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Introduction

Symmetry is pervasive in both natural and man-made environments [1-7].
Humans have an innate ability to perceive and take advantage of symmetry [8] in
everyday life, but it is not obvious how to automate this powerful insight. The
introduction of computers poses challenging tasks for machine representation and
reasoning about symmetry and group theory. I make continuous efforts to
develop computational tools for dealing with symmetry in various applications
using computers [9-11,21,34,35].

This chapter gives a sampler of an emerging area of research and
applications, namely computational symmetry. Computational symmetry refers to
the practice of representing, detecting and reasoning about symmetries on
computers. The reasons to care about computational symmetry in computer
science are many-fold: (i) symmetry exists everywhere; (ii) symmetry is intellec-
tually stimulating; (iii) symmetry implies a structure that can be either helpful or
harmful in applications; (iv) machine computation of symmetry is challenging, as
it has to connect abstract mathematics with the noisy, imperfect, real world; and
(v) few computational tools exist for dealing with real-world symmetries.

I demonstrate, through three concrete applications, the power, the
difficulties and the feasibility of using symmetry and group theory on computers.
These applications are a robot assembly planner, an intelligent neuroradiology
image database and a computational model for periodic pattern perception. A
computational framework is proposed to study symmetry in a multi-dimensional,
continuous space.

A group-theoretical formalization of surface contact

One basic question in robotics automation is how do you describe contacts
between solids to a robot? For example, how would you ask a robot to put a cube
in a corner? This seemingly simple task requires 24 equivalent, but different, sets
of task specifications if you wish to enumerate all the geometric possibilities. It is a
non-trivial task to communicate the full range of spatial relationships between
locally symmetrical objects with a robot that does not understand symmetry. Such
task specifications are forced to be either tedious and redundant, or suffering from
incompleteness. Current engineering practice is still limited to a finite set of case-
based scenarios. Computing the relative positions of solids that are in contact is a
fundamental problem in many fields, including robotics, computer graphics,
computer-aided design and manufacturing, and computer vision. It is the focus of

E-mail yanxi@cs.cmu.edu

231



232

Y.Liu

Figure 1

this work to formalize solid contact based on local symmetry, to construct a
computational framework using group theory, and to demonstrate the
effectiveness of applications of computational group theory in robotics [9,10]. It
can be shown (Figure 1) that there is a direct relationship between the relative
locations of two solids in contact and the symmetry groups of their contacting
surfaces. Furthermore, it can be proven [11] that the most basic group operation is
symmetry group intersection. The computational challenge is to find out, on
computers, (i) how to denote symmetry groups, which can be finite, infinite,
discrete or continuous subgroups of the proper Euclidean group e+; and (ii) how
to compute these subgroup intersections in Euclidean space under different
locations and orientations efficiently in non-exponential time.

We have employed a geometric approach to denote and intersect an
important family of subgroups of the Euclidean group E+. They are called TR
groups, defined as a semi-direct product G=TR, where T'and R are translation and
rotation subgroups of E+ respectively. By mapping a TR group to a pair of
translation and rotation characteristic invariants, the intersection of two subgroups
can be done geometrically. We have developed and implemented a group-
intersection algorithm that has been proven to be correct and efficient (Figure 2).

As an application platform for our group-theoretical formalization of
surface contact among solids, a Kinematic Assembly planning system KA3
(Figures 3 and 4) [12-16] has been implemented. A designed assembly is input to
KA3 as a set of computer-aided-design models (boundary files from solid
modelling systems ACIS and PADL2) of individual parts and symbolic
relationships. KA3 generates a partial ordered precedence graph with symmetry
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The relative locations of contacting solids

The relative locations of two solids (B,, B,) in contact through their surfaces F, and F,, are expressed in
terms of their respective symmetry groups G, and G,:1,7" |, € f,G,0G,f,”, where |, and I, specify the
locations of solids B, and B, in the world co-ordinate system and f, and f, specify the locations of F, and
F, in their respective body co-ordinates. o is a transformation bringing the two co-ordinates together.
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Left: TR group-intersection algorithm. Right: an example of the intersection of two TR groups, symmetry

groups of a plane (Gp,m) and a cylinder (G(y, ) [9,11].This is an O(n?) algorithm, where n is the number

of countable poles.

