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This lecture

Observations
Sensors

Body

What is Human Motion?
What makes Human Motion Hard to Analyze?

Surface Motion

Muscle Contractions

Intent

What we 
usually want

What we 
can directly 

measure

What causes 
motion

It’s impossible to kiss your elbow



Kinematics vs Dynamics

Kinematics: Geometry of Motion
(Motion without Cause)

Dynamics: Physics of Motion
(Motion with Cause)

Acceleration
Velocity
Position Force 1Force 2

This lecture



Holy Grail: Single Video Camera
Capturing Human Motion

Illustration from IR

Cameras are 
ubiquitous, cheap, 
and passive

3D Structure 3D Motion



3D Dynamic Surface Reconstruction using Passive Sensing
This Lecture...

• How should we represent human body surfaces?
• What can we extract from images?
• A Brief History of Virtualizing Reality
• Volumetric and Point-based 3D Reconstruction 

Algorithms
• Tour of the Virtualizing Studio 4.0



Representation Primitives
How do we Represent the Body Surface?

SurfelMeshVoxel



Volumetric Picture Element
Voxels









Volumetric Picture Elements
Voxels

• Dynamic Voxels (doxels): Spacetime grid 
(e.g., 100 cm x 100 cm x 100 cm x 100 sec).

• Memory intensive (if used trivially)
• Example: 1 minute capture at 30 frames per 

second of 10 meter cubed space at centimeter 
resolution

60⇥ 30⇥ (100⇥ 10)3 = 1, 800, 000, 000, 000
seconds frames

per
second

centimeters
per

meter

meters number of voxels



Mesh
• Continuity constraint embedding
• Limited memory consumption
• Fixed topology





Surface Elements
Surfels

Pfister et al., Surfels: Surface Elements as Rendering Primitives, SIGGRAPH 2000.





Reconstructing 3D Body Shape and Motion
Representation

Surfel

Mesh

Voxel

Image

?

?

?
image 

measurables



Measurables
Image Information

CorrespondencesSilhouettes Shading

There is also shading, texture, and other cues. See Shape from X (Marr)



Surface normals from shading information
Shading



Detection/Tracking of Descriptors
Features



Feature-based Matching
Correspondences



Correspondences
Feature-based Matching



Background subtraction
Silhouettes

de Aguiar et al. Performance Capture from Sparse Multi-view Video, SIGGRAPH 2008.



Problem is unsolved. Very unsolved.

Why is it di�cult?

Poor imaging: motion blurred, occlusions, etc.

The mapping is generally multimodal: an image observation can
represent more than one pose.

Raquel Urtasun (TTI-C) Human Motion Analysis Feb 22, 2010 10 / 45
Based on slide by Raquel Urtasun

Holy Grail: Single Video Camera
Silhouettes



How are images formed?
3D-2D Projection

P

Image Coordinate 
System
R2

World Coordinate 
System
R3



How are images formed?
3D-2D Projection

P

Image Coordinate 
System
R2

World Coordinate 
System
R3

X =

2

664

X
Y
Z
1

3

775

x =

2

4
x

y

1

3

5

X ! x



World Coordinate to Camera Coordinate
3D-3D Transformation

World Coordinate 
System
R3
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Intrinsic Matrix
Camera Coordinate to Image Coordinate

Camera Coordinate 
System
R3

Image Coordinate 
System
R2
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World to Camera to Image Coordinate
3D-2D Projection
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World Coordinate 
System
R3

Camera Coordinate 
System
R3

K Image Coordinate 
System
R2

Find P using camera calibration
http://www.vision.caltech.edu/

bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


Normalized Distance in the presence of noise

k · kd

x
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P

Measure of Goodness
Maximum Likelihood Objective 
(under Gaussian Noise)

“equal up to scale” not “equal”



Invertible?
Single Image Projection

P3⇥4Xx

P

Image Coordinate 
System

P�1?

World Coordinate 
System
R3

Ill-posed: 3 unknown, 2 constraints

R2

min
X

kx,PXkd



Reconstruct me! :)



Multiple Views!
How do we resolve this?

