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Projects

Capture Project

- Details are on the blog (questions?) 

- 3D scanner demo during class today

- You should be starting this week

Upcoming Deadlines

- October 10 - Capture project in class presentations 

- October 15 - Final project pitches (3 weeks)
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Brief Review

Last Class: Motion capture more broadly

This Class: Motion capture for gaming (and HCI)

Practical systems for capturing motion
- Allow (some) editing of motion
- Can be used as measuring tools

[ Minority Report, 2002 ]
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Plan for Today’s Class

- Review of some hardware devices for gaming 

- Focus on Kinect 

- Structured light for depth estimation

- Inference of 3D pose 

- Discussion and some applications
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Game Capture vs. Motion Capture 

Technologies as you will see are very similar, but are tweaked 
for the HCI type of scenario

Cost:  < $100

Usability:  Easy to use, put on and take off

Quality:  Low accuracy is OK, full body motion is not 
always unnecessary 

Computation:  Low (10% of CPU can be spent on sensing)
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Wiimote
- Wireless communication (Bluetooth)

- Sensors

- Accelerometer for orientation (3 axis)

- Optical sensor for pointing

- Supports two handed interaction 

- Can use 2 Wiimotes simultaneously 

[ Some content taken from Joseph LaViola ]
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Wiimote
- Wireless communication (Bluetooth)

- Sensors

- Accelerometer for orientation (3 axis)

- Optical sensor for pointing

- Supports two handed interaction 

- Can use 2 Wiimotes simultaneously 

[ Some content taken from Joseph LaViola ]

Inertial SuitesInertial motion capture

Inertial gyroscopes embedded in suit

Pros: Real-time recording, high accuracy,

         affordable, self-contained, portable,

         no occlusion, unique sensor identification

         large number of simultaneous subjects

Cons: Restricted, no global position

Hybrid systems possible

Companies: Animazoo, Xsens

Image from Xsens

[ Xsens ]

- Inertial sensors (gyros) 

- Accelerometer: measures acceleration

- Gyroscope: measures orientation

- Ultrasonic: measures distance

Friday, September 21, 12

Semi-passive

- Multi-LED IR projectors in the environment emit spatially 
varying patterns

- Photo-sensitive marker tags decode the signals and estimate 
their position

Friday, September 21, 12

Simplified version of:
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Wiimote
- Wireless communication (Bluetooth)

- Sensors

- Accelerometer for orientation (3 axis)

- Optical sensor for pointing

- Supports two handed interaction 

- Can use 2 Wiimotes simultaneously 

Can be used by themselves or jointly

[ Some content taken from Joseph LaViola ]
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Wiimote
- Wireless communication (Bluetooth)

- Sensors

- Accelerometer for orientation (3 axis)

- Optical sensor for pointing

- Supports two handed interaction 

- Can use 2 Wiimotes simultaneously 

Can be used by themselves or jointly

optical sensor is used for more accurate aiming control

[ Some content taken from Joseph LaViola ]
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Optical Sensing with Wiimote

5

The Wiimote – Optical Data
� Data from optical sensor

� uses sensor bar
� 10 LED lights (5 of each side)
� accurate up to 5 meters

� triangulation to determine depth
� distance between two points on image sensor (variable)
� distance between LEDs on sensor bar (fixed)

� roll (with respect to ground) angle can be calculated from angle of 
two image sensor points 

� Advantages
� provides a pointing tool
� gives approximate depth

� Disadvantages
� line of sight, infrared light problems
� only constrained rotation understanding

Sensor Bar

CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. Spring 2012 CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. 

The Wiimote – Motion Data
� Data from 3-axis accelerometer

� senses instantaneous acceleration on device (i.e., force) along each axis
� arbitrary units (+/- 3g)
� always sensing gravity

� at rest acceleration is g (upward)
� freefall acceleration is 0

� finding position and orientation
� at rest – roll and pitch can be calculated easily
� in motion – math gets more complex
� error accumulation causes problems
� often not needed – gestures sufficient

� Advantages
� easily detect course motions
� mimic many natural actions

� Disadvantages
� ambiguity issues
� player cheating
� not precise (not a 6 DOF tracker)

CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. Spring 2012 CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. 