Figure 3
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The structural framework of a Kinematic Assembly planning system (KA3)
where symmetry groups are used for reasoning about solids in contacts
The output is an assembly plan for robotic execution.ACIS and PADL2 are geometric solid modelling

systems, providing boundary files of individual assembly parts for KA3.
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Figure 4
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KA3 analyses the spatial and kinematic relations of a gearbox
Where E(3) is a three-dimensional Euclidean group, cyl is the symmetry group of a cylindrical surface
and SO(2) is a special orthogonal group (see [9,1 1] for details).

groups and homogeneous transformation matrices attached to each contact. Note
that the contact can be either fixed, when the symmetry group of the contacting
surfaces is the identity, or have relative motions, when the symmetry group is
non-trivial.

Pathological neuroradiology image indexing and retrieval via
quantification of brain (a)symmetry

Normal human brains exhibit approximate bilateral symmetry with respect to the
interhemispheric (longitudinal) fissure bisecting the brain, known as the
anatomical midsagittal plane (MSP). However, human brains are almost never
perfectly symmetrical [17-19]. Pathological brains, in particular, often depart
drastically from perfect reflectional symmetry. For effective pathological brain-
image alignment and comparison in a large pathological medical image database -
(e.g. [17,20-22]), it is most desirable to define a plane of reference that is invariant
for symmetrical as well as asymmetrical brain images and to develop algorithms
that capture this reference plane robustly.

We have developed an algorithm that is capable of finding an ideal MSP
(iMSP) from a given volumetric pathological neuroimage [23,24]. The goal here is
to find where the iMSP is supposed to be if the brain had not been deformed due
to internal brain asymmetry, pathology or external initial position/orientation
offsets, noise and bias fields [24]. The tolerance of our iMSP-extraction algorithm
to these internal and external factors in various volumetric neuroimages is
demonstrated in Figure 5.
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Figure 5
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The iMSPs extracted from different clinical three-dimensional CT (a, b)
and MR images (c, d)

The two-dimensional line is the intersection of the iMSP and the given two-dimensional brain slice. (e)
One MR brain slice without noise. (f) On a dataset with added noise; the signal-to-noise ratio of breaking
point is — 10.84 dB. (g) On a dataset with an artificial lesion plus noise; the signal-to-noise ratio of
breaking point (the point where the iMSP extraction algorithm fails to find the correct plane) is
—4.82 dB. (h) On a dataset with an added bias field of G= 10, from which our algorithm still finds the
iMSP correctly [24]. CT, computed tomography; MR, magnetic resonance.

After the IMSP is identified for each three-dimensional brain image, we
have achieved simultaneously an alignment of different three-dimensional
neuroimages and a baseline for extracting useful image features for comparing
different brains and pathologies. Figure 6 shows how a set of quantitative
measurements of brain asymmetry can be computed. By using 50 asymmetry
measurements of each brain (Figure 7) we have constructed an image-retrieval

Figure 6

Original Difference Thresholded Masked
image, | image, D image, G image, M

A set of statistical asymmetry measurements can be computed from
neuroimages where the iMSP is found and aligned in the middle of the image
Features include: multi-scaled statistical properties (mean * S.D.); x- and y-gradients of grey-level
intensity of image I, D, G and M. Image |, original image with centred iMSP;image D, the intensity
difference between image | and vertically reflected image I;image G, thresholded image D to a binar;/
image; image M, the product of images | and G.
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)
database are projected on to a plane
Separations can be observed between the distributions of asymmetry measurements of normal- and
blood-, infarct- and blood-typed brains.
Figure 8

Query 1 2 3 4 5 6 7 8 9

Classification-driven semantic-based image retrieval results: the top

nine most similar images to the query image drawn from a database of
1200 images

-~

The query image on the top row is an acute blood case and the one on the bottom row is an infarct
case. Shaded labels indicate misclassified images.
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system to find the most-similar images in the database for a given queried image.
Figure 8 displays two sample retrieval results. The system achieves around an 80%
average true positive rate during retrieval [20,21].

A computational model for periodic pattern perception
based on crystallographic groups

A mature mathematical theory for periodic patterns has been known for over a
century [25-27], namely the crystallographic groups. These are groups composed
of symmetries of periodic patterns in 7z dimensional Euclidean space. The amazing
result is that regardless of the value of  and the fact that there are infinite possible
periodic patterns, the number of symmetry groups for periodic patterns in that
space is always finite [25]! In particular, for monochrome planar periodic patterns,
there are seven frieze groups [28,29] for two-dimensional patterns repeated along
one dimension (strip patterns), 17 wallpaper groups [30] describing patterns
extended by two linearly independent translational generators (wallpaper
patterns) and 230 space groups [31,32] extended by three linearly independent
translations (regular crystal patterns).