P3⇥4Xx

x1

P1

x2

P2

X



Takeo Kanade
Virtualized RealityTM



Kanade, Narayanan, Rander (1995)
Virtualizing Studio





Virtualizing Studio



Vedula, Saito, Kanade (1998)
Virtualizing Studio







Matthews, Baker, Gross, Kanade (2002)
Virtualizing Studio





Gross et al. (2003)
Blue-C

16 cameras



Levoy et al. (2005)
Stanford Multicamera Array

100 VGA Cameras



Paul Debevec (USC)
Lightstage 1-6

8 HD cameras
1200 light sources





Onsite 3D Video Capture
Nobuhara et al. (2009)

16 UXGA cameras



Video courtesy of Shohei Nobuhara



Discussion



Resolve ambiguity
Multiple View Reconstruction

P3⇥4Xx
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Correspondence-based
Stereoscopic 3D Reconstruction

P1

P2

X

x1

x2

Nonlinear least squares

min
X

kx1,P1Xkd + kx2,P2Xkd



Direct Linear Transform Algorithm
Initialization

kx� �PXk2 = kx,PXkd

x

⇠= P3⇥4X

x⇥ �PX = 0

x⇥PX = 0 Cross product of a vector and a scaled version 
of itself is zero

Projection Equation --- Equal up to scale

Normalized Distance

Cross product: 
x⇥ y = kxkkyk sin(✓) n

A2⇥4X4⇥1 = 0 Underconstrained Homogeneous System

2

64
A1
...

AF

3

75X = 0 Homogeneous System --- Solve using SVD

Function of 
x and P

From camera 1

From camera F

...





Correspondence
Challenge

registration, registration, registration!
The three most important problems in computer vision are

--- Takeo Kanade



Stereoscopic 3D Reconstruction

Pros Cons



Stereoscopic 3D Reconstruction

Pros Cons

Can provide temporal correspondence Requires accurate spatial correspondence

High accuracy Sparse reconstruction

Does not provide normal informationAccuracy depends on the number of cameras

Can identify concavities



Correspondence-free Reconstruction
Voxel Carving



Background subtraction
Silhouettes

de Aguiar et al. Performance Capture from Sparse Multi-view Video, SIGGRAPH 2008.



Correspondence-free Reconstruction
Voxel Carving

P1

P2

P3

P4

x

⇠= P3⇥4X





Gregor Miller, 2008

Visual Hull



Voxel-Carving

Pros Cons



Voxel-Carving

Pros Cons

Does not require spatial correspondences Does not provide temporal correspondence

Trades off density with computation Redundant computation

Requires accurate silhouettesEasy to code

Does not provide normal informationCamera work with few cameras

Accuracy depends on the number of cameras

Convex Hull



Animating 3D Scans

E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, S. Thrun, Performance Capture from Sparse Multi-view Video, in Proc. of SIGGRAPH 2008



SCAPE: Shape Completion
Anguelov (2005)



de Aguiar (2008)
The Kitchen Sink



Pros and Cons
Animating 3D Scans
Pros Cons

Drift

Topology changes

High resolution

Low detail (if generic models are used)

Baked detail (if specific models are used)

Can fill missing data

Temporal continuity







Reconstructing 3D Body Shape and Motion
Representation

Surfel

Mesh

Voxel

Image

image 
measurables

Voxel
Carving

Photometric
Stereo

Stereo 
Reconstruction

Model
Constraints



Conclusion

3D Structure reconstruction is maturing. 
3D Motion estimation is primitive.

3D Structure 3D Motion



• How should we represent human body surfaces?
• What can we extract from images?
• A Brief History of Virtualizing Reality
• Volumetric and Point-based 3D Reconstruction 

Algorithms
• Tour of the Virtualizing Studio 4.0

3D Dynamic Surface Reconstruction using Passive Sensing
This Lecture...



Virtualizing Studio 4.0

480 VGA cameras
19 HD cameras

5 projectors







Subtitle
Further Reading

• Matusik et al. Image-Based Visual Hulls, SIGGRAPH, 2000.
• de Aguiar et al. Performance Capture from Sparse Multi-

view Video, SIGGRAPH 2008.
• Pfister et al., Surfels: Surface Elements as Rendering 

Primitives, SIGGRAPH 2000.
• Matsuyama et al., 3D Video and Its Applications, 2012.
• Vlasic et al., Dynamic Shape Capture using Multi-View 

Photometric Stereo, SIGGRAPH Asia, 2009



Demo!