10 LED lights (5 on each side) 

Use triangulation to determine depth 

- Distance between imaged LEDs on sensor varies with depth

- Distance between LEDs on the sensor bar fixed

- Angle can be calculated from angle between imaged LEDs

[ Some content taken from Joseph LaViola ]
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Wiimote Limitations
- Not quite 6 DOFs (orientation + depth)

- Only provides approximate depth 

- Limited range (~ 5 meters)

- To triangulate depth requires line of sight to the bar

[ Some content taken from Joseph LaViola ]
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Wiimote Limitations
- Not quite 6 DOFs (orientation + depth)

- Only provides approximate depth 

- Limited range (~ 5 meters)

- To triangulate depth requires line of sight to the bar

Wii Motion Plus 

- Adds a gyro for additional orientation quality

- Still unable to provide reliable 3D position information

[ Some content taken from Joseph LaViola ]
Monday, September 24, 12



Prototype Systems
Use multiple Wiimotes and map them to motion of a character

[ Shiratori and Hodgins, ACM SIGGRAPH Asia, 2008]
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PlayStation Move

- Wireless communication

- Sensors

- Optical camera tracking (absolute 3D position)

- 3 axis accelerometer  

- 3 axis gyroscope

- magnetometer (helps with drift)

- Can use up to 4 controllers simultaneously 

[ Some content taken from Joseph LaViola ]
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- Sensors

- Optical camera tracking (absolute 3D position)

- 3 axis accelerometer  

- 3 axis gyroscope

- magnetometer (helps with drift)

- Can use up to 4 controllers simultaneously 

- PlayStation Eye

- 640 x 480 (60 Hz)

- 320 x 240 (120 Hz)
[ Some content taken from Joseph LaViola ]

Inertial SuitesInertial motion capture

Inertial gyroscopes embedded in suit

Pros: Real-time recording, high accuracy,

         affordable, self-contained, portable,

         no occlusion, unique sensor identification

         large number of simultaneous subjects

Cons: Restricted, no global position

Hybrid systems possible

Companies: Animazoo, Xsens

Image from Xsens

[ Xsens ]

- Inertial sensors (gyros) 

- Accelerometer: measures acceleration

- Gyroscope: measures orientation

- Ultrasonic: measures distance

Friday, September 21, 12

Simplified version of:

- Resolve correspondence by activating 
one LED marker at a time (very 
quickly)

- LEDs can be tuned to be easily picked 
up by cameras 

Active Marker-based Systems

ILM used for “Van Helsing”

 Weta used for “Rise of the Planet of 
the Apes”  

[ PhaseSpace ]

Friday, September 21, 12
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PlayStation Move: Optical Tracking

44mm sphere serves as an active LED marker
(with controlled color)

Controllable color simplifies

- Correspondences (immediately know id of controller)

- Segmentation of the marker from background

(remember active optical markers)  

[ Some content taken from Joseph LaViola ]
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PlayStation Move: Optical Tracking

44mm sphere serves as an active LED marker
(with controlled color)

Under perspective projection spherical marker images 
as an ellipsoid

[ Some content taken from Joseph LaViola ]
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PlayStation Move: Optical Tracking

44mm sphere serves as an active LED marker
(with controlled color)

- Detect marker pixels

- Fit ellipsoid to them

- Ellipsoid + calibration = 3D position

- Ray through centroid gives a line in space

- Size and orientation of the ellipsoid give depth along the line

10

PlayStation Move – 6 DOF Tracking

CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. 

� Image Analysis
– find sphere in image

� segmentation
– label every pixel being tracked
– saturated colors more robust

� pose recovery
– convert 2D image to 3D pose
– robust for certain shapes (e.g., sphere)

– fit model to sphere projection
� size and location used as starting 

point
� 2D perspective projection of sphere 

is ellipse
� given focal length and size of sphere, 

3D position possible directly from 2D 
ellipse parameters

Spring 2012

PlayStation Move – 6 DOF Tracking

CAP6121 – 3D User Interfaces for Games and Virtual Reality                     ©Joseph J. LaViola Jr. 