It is the goal of this research to construct a computational model for
periodic pattern perception and analysis based on the theory of crystallographic
groups. Given the digital form of a periodic pattern, a computer can discover its
underlying lattice, its symmetry group, its motifs and what other symmetry groups
it can be associated with when the pattern undergoes affine deformations [33,34].

Automatic lattice extraction

Autocorrelation of a given periodic pattern, which may only contain two or three
cycles and lots of noise, is used to detect the underlying lattice structure. Even
noise-free computer-generated patterns can cause problems for lattice-detection
algorithms. Halfway between actual lattice translations, the large sub-patterns
may partially match smaller sub-patterns interspersed between them, causing
spurious peaks to form. Furthermore, these spurious peaks can have a higher
value than actual peaks located at the periphery of the autocorrelation image.
Figure 9(a) shows an autocorrelation surface for the rug that is shown at the top.
Although the grid of peaks is apparent to the human eye, finding it automatically
is very difficult. Simple approaches such as setting a global threshold yield
spurious results (Figure 9b). We used a novel peak-detection algorithm based on
“regions of dominance” [33] to automatically detect the underlying translational
lattice. The trouble is that many legitimate grid peaks have a lower value than
some of the spurious peaks. Figure 9(c) represents the first 32 peaks found by our
peak detection algorithm. Figure 9(d) shows the formed lattice.

Symmetry-group classification

Table 1 lists the eight symmetries checked in the classification algorithm. The
determination of a specific rotation or reflection or glide-reflection symmetry is
performed with respect to the unit lattice orientations found by applying the
symmetry to be tested to the entire pattern, then checking the similarity between
the original and transformed images.
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Figure 9
Automatic lattice extraction
An oriental rug and (a) its autocorrelation surface, (b) peaks found using a global threshold, (c) the 32
most-dominant peaks found using our approach described in the text and (d) the detected lattice.
Figure 10

cmm Orbits of 2-fold rotation centres

£
A

(a) (b)

Automatic motif generation

(a) and (b) show an automatically extracted lattice and the tile that it implies. The tile is not a good
representation of the pattern motif. (c) shows the lattice positioned in one of the three orbits of 2-fold
rotation centres in symmetry group cmm, and (d) displays the three most symmetric motifs found.
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Figure 11

It is interesting to notice the difference between the symmetry-group
classification flow charts for humans [6,30] and the computer’s classification
algorithm. The computer has first to find the underlying lattice structure (but not
necessarily where it is anchored), whereas humans do that implicitly, so the first
question for them is: What is the smallest rotation?

Automatic motif generation

Choosing a good motif should help one see, from a single tile, what the pattern
looks like (Figure 10). From work in perceptual grouping, it is known that the
human perceptual system often has a preference for symmetric figures [8].

If we entertain the idea that the most representative motif is the one that
is the most symmetrical, one plausible strategy for generating motifs is to align the
motif centre with the centre of the highest-order rotation in the pattern.
Candidate motifs can then be determined systematically by enumerating each
distinct centre point of the highest-order rotation. Two rotation centres
are distinct if they lie in different orbits of the symmetry group [33]. Figure 11
shows a set of symmetrical motifs from periodic patterns of various symmetry
groups. Approximate symmetries in a pattern are used to fix the unconstrained
lattice structure for symmetry groups like pm, pg and cm or p1 that do not
have rotation centres [33]. Aside from motif selection, knowledge of the
lattice structure of a repeated pattern allows us to determine which pixels in

pmm %3

p4g

p31m l ,

Automatically detected lattices and motifs for some of the 17 wallpaper
groups
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Figure 12

Real oriental rug and a perfectly symmetric virtual rug formed by
translating the median tile

an image should look the same. Taking the median of corresponding pixels across
the multiple tiles of the rug image, for example, creates a ‘median tile’ with noise
and irregularities filtered out. Figure 12 compares the original worn rug with a
virtual rug generated from the median tile.

Skewed symmetry groups

Table 2 is a transition matrix where each entry indicates whether the row group
can be affinely transformed into a column group. It was discovered that symmetry
groups of periodic patterns form small orbits (between two and four members)
when they are affinely skewed (Figure 13). A classification algorithm has been

Figure 13

While the pattern is deformed by affine transformations its symmetry
group migrates to different groups within its orbit (see also Table 2)
(a) p2—pmm—>cmm—>p4m; (b) p2—cmm—>pbém.
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In comparison: Symmetry group
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A perpective view of the three examples reported

developed to evaluate the potential skewed symmetry groups of a given pattern
[33,34]. The practical value of this result in computer vision includes a new
principled measure for potential symmetry, indexing and retrieval of regular
patterns, estimation of shape and orientation from texture, and replacement of
regular patterns from real images [35,36].

