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What is Human Motion”

What makes Human Motion Hard to Analyze”

Muscle Contractions

Surface Motion Body
| Sensors
Observations
What we What causes What we
usually want motion can directly
measure

This lecture

It’s impossible to kiss your elbow



Kinematics vs bynamics

Acceleration
Velocity

@f\\ Force 2 <«—@)m===3p Force 1

Kinematics: Geometry of Motion| Dynamics: Physics of Motion
(Motion without Cause) (Motion with Cause)
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Capturing Human Motion

Holy Grail: Single Video Camera

Cameras are
ubiguitous, cheap,
and passive

3D Structure 3D Motion  uevation fom i



This Lecture...

3D Dynamic Surface Reconstruction using Passive Sensing

»  How should we represent human body surfaces?

» \What can we extract from images”

A Brietf History of Virtualizing Reality

« Volumetric and Point-based 3D Reconstruction
Algorithms

» Jour of the Virtualizing Studio 4.0



How do we Represent the Body Surface”
Representation Primitives

7 4 &

Voxel Mesh Surfel




Voxels

Volumetric Picture Element













Voxels

Volumetric Picture Elements

Dynamic Voxels (doxels): Spacetime grid
(e.g., 100 cm x 100 cm x 100 cm x 100 sec).

Memory intensive (if used trivially)

Example: 1 minute capture at 30 frames per
second of 10 meter cubed space at centimeter
resolution

60 x 30 x (100 x 10)* = 1,800,000, 000, 000

seconds frames centimeters meters number of voxels
per per
second meter



\Vlesh

»  Continuity constraint embedding

»  Limited memory consumption

-Ixed topology

O vertex

— edge
‘ triangle face




M
AIA"AK \
PO,




Surfels

Surface Elements

Pfister et al., Surfels: Surface Elements as Rendering Primitives, SIGGRAPH 2000.






Representation

Reconstructing 3D Body Shape and Motion

image —_—>



lmage Information

Measurables

Silhouettes Correspondences Shading

There is also shading, texture, and other cues. See Shape from X (Marr)



Shading

Surface normals from shading information
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orrespondences

Feature-based Matching




Correspondences

Feature-based Matching




Silhouettes

Background subtraction

de Aguiar et al. Performance Capture from Sparse Multi-view Video, SIGGRAPH 2008.




Silhouettes

Holy Grail: Single Video Camera

Problem Is unsolved. Very unsolved.

Based on slide by Raquel Urtasun



3D-2D Projection

How are images formed?

Image Coordinate
’ﬁ System

World Coordinate o

System
RS



3D-2D Projection

How are images formed?

» |1 Image Coordinate
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3D-3D Transformation

World Coordinate to Camera Coordinate

3D Rotation

World Coordinate
System

RB

/

Point in Camera Coordinates

X/

Y/

Z/
1

|

Raxs
0

3D Translation

- 5
X! — Y’ | Camera Coordinate
| Z System
L R’
Point in World Coordinates
-y
t3><1 } Y
1 4x4 Z
b 1 —




INtrinsic Matrix

Camera Coordinate to Image Coordinate

K Image Coordinate
7

/QX System
X / ° IR,Z

Camera Coordinate

System
]R3 B X/
AT v/
Ay | = Kaxs [ Isxs ‘ O3x1 }3><4 7
A
B B focal length i 1

pixel scaling factors

Q'\ s f/ 0 px/'7Principal offset
K=| 0— syf Dy

0 0 1




3D-2D Projection

World to Camera to Image Coordinate

K > Image Coordinate

System
PS IR,Z
R, t PN
Camera Coordinate
System
. IR3
World Coordinate
System ®
R’ )
_ _ X ]
AT
Rsx3 t3xi1 Y
Ay | =Ksxs | Isxs | 0sx1 |5, [ OX 1X ] 7
A 4x4 |
x =2 K/R[t]X

Find P using camera calibration
x =2 P34 X http://www.vision.caltech.edu/
bouguetj/calib doc/



http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Normalized Distance in the presence of noise

X = P34 X “equal up to scale” not “equal”
_ i} X

AT

Y

Ay | =P

\ /
- - 1

x = \PX
Measure of Goodness

. _ Maximum Likelihood Objective
[x — APX |2 = [Ix, PX|[q (under Gaussian Noise)



Single Image Projection

Invertible?