� Sensor Fusion
– combines results from 

image analysis with inertial 
sensors (Unscented Kalman
Filter)

– contributions
� camera – absolute 3D position
� accelerometer 

– pitch and roll angles (when 
controller is stationary)

– controller acceleration (when 
orientation is known)

– reduce noise in 3D position 
and determine linear velocity

� gyroscope
– angular velocity to 3D rotation
– angular acceleration www.cslu.ogi.edu/nsel/ukf/node6.html

Spring 2012

Under perspective projection spherical marker images 
as an ellipsoid

[ Some content taken from Joseph LaViola ]
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Playstation Move Limitations

- 6 DOFs (orientation + position in 3D)

- Limited range (~ 5 meters)

- Requires line of sight to the camera

Monday, September 24, 12



Kinect

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation

Two key contributions:

- Inexpensive and accurate depth camera / sensor

- 3D pose estimation
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IR Emitter Color Sensor
IR Depth Sensor

Tilt Motor

Microphone Array

[ Src: Kinect for Windows SDK ]

Structure of the Sensor
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Depth Map Construction

Kinect combines structured light with two other computer 
vision techniques: depth from focus and depth from stereo

[ Slide after John MacCormick]
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Depth Map Construction

Kinect combines structured light with two other computer 
vision techniques: depth from focus and depth from stereo

( Everything I will tell you is a speculation, taken from PrimeSense patent 
and notes from John MacCormick, Microsoft ) 

[ Slide after John MacCormick]
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Depth Map Construction

Kinect combines structured light with two other computer 
vision techniques: depth from focus and depth from stereo

Structured light has a long history in vision:

Structured light general principle: 
project a known pattern onto the scene and 

infer depth from the deformation of that pattern 

Zhang et al, 3DPVT (2002) 

Cleverly projected pattern of light observed from the camera 
can tell us a lot about 3D structure of the scene

( Everything I will tell you is a speculation, taken from PrimeSense patent 
and notes from John MacCormick, Microsoft ) 

[ Slide after John MacCormick]

[ Zhang et al, 3DPVT, 2002 ]
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Object

Example: Line as a “the structure”

[ Slide from S. Narasimhan ]
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Project laser stripe onto object

Object

Laser

Light Plane

Example: Line as a “the structure”

[ Slide from S. Narasimhan ]
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Project laser stripe onto object

Object

Laser

Cam
er

a

Light Plane

Example: Line as a “the structure”

[ Slide from S. Narasimhan ]
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Object

Laser

Cam
er

a

Light Plane

Example: Line as a “the structure”

Depth from ray-plane triangulation:
- Intersect camera ray with light plane

[ Slide from S. Narasimhan ]
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Object

Laser

Cam
er

a

Light Plane

Example: Line as a “the structure”

Depth from ray-plane triangulation:
- Intersect camera ray with light plane

Accurate but slow

[ Slide from S. Narasimhan ]
Monday, September 24, 12



Kinect’s Structured Light
The Kinect uses infrared laser light, 

with a speckle pattern 

Shpunt et al, PrimeSense patent application 
US 2008/0106746 

Speckle patterns using infrared light  

[ Shpunt et al., PrimeSense patent application
US 2008/0106746 ]

[ Slide after John MacCormick]
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Dealing with Correspondences

Correspondences can be computed based on closest distance 
between intersection of 3D lines (from camera and laser) 

Object

Laser

Cam
er

a

Light Plane

Monday, September 24, 12



Dealing with Correspondences

Correspondences can be computed based on closest distance 
between intersection of 3D lines (from camera and laser) 

Object

Laser

Cam
er

a

Light Plane

Lower density of speckles and/
or uniqueness of speckles 
improves correspondence 
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Depth From Focus

- What is in focus depends on the depth

- For a given lens there is a nominal depth where everything is 
in focus, otherwise object will be out of focus