Dimensions of symmetry
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Symmetry spans a continuous, multi-dimensional space

Figure 14

Figure 15
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Conclusions

We have dealt with three very different types of application using the concept of
symmetry and group theory. Figure 14 provides a comparative view of their
relations in terms of the data, method and the complexity of symmetry treated.

Our research seems to suggest that symmetry as a computational
concept is not simply a binary-valued variable, nor does it only vary in a single
dimension. Figure 15 demonstrates my view of symmetry in practice: that is,
symmetry spans a multi-dimensional, continuous space.

This chapter has presented a sampler of my research activities towards
the automation of symmetry analysis using computers. These results show that
symmetry and group theory can play an important role in solving practical
problems. The concept of symmetry often offers the key insight that resolves
seemingly tedious, messy and even random factors in a problem (e.g. assembly-
part relationships, idexing of pathological brains, real-world periodic pattern
analysis). The main challenge in computational symmetry is how to construct
plausible computational tools to automate the transition from abstract symmetry
concepts and group theory to realistic applications. It has been and will continue
to be a challenging yet rewarding process.

I thank all my collaborators and express my immense gratitude towards those who
have provided advice, inspiration and support during my pursuit of computational
symmetry, including (but not limited to): Professor M. Senechal, Professor
D. Schattschneider, Professor M. Leyton, Professor D. Crowe, Professor
D. Washburn, Professor T. Kanade and Professor H.S.M. Coxeter.

References

1. Feynman, R.P. (1998) Six Not-So-Easy Pieces: Einstein’s Relativity, Symmetry, and Space-
Time, Perseus Press, Cambridge, MA

2. Hargittai, I. and Hargittai, M. (1994) Symmetry: a Unifying Concept, Shelter Publications,
Bolinas, CA

3. Hargittai, I. and Hargittai, M. (2000) In Our Own Image: Personal Symmetry in Discovery,
Kluwer Academic/Plenum Publishers, New York

4. Schattschneider, D. (1998) Visions of Symmetry, W.H. Freeman and Co., New York

5. Senechal, M. (1991) Crystalline Symmetries, Adam Hilger, Bristol

6.  Washburn, D.K. and Crowe, D.W. (1991) Symmetries of Culture: Theory and Practice of
Plane Pattern Analysis, University of Washington Press, Seattle

7. Weyl, H. (1952) Symmetry, Princeton University Press, Princeton, NJ

8. Leyton, M. (1992) Symmetry, Causality, Mind, The MIT Press, Cambridge, MA

9. Liu, Y. (2001) Symmetry Group Computation for Robotics Assembly Task Planning and
Specification, Marcel Dekker, New York, in the press

10. Liu, Y. and Popplestone, R. (1994) A group theoretical formalization of surface contact. Int. J.
Robotics Res. 13(2), 148-161

11.  Liu, Y. (1990) Symmetry Groups in Robotic Assembly Planning, PhD Thesis, University of
Massachusetts, Amherst, MA

12. Liu, Y. and Popplestone, R.J. (1989) Assembly planning from solid models, in IEEE
International Conference on Robotics and Automation, Washington DC, May 1989, IEEE
Computer Society Press, Los Alamitos, CA

13.  Liu, Y. and Popplestone, R.J. (1990) Symmetry constraint inference in assembly planning, in
Eighth National Conference on Artificial Intelligence, Boston, MA, July/August 1990 The
AAAI Press, Menlo Park, CA

14. Liu, Y. and Popplestone, R.J. (1991) Symmetry groups in analysis of assembly kinematics, in
IEEE International Conference on Robotics and Automation, Washington DC, May 1991,
IEEE Computer Society Press, Los Alamitos, CA



Computational symmetry

245

15,

16.

17.

18.

19.

20.

21.

22.

23.

24,

25,

26.

27.

28.

29.

30.

31;

32.

33.

34.

35.

36.