X «— P34 X

Image Coordinate
LN System
R?

min ||x, PX]||4
X

System ll-posed: 3 unknown, 2 constraints



Reconstruct me! :)



How do we resolve this”?

Multiple Views!

X — P3><4X

. X2
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Virtualizing Studio




Virtualizing Studio

Vedula, Saito, Kanade (1998)










Virtualizing Studio

Matthews, Baker, Gross, Kanade (2002)







16 cameras




Stanford Multicamera Array

Levoy et al. (2005)

100 VGA Cameras
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16 UXGA cameras




Video courtesy of Shohei Nobuhara
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Stereoscopic 3D Reconstruction

Correspondence-based

m}%n |x1, P1X||qg + ||x2, P2X]|q

Nonlinear least squares



INitialization

Direct Linear Transform Algorithm

x =P 3 % 4X Projection Equation --- Equal up to scale
HX — )\PXH2 HX PXHd Normalized Distance
x X \PX = 0 Cross product:
x x y = |x|| [y sin(6)
X X PX =0 Cross product of a vector and a scaled version
Function of of itself is zero
xand P
\A2 waXgx1 = 0 Underconstrained Homogeneous System
Fromcamera1 | Aq 1

X =0 Homogeneous System --- Solve using SVD

From camera F A F



v.-.....-..-..v..!.0.....-.5.6.0.0.0..... (RO




Challenge

Correspondence

The three most important problems in computer vision are
registration, registration, registration!

--- Takeo Kanade



Stereoscopic 3D Reconstruction

Pros Cons




Stereoscopic 3D Reconstruction

Pros Cons
Can provide temporal correspondence Requires accurate spatial correspondence
High accuracy Sparse reconstruction
Accuracy depends on the number of cameras Does not provide normal information
Can identify concavities




Voxel Carving

Correspondence-free Reconstruction
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Silhouettes

Background subtraction

de Aguiar et al. Performance Capture from Sparse Multi-view Video, SIGGRAPH 2008.




Voxel Carving

Correspondence-free Reconstruction

X = P3ysX







Visual Rull

A

"l?

Gregor Miller, 2008



Voxel-Carving

Pros Cons




Voxel-Carving

Pros Cons
Does not require spatial correspondences Does not provide temporal correspondence
Trades off density with computation Redundant computation
Easy to code Requires accurate silhouettes
Camera work with few cameras Does not provide normal information
Accuracy depends on the number of cameras
Convex Hull




nimating 3D Scans

E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, S. Thrun, Performance Capture from Sparse Multi-view Video, in Proc. of SIGGRAPH 2008



SCAPE: Shape Completion

Anguelov (2005)



The Kitchen Sink

de Aguiar (2008)




Animating 3D Scans

Pros and Cons

Pros Cons
High resolution Drift
Can fill missing data Topology changes
Temporal continuity Low detail (if generic models are used)

Baked detail (if specific models are used)










Representation

Reconstructing 3D Body Shape and Motion

Voxel

- —
Voxel
Photometric Model
° I Stereo Constraints
. ﬁ
Image
Surfel
Stereo

o AL Reconstruction
image —_—>
measurables

Mesh



Conclusion

3D Structure 3D Motion

3D Structure reconstruction is maturing.
3D Motion estimation is primitive.



This Lecture...

3D Dynamic Surface Reconstruction using Passive Sensing

« How should we represent human body surfaces”

- \What can we extract from images”

A Brietf History of Virtualizing Reality

« Volumetric and Point-based 3D Reconstruction
Algorithms

» Tour of the Virtualizing Studio 4.0



Virtualizing Studio 4.0
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480 VGA cameras

19 HD cameras
5 projectors
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Further Reading

Subtitle
Matusik et al. Image-Based Visual Hulls, SIGGRAPH, 2000.

de Aguiar et al. Performance Capture from Sparse Multi-
view Video, SIGGRAPH 2008.

Pfister et al., Surfels: Surface Elements as Rendering
Primitives, SIGGRAPH 2000.

Matsuyama et al., 3D Video and Its Applications, 2012.

Vlasic et al., Dynamic Shape Capture using Multi-View
Photometric Stereo, SIGGRAPH Asia, 2009



Demo!