[ Slide after John MacCormick]
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Depth From Focus
Depth from focus uses the principle 

that stuff that is more blurry is further 
away 

Watanabe and Nayar, IJCV 27(3), 1998 

- What is in focus depends on the depth

- For a given lens there is a nominal depth where everything is 
in focus, otherwise object will be out of focus

[ Watanabe and Nayar, 1998 ]

[ Slide after John MacCormick]
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Depth From Focus

- Kinect improves the accuracy of traditional depth from focus

- Kinect uses a spatial “astigmatic” lens with different focal 
length in x and y dimensions 

- A projected circle becomes an ellipse whose orientation 
depends on depth

The astigmatic lens causes a projected 
circle to become an ellipse whose 

orientation depends on depth 

Freedman et al, PrimeSense  patent application 
US 2010/0290698 

[ Slide after John MacCormick]

[ Freedman et al., PrimeSense patent application
US 2010/0290698 ]
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Depth From Focus
The Kinect uses infrared laser light, 

with a speckle pattern 

Shpunt et al, PrimeSense patent application 
US 2008/0106746 

Speckles are the “circles” 

[ Shpunt et al., PrimeSense patent application
US 2008/0106746 ]

[ Slide after John MacCormick]
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Depth From Stereo

[ M. Domínguez-Morales, A. Jiménez-Fernández, R. Paz-
Vicente, A. Linares-Barranco, G. Jiménez-Moreno, 2012 ]

- Looking at the scene from 2 
different angles, pixels that 
correspond to closer objects 
move more than pixels that 
correspond to further objects 

- Kinect analyzes shift of the 
speckle pattern by projecting 
from one location and 
observing from another  

This is how many depth cameras work

IR Emitter
IR Depth Sensor
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Kinect

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation

Two key contributions:

- Inexpensive and accurate depth camera / sensor

- 3D Pose estimation
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Two key contributions
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- 3D Pose estimation

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation

Monday, September 24, 12



Kinect

Two key contributions

- Inexpensive and accurate depth camera / sensor

- 3D Pose estimation

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation

Again, correspondences are difficult
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3D Pose Estimation

Figure 3: Example reconstruction of the destroy sequence, each set (3 rows each) consists of input images, reconstruction, and ground-
truth. Results are shown every 25th frame. View angles are 0 and radians. The obtained reconstruction visually agrees with the
perfect output for all views. Note that this sequence has challenging configurations, body orientation is also recovered correctly.

facing a fixed point. Angles are sampled every radi-
ans starting at 0 radians, which corresponds to the person
always facing to the camera. Note that the error is big-
ger for orientations closer to and radians. This
intuitively agrees with the notion that at those angles (side-
view), there is less visibility of the body parts. This perfor-
mance is very promising considering the complexity of the
task and the simplicity of the approach.

7.1 Experiments using Real Visual Cues
For our next example, in Fig. 5 we now test the system
against real segmented visual data, obtained from observ-
ing and tracking and human subject. Reconstruction for
several relatively complex action sequences are shown be-
low each sequence. Note that even though the character-
istics of the segmented body differ from the ones used for
training, good performance is achieved. Most frames are
visually close to what can be thought as the right pose re-
construction. Body orientation also is correct not just for
frontal views.
However, it is possible to see some erroneous config-

urations. We believe the source of error is mainly due to
several reasons: 1.) insufficient data to account for given
configurations that cannot just be obtained by interpolat-
ing surrounding ones (e.g.,raising arms up / pointing both
arms to same direction), 2.) possible need of more clusters
or approximating functions with more specialized domains
(in cue space), 3.) differences in body characteristics used
for training/testing, and 4.) little discriminative power of
the chosen image features (Hu moments, which reduce the
image interpretation to a 10-dimensional vector). Despite
these errors, the experimental results are encouragingwhen

compared with previous results.