Liu, Y. and Popplestone, R.J. (1992) From symmetry groups to stiffness matrices, in IEEE
International Conference on Robotics and Automation, Washington DC, May 1992, IEEE
Computer Society Press, Los Alamitos, CA

Liu, Y. and Popplestone, R.J. (1992) Symmetry groups in solid model-based assembly
planning, in Artificial Intelligence Applications in Manufacturing (Famili, A., Nan, D. and
Kin, S.H., eds), pp. 103-131, AAAI Press and The MIT Press, Cambridge, MA

Crow, T.]. (1993) Schizophrenia as an anomaly of cerebral asymmetry, in Imaging of the Brain
in Psychiatry and Related Fields (Maurer, K., ed.), Springer-Verlag, Berlin

Davidson, R.J. and Hugdahl, K. (eds) (1996) Brain Asymmetry, MIT Press/Bradford Books,
Cambridge, MA

Geschwind, N. and Levitsky, W. (1968) Human brain: left-right asymmetries in temporal
speech region. Science 161, 186-187

Liu, Y. and Dellaert, E (1998) A classification-based similarity metric for 3D image retrieval,
in Proceedings of Computer Vision and Pattern Recognition Conference, June 1998, pp.
800-805, IEEE Computer Society Press, Los Alamitos, CA

Liu, Y., Dellaert, E, Rothfus, W., Schneider, J., Moore, A. and Kanade, T. (2001)
Classification-driven neuroimage retrieval using statistical asymmetry measures. In
Proceedings of International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI 2001), 13-17 October 2001, Utrecht, The Netherlands,
Lecture Notes in Computer Science series, vol. 2208 (Niessen, W. and Viergever, M. eds), pp.
655665, Springer-Verlag, Berlin

Liu, Y., Rothfus, W.E. and Kanade, T. (1998) Content-based 3d neuroradiologic image
retrieval: Preliminary results. IEEE workshop on Content-based access of Image and Video
Databases in conjunction with International Conference of Computer Vision (ICCV?98),
January 1998, IEEE Computer Society Press, Los Alamitos, CA

Liu, Y., Collins, R.T. and Rothfus, W.E. (2000) Evaluation of a robust midsagittal plane
extraction algorithm for coarse, pathological 3d images, in Medical Imaging Computing and
Comptuer Assisted Intervention (MICCAI 2000), October 2000 (Delp, S.L., DiGioia, T. and
Jaramaz, G., eds), pp. 81-94, Springer-Verlag, Berlin

Liy, Y., Collins, R. and Rothfus, W. (2001) Automatic extraction of ideal midsagittal plane
from normal and pathological neuroradiology images. IEEE Trans. Med. Imaging 20(3),
175-192

Bieberbach, L. (1910) Uber die Bewegungsgruppen der n-dimensional en Euklidischen
Réaume mit einem endlichen Fundamental bereich. Goéttinger Nachrichten 75-84

Fedorov, E.S. (1891) Symmetry in the plane [in Russian]. Zapiski Imperatorskogo S.
Peterburgskogo Mineralogicheskogo Obshchestva [Proc. S. Peterb. Mineral. Soc.] (2)28,
345-390

Griinbaum, B. and Shephard, G.C. (1987) Tilings and Patterns, W.H. Freeman and Co., New
York

Jones, O. (1972) The Grammar of Ornament, Van Nostrand Reinhold, New York; first
published in 1856

Shubnikov, A.V. and Koptsik, V.A. (1974) Symmetry in Science and Art (Harker, D., ed.),
Plenum Press, New York; translated from Russian by G.D. Archard

Schattschneider, D. (1978) The plane symmetry groups: their recognition and notation. Am.
Math. Monthly 85, 439-450

Henry, N.EM. and Lonsdale, K. (eds) (1969) International Tables for X-ray Crystallography,
vol. 1, Symmetry Groups, Kynoch Press, Birmingham

Gallian, J.A. (1986) Contemporary Abstract Algebra, D.C. Heath and Company, Lexington,
MA

Liu, Y. and Collins, R.T. (2000) A computational model for repeated pattern perception using
frieze and wallpaper groups, in Computer Vision and Pattern Recognition Conference, June
2000; ftp://ftp.cs.cmu.edu/project/nist/cvpr2000final.ppt

Liu, Y. and Collins, R.T. (2000) Periodic pattern analysis under affine distortions using
wallpaper groups, in Lecture Notes in Computer Science, vol. 1888 (Sommer, G. and Zeevi,
Y.Y., eds), pp. 241-250, Springer-Verlag, Berlin

Liu, Y. and Collins, R.T. (2001) Skewed symmetry groups. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR *01), IEEE Computer
Society Press, Los Alamitos, CA

Tsin, Y., Liu, Y. and Ramesh, V. (2001) Texture replacement in real images. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’01), IEEE
Computer Society Press, Los Alamitos, CA





