
indexed weights are related to the negatively-indexed deltas sim-
ilarly. In Eqn.(1), H(·) turns arbitrarily-valued deltas to positive
quantities; and, F (·) restricts the sum of transformed deltas to less
than unity. In this paper, we use the exponential function as H(x)
and the sigmoid function as F (x).

2.2. Discriminative Training of Auditory Filters

In acoustic modeling, there are two types of free parameters
Θ = (Λ, Φ): the HMM parameters Λ and the parameters Φ that
control feature extraction (FE). All these parameters can be trained
in the discriminative framework of MCE/GPD. Here we will dis-
cuss only the re-estimation of feature extraction parameters and
assume that they are independent of HMM parameters Λ.

The various feature extraction parameters are denoted as shown
in Fig. 1 and Fig. 2. The empirical expected string-based misclas-
sification error L is defined as

L(Θ) =
1

Nu

Nu∑
u=1

Lu(Θ) =
1

Nu

Nu∑
u=1

l(d(Xu)) (2)

where Xu is one of the Nu training utterances, and l(·) is the
soft-error-counting sigmoid function. d(·) is defined as d(Xi) =
Gi(Xi) − gi(Xi), measuring the log-likelihood ratio between the
correct string gi and its competing hypotheses Gi. To optimize
any parameter φ ∈ Φ, one finds the derivative of the loss function
L w.r.t. φ for each training utterance Xi, which, in turn, requires
the partial derivative of gi w.r.t. φ as given by:

∂g

∂φ
=

∑
t

1

bqt(xt)

N∑
j=1

∂bqt

∂xtj
· ∂xtj

∂φ
(3)
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e-estimation of Filter Gains

ity of the gains of the k-th channel filter is ensured by the
rmation: wβk = exp(w̃βk). By applying the chain rule on
es zt and ut(see Fig. 1(a) and Fig. 2), we have

∂xtj

∂w̃βk
=

∂xtj
∂ztk

· ∂ztk
∂utk

· ∂utk
∂wβk

· ∂wβk

∂w̃βk

= W
(D)
jk · 1

utk
· ytk · ew̃βk (4)

ere W (D) is the DCT matrix and ztk = log(utk).

e-estimation of Filter Weights

eights of the k-th channel wαk are re-estimated indirectly
h the associated deltas, δkh, h = 1, . . . , L. Using the chain
e obtain

=
∂xtj
∂ztk

· ∂ztk
∂utk

· ∂utk
∂ytk

· ∂ytk

∂δkh

= W
(D)
jk · 1

utk
· wβk · H ′(δkh)

[
−

L∑
i=h

F ′ · etki

]
.(5)

e actual filter weights wαk and gains wβk are obtained by
ropriate inverse transformations of δkh and w̃βk.

3. N-NEAREST HYPOTHESES

ent MCE training, when the correct hypothesis is too far
e N-best hypotheses, it will fall into the un-trainable region

sigmoid function. Although one may alleviate the problem
g a flatter sigmoid, training becomes so slow that one may
increase the learning rate. However, if the learning rate

arge, overshoot may occur. In [9], we suggested using the
est competing hypotheses instead so as to keep the training
close to the trainable region as possible. Consequently, the

t of “effective” training data is increased, and since there
eed to use a flatter sigmoid and a large learning rate, the

g seems to be more stable. An approximation algorithm [9]
n beam search was also designed to locate the nearest com-
hypothesis efficiently.

4. AURORA EVALUATION

ing the baseline setup as suggested by ICSLP2002’s special
on “Speech Recognition in Noise”, each of the 11 digits
odeled as strictly left-right whole-word HMMs, each with

es and each state consisted of 3 Gaussian mixtures. The si-
odel had only 3 states, each with 6 mixture components.

state short pause model was tied to the second state of the
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Fig. 2. Parameter notations in the extraction of our discriminative auditory feature



Table 1. Aurora2 multi-condition: WER on Test A using MFCC
with different sigmoid slopes and different competing hypotheses

System γ=0.5 γ=0.1 γ=0.02 γ=0.004
baseline(ML) 12.71% 12.71% 12.71% 12.71%

1-best 11.55% 11.01% 11.08% 12.07%
approximate 1-nearest 10.85% 10.71% 11.27% 12.27%

exact 1-nearest 10.46% 10.45% 10.92% 12.16%

Table 2. Aurora3: Word accuracies using 1-best and approximate
1-nearest competitors on the German corpus

Condition MCE DAF
1-best 1-nearest 1-best 1-nearest

WM 93.89% 94.43% 93.77% 93.97%
MM 85.29% 85.72% 84.99% 85.36%
HM 87.84% 87.97% 87.65% 87.79%

Overall 89.37% 89.77% 89.17% 89.41%

silence model. The HTK toolkit was used for both training the ini-
tial ML models and subsequent decoding. However, Li’s auditory
features were used.