8 Conclusion
We have presented a novel technique that allows the recon-
struction of human body pose from low-level visual fea-
tures. Because of the complexity of the mapping, we clus-
tered the space of body configurations into approximately
homogeneous configurations, showing improved results.
The proposed approach is both simple and powerful. Our
ideas are different from tracking approaches in that we do
not try to match body parts from frame to frame.
Human pose reconstruction is a particularly hard prob-

lem because this mapping is highly ambiguous. We have
obtained excellent results even using a very simple set of
image features, such as image moments. Choosing the best
subset of image features from a given set is by itself a com-
plex problem, and a topic of on-going research.
The implemented algorithm for reconstruction runs in

linear time with respect to the number of clusters
. Also it scales linearly for sequences, for a sequence

of length , the complexity is . The method is
by itself causal, but performance improved slightly when
looking two or three frames ahead.
The current implementationwas tested in recovering the

pose for both generated and real visual data. The artifi-
cially generated data was used for measuring the perfor-
mance of the approach, real data showed its applicability.
The results are encouraging in considering the complex-
ity of the task and in comparison with results reported for
previous methods.

[ Inferring body pose without tracking body parts, Rosales & Sclaroff, CVPR, 2000 ]

- Generate synthetic examples of “images” from MoCap

- This creates a database of image-pose pairs

- Learn a function that takes image features as input and 
outputs 3D pose

( without correspondences )
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[ Shakhnarovich, Viola, Darrell, ICCV’03]

Simplest Regression-based Method
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Figure 4. Examples of upper body pose estimation (Section 4). Top row: input images. Middle row:
top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images
in the bottom row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.
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Figure 5. More examples, including typical “errors”. In the leftmost column, the gross error in the top
match is corrected by LWR. The rightmost two columns show various degrees of error in estimation.

7

Weighted
kNN

Nearest Neighbor Regression

[ Shakhnarovich, Viola, Darrell, ICCV’03]

- Speeding up the NN lookup using hashing functions

- Better results are obtained by wighted average of k- Nearest 
Neighbors

Input 
Image

NN
Match
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 Learn a functional mapping from features to pose          
          (e.g. Linear Regression:                                      )

pose = g ( features )
feature space pose space

[ Agarwal, Triggs, CVPR’04 ]
Linear Regression
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Imaging Ambiguities
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[ Agarwal and Triggs, CVPR’05 ]

Imaging Ambiguities
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[ Agarwal and Triggs, CVPR’05 ]

Imaging Ambiguities
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Muti-modal probabilistic functions

pose = g1 ( features )
pose = g2 ( features )

feature space pose space

[ Sminchisescu et al PAMI’07, Bo et al CVPR’08 ]

Mixture of Experts
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[ Sminchisescu et al PAMI’07, Bo et al CVPR’08 ]

Mixture of Experts
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[ Sminchisescu et al PAMI’07, Bo et al CVPR’08 ]

Mixture of Experts
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An Interesting Application
[ Ren, Shakhnarovich, Hodgins, Pfister, Viola, ACM SIGGRAPH, 2004 ]

In this case multiple (3) cameras are used, but using similar 
regression-based (correspondence free) approach 
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Kinect

Depth image:

- Resolves ambiguities in pose

- Make it easy to segment person from background 

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation
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Step 1: Create a synthetic datasetFor each real image, render dozens 
more using computer graphics 

techniques 

Shotton et al, CVPR(2011) 

- 15 different body types 

- About 100,000 poses

- Render depth image-pose pairs

[ Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake, CVPR’11 ] 
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Step 2: Learn mapping to body parts

Train a randomized decision forests 

[ Slide after John MacCormick]
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Step 2: Learn mapping to body parts

Train a randomized decision forests 

It’s like a sophisticated game of 20 questions
(decision tree)

[ Slide after John MacCormick]
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Step 2: Learn mapping to body parts

Train a randomized decision forests 

It’s like a sophisticated game of 20 questions
(decision tree)

Should you take an umbrella? 

[ Slide after John MacCormick]
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Step 2: Learn mapping to body parts

Train a randomized decision forests 

It’s like a sophisticated game of 20 questions
(decision tree)

A decision tree is like a pre-planned 
game  of  “twenty  questions” 

Ntoulas et al, WWW (2006) 

Should you take an umbrella? 

[ Slide after John MacCormick]
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Questions Kinect AsksWhat  kind  of  “questions”  can  the  
Kinect ask in its twenty questions? 

• Simplified version: 
– “is  the  pixel  at  that offset  in  the  background?” 

• Real version: 
– “how  does  the  (normalized)  depth  at  that pixel compare to 
this pixel?”    [see Shotton et al, equation 1] 

Shotton et al, CVPR(2011) 

[ Slide after John MacCormick]

[ Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake, CVPR’11 ] 

How does the (normalized) depth at the given pixel compares 
to the (normalized) depth at a pixel with a given offset
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Questions Kinect AsksWhat  kind  of  “questions”  can  the  
Kinect ask in its twenty questions? 

• Simplified version: 
– “is  the  pixel  at  that offset  in  the  background?” 

• Real version: 
– “how  does  the  (normalized)  depth  at  that pixel compare to 
this pixel?”    [see Shotton et al, equation 1] 

Shotton et al, CVPR(2011) 

[ Slide after John MacCormick]

[ Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake, CVPR’11 ] 

How does the (normalized) depth at the given pixel compares 
to the (normalized) depth at a pixel with a given offset

Note: this is only a form of the question, there are millions of these types of questions that 
can be asked depending on the parameters (e.g., offset, comparisons)
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Learning a Decision Tree

- Need to choose a sequence of questions to ask 

- Which question is most useful to ask next?

[ Slide after John MacCormick]
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Learning a Decision Tree

- Need to choose a sequence of questions to ask 

- Which question is most useful to ask next?

e.g. for taking an umbrella is it more useful to 
ask “is it raining?” or “is it cloudy?” 

[ Slide after John MacCormick]

Monday, September 24, 12



Learning a Decision Tree

- Need to choose a sequence of questions to ask 

- Which question is most useful to ask next?

e.g. for taking an umbrella is it more useful to 
ask “is it raining?” or “is it cloudy?” Why?

[ Slide after John MacCormick]

Monday, September 24, 12



Learning a Decision Tree

- Need to choose a sequence of questions to ask 

- Which question is most useful to ask next?

- Mathematically this takes the form of information gain 
(which is derived from entropy)

 ( I am not going to go through the details )

e.g. for taking an umbrella is it more useful to 
ask “is it raining?” or “is it cloudy?” Why?

[ Slide after John MacCormick]
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Randomized Decision Forest

Randomized

- Too many possible questions, so use a different random 
sub-set of 2,000 each time

Forest

- Instead of training one decision tree, train many 

- Use results from all to make a decision

Shotton et al, CVPR(2011) 

Kinect actually uses a randomized 
decision forest 

[ Slide after John MacCormick]
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Kinect

Depth image:

- Resolves ambiguities in pose

- Make it easy to segment person from background 

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation
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Body Parts to Skeleton

Body Part
Segmentation

3D Joint
Estimation

Find centroids of parts 
Use robust (and fast) algorithm -- Mean Shift
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Kinect

Color Image Depth Image Body Part
Segmentation

3D Joint
Estimation

Is body segmentation really needed? 
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Kinect

Color Image Depth Image 3D Joint
Estimation

Figure 5. Inferred joint positions. (Left) Each example shows an input depth image with color-coded ground truth joint positions overlaid,
and then inferred joint positions from front, right, and top views. The size of the boxes indicates the inferred confidence. Our algorithm
achieves accurate prediction of internal body joints for varied body sizes, poses, and clothing. The middle row shows accurate prediction
of even occluded joints, and the bottom row shows some failure cases. (Right) Example inference results on flattened 2D silhouettes.
Ground truth joint positions are plotted as crosses and the highest scoring hypothesis for each joint appears as a color-coded circle, with
size indicating confidence. Despite substantially more visual ambiguity, our algorithm is able to predict many joint positions accurately.
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(a) 
Figure 6. Results on the MSRC-5000 test set compared to [18]. (a) Mean average precision versus total number of training images. (b)
Average precision on each of the 16 test body joints. Our algorithm achieves substantially better accuracy with fewer training images.