Since it was found that for Aurora3 database, endpointing will
greatly improve recognition performance, we first endpointed all
training and testing files by the following procedure: The un-endpointed
training data were first used to train a set of HMMs which was
employed to segment all speech data by forced alignment; and, the
final endpoints were obtained by adding 100ms of speech at each
end. The endpointed training data were then used to re-train the
final set of HMMs, which were then tested on the endpointed test
data. The following systems were compared:

• Auditory: MLE-trained HMMs using Li’s auditory fea-
tures

• MCE: the Auditory system with additional MCE training
• DAF: the Auditory system with additional DAF extraction
• DAF+MLE: the DAF system followed by HMM re-training
• DAF+MLE+MCE: the DAF+MLE system with additional

MCE training
• DAF[+MLE]+MCE: similar to DAF+MLE+MCE but MLE

re-training is optional

4.1. Effectiveness of the N-nearest Hypotheses

Table 1 and Table 2 demonstrates the effectiveness of discrimina-
tive training using our new 1-nearest hypotheses.

4.2. Evaluation of DAF on Aurora2

For Aurora2 evaluation, speech files were not endpointed and only
the multi-condition training mode was attempted. Summary of the
results is shown in Table 3 and the details are shown in Table 7.

Table 3. Aurora2 multi-condition: Evaluation results

Condition Test A Test B Test C Overall
ICSLP baseline 11.93% 12.78% 15.44% 12.97%

DAF[+MLE]+MCE 8.47% 9.75% 8.34% 8.96%
WER reduction 28.98% 23.71% 45.98% 30.27%
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ary of results for Aurora3 evaluation are shown in Table 4–6
results for each language are given in Table 8–12.

le 4. Aurora3: Word error rates of ICSLP2002 baseline

dition Finnish Spanish German Danish Average
M 7.26% 7.06% 8.80% 12.72% 8.96%
M 19.49% 16.69% 18.96% 32.68% 21.95%
M 59.47% 48.45% 26.83% 60.63% 48.84%
erall 24.59% 20.78% 16.86% 31.68% 23.48%

le 5. Aurora3: Word error rate with DAF[+MLE]+MCE

dition Finnish Spanish German Danish Average
M 3.39% 4.48% 5.47% 9.25% 5.65%
M 11.49% 7.97% 13.91% 27.54% 15.23%
M 26.82% 24.78% 12.26% 49.22% 28.27%
erall 12.08% 10.78% 10.12% 25.64% 14.66%

le 6. Aurora3: WER reduction with DAF[+MLE]+MCE

dition Finnish Spanish German Danish Average
M 53.31% 36.54% 37.84% 27.28% 38.74%
M 41.05% 52.25% 26.64% 15.73% 33.92%
M 54.90% 48.85% 54.30% 18.82% 44.22%
erall 49.41% 45.12% 38.03% 21.12% 38.42%
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Table 7. Aurora2 multi-condition: Average word accuracies of Test A, B, and C

Condition ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
TestA 88.07% 88.40% 90.86% 89.04% 89.02% 91.53%
TestB 87.22% 88.33% 89.90% 88.63% 88.83% 90.22%
TestC 84.56% 89.24% 91.11% 89.69% 89.76% 91.66%

Overall 87.03% 88.54% 90.53% 89.01% 89.09% 91.03%
WER reduction 10.63% 26.22% 14.30% 14.95% 30.27%

Table 8. Aurora3: Overall word accuracies and WER reduction

ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
Overall Acc 76.52% 84.17% 85.15% 84.25% 84.13% 85.34%

WER reduction 29.84% 36.76% 30.79% 30.07% 38.42%

Table 9. Aurora3: Word accuracy on the Finnish corpus

Condition ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
WM 92.74% 94.44% 96.04% 94.86% 94.41% 96.61%
MM 80.51% 87.14% 88.58% 87.07% 87.35% 88.51%
HM 40.53% 73.53% 74.03% 72.79% 70.92% 73.18%

Overall 75.41% 86.66% 87.93% 86.62% 86.07% 87.92%
WER reduction 35.15% 46.76% 37.02% 34.26% 49.41%

Table 10. Aurora3: Word accuracy on the Spanish corpus

Condition ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
WM 92.94% 94.30% 95.27% 94.20% 94.25% 95.52%
MM 83.31% 91.72% 91.94% 91.88% 91.72% 92.03%
HM 51.55% 73.11% 75.10% 73.23% 72.81% 75.22%

Overall 79.22% 88.10% 89.06% 88.15% 88.00% 89.22%
WER reduction 36.47% 43.45% 36.30% 36.03% 45.12%

Table 11. Aurora3: Word accuracy on the German corpus

Condition ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
WM 91.20% 93.67% 94.43% 93.97% 93.81% 94.53%
MM 81.04% 84.99% 85.72% 85.36% 85.43% 86.09%
HM 73.17% 87.65% 87.97% 87.79% 87.56% 87.74%

Overall 83.14% 89.13% 89.77% 89.41% 89.31% 89.88%
WER reduction 32.01% 37.11% 34.19% 33.38% 38.03%

Table 12. Aurora3: Word accuracy on the Danish corpus

Condition ICSLP2002 Auditory MCE DAF DAF+MLE DAF[+MLE]+MCE
WM 87.28% 90.01% 90.68% 89.96% 89.96% 90.75%
MM 67.32% 70.48% 71.61% 70.48% 71.33% 72.46%
HM 39.37% 48.51% 50.08% 48.67% 48.79% 50.78%

Overall 68.32% 72.80% 73.86% 72.82% 73.15% 74.36%
WER reduction 15.74% 19.70% 15.65% 16.61% 21.12%
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