reaching each leaf for each joint, rather than the top local
mode. To achieve a sensible result, we found the mean
vote’s weight wij1 to be very important. The best result
obtained took wij1 as the number of offsets within 5cm of
the mean. Performance decreased from 0.763 (top local
mode with K = 1) to 0.739 (mean of all offsets). Sig-
nificant degradation was observed in the arm joints which
exhibit much more multi-modality in the offsets. Here,
the mAP computed over elbows, wrists, and hands dropped
from 0.726 to 0.639. For robust results, using the top local
mode thus appears better than the mean.
Learned relative vote weights wljk. To quantify the role
of the relative vote weights, we tested our system with
wljk = 1, 8l, j, k. This uniform weight assignment de-
creased mAP dramatically from 0.770 to 0.542, underscor-
ing the importance of our strategy of learning vote weights.
Reservoir capacity C. The size of the reservoir had rel-
atively little effect on accuracy. Reducing the reservoir ca-
pacity at training time from 100 to 50 led to a small de-
crease in accuracy from mAP 0.770 to 0.766. Interestingly,
increasing the reservoir capacity to 200 and 300 also caused
a small drop (0.755 and 0.747, respectively). These results
suggest that even a small sample of offsets is sufficient to

characterize their distribution well for clustering.

Test time vote sub-sampling N . Even with the learned
vote length thresholds �j , an average of about 1000 votes
are cast per joint when processing a test image. Prior to ag-
gregating votes with mean shift, we optionally sub-sample
the voting space to at most N votes. First, using fixed
N = 200 we experimented with different sub-sampling
strategies: top N weighted votes; uniform sampling; sam-
pling weighted by vote weight. The three methods achieved
mAP scores of 0.770, 0.727, and 0.753, respectively. Using
the top N strategy, we find that accuracy varies slowly with
N . We illustrate the substantial improvement in runtime
speed this allows in Fig. 7(c), where mAP is plotted against
fps as a function of N , and compare with [18] on similar
hardware. Representative values of N from 1 to 400 are
overlaid on the plot. The best tradeoff between prediction
accuracy and prediction speed is at about N = 50. All tim-
ings were measured on an 8-core machine taking advantage
of CPU parallelism.

4.4. Predictions from 2D images
Though we focus on depth images in this paper, our

method applies without modification to 2D silhouette im-

You can do better regressing directly to 3D joints

[ Girshick, Shotton, Kohli, 
Criminisi, Fitzgibbon, 

ICCV, 2011 ]
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Kinect

Color Image Depth Image 3D Joint
Estimation

You can do better regressing directly to 3D joints

Done using similar regression forest as before 
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Figure 4. Examples of upper body pose estimation (Section 4). Top row: input images. Middle row:
top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images
in the bottom row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.
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Figure 5. More examples, including typical “errors”. In the leftmost column, the gross error in the top
match is corrected by LWR. The rightmost two columns show various degrees of error in estimation.

7

Weighted
kNN

Nearest Neighbor Regression

[ Shakhnarovich, Viola, Darrell, ICCV’03]

In practice, similar to k Nearest Neighbor, except much faster 

Input 
Image

NN
Match
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Figure 4. Examples of upper body pose estimation (Section 4). Top row: input images. Middle row:
top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note that the images
in the bottom row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.
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Figure 5. More examples, including typical “errors”. In the leftmost column, the gross error in the top
match is corrected by LWR. The rightmost two columns show various degrees of error in estimation.
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[ Shakhnarovich, Viola, Darrell, ICCV’03]

In practice, similar to k Nearest Neighbor, except much faster 
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Discussion
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Closed Universe

All of these are input devices

- Most games need few discrete controls 

- Game designers are typically able to define controls that 
are SO different that any noise in location/skeleton will not 
really effect performance
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Designing Around Limitations

- Game designers are really good about designing around 
limitations of input devices

[ Raptis, Kirovski, Hoppes, SCA, 2011 ]
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Designing Around Limitations

- Game designers are really good about designing around 
limitations of input devices

[ Raptis, Kirovski, Hoppes, SCA, 2011 ]
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Game-driven Response

- Even for very complex game interfaces, at any given point 
of the game only few gestures are possible

- Avatar can ask you to perform any motion, but once 
asked, the system only cares if you perform that motion
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Leap Motion
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