
PLA-based Runtime Dynamism in Support of
Privacy-Enhanced Web Personalization

Yang Wang, Alfred Kobsa, André van der Hoek, Jeffery White
Department of Informatics

Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3440, U.S.A

{yangwang | kobsa | andre | whitej}@ics.uci.edu

Abstract

Software product line architectures (PLAs) have
been widely recognized as a successful approach in
industrial software development for improving
productivity, software quality and time-to-market. In
this paper, we focus on the usage of a PLA for a quite
different purpose, namely, handling privacy con-
straints in web personalization. To provide personal-
ized services such as customized recommendations, a
personalized website collects users’ personal data,
which raises various privacy concerns. We aim at
reconciling the benefits of web personalization with
privacy constraints that come from users themselves as
well as from privacy legislations and regulations that
apply to a given user. We propose a dynamic, privacy-
enabling personalization infrastructure and conceive it
as a PLA. This infrastructure allows for dynamically
selecting and instantiating personalization archi-
tectures that provide personalized services to each
individual user and comply with the prevailing privacy
constraints.

1. Introduction and overview

Software product line architectures (PLAs) have
gained a lot of momentum in industrial software
development because of their benefits in improving
productivity, software quality and time-to-market [1-
3]. In this paper, we show that PLAs can also be used
for a quite different purpose, namely handling privacy
constraints in web personalization.

Personalized (or user-adaptive) systems are
applications that take individual characteristics of their
current users into account and adapt their behavior
accordingly. For doing so, they collect considerable

amounts of personal data about the user and "lay them
in stock" for possible future adaptation. This has
proven to be very beneficial for computer users in
several application areas including education and
training (e.g., [4]), online help for complex PC
software (e.g., [5, 6]), dynamic information delivery
(e.g., [7]), provision of computer access to people with
disabilities (e.g., [8]), and information retrieval
systems (e.g., [9]).

Recently, personalization technologies have been
successfully introduced on the World Wide Web where
they are mostly used for customer relationship
management [10, 11]. The single most important way
to provide value to customers is to know them and
serve them as individuals. Customers need to feel they
have a unique personal relationship with the business.
Current web personalization examples include
customized content (e.g., personalized finance pages or
news collections), customized recommendations or
advertisements based on past purchase behavior,
customized (preferred) pricing, tailored email alerts,
and express transactions [12]. A number of studies
show that personalization has provided benefits for
both online customers and vendors [13, 14].

However, personalization benefits are offset by
privacy concerns [12, 15-17]. Web users are not only
concerned about their privacy (e.g., about being
tracked online), but already counteract (e.g., by leaving
websites that require registration information or by
entering fake registration information).

Since personalized websites collect personal data,
they are also subject to privacy laws and regulations if
the respective individuals are in principle identifiable.
A review of more than 40 international privacy laws
[18] shows that if privacy laws apply to a personalized
website, they often not only affect the data that are
collected by the website, the way in which the data is
transferred and to which party it is transferred, but also

the methods that may be used for processing them (and
consequently the components that embed such
methods). For instance, the German Teleservices Data
Protection Act [19] mandates personal data to be
erased immediately after each session except for very
limited purposes. This provision would affect the use
of those machine learning methods where the learning
takes place over several sessions.

Our primary focus is on the data processing step of
web personalization where numerous personalization
methods can be applied to derive additional
assumptions about users. It is important to note that for
many personalization goals, more than one method can
be used, each differing in their data and privacy
requirements and often their anticipated accuracy and
reliability.

From a personalization point of view, we ask the
research question: how can personalized web-based
systems maximize their personalization benefits, while
being compliant with the privacy constraints that are
currently in effect (such as the aforementioned privacy
laws, industry and company regulations, and privacy
preferences of the current user)? Our vision is to
provide personalized privacy management where the
personalization process is tailored to each individual
user’s privacy constraints.

A review of several existing approaches shows that
they all fail to provide a flexible, systematic and
scalable solution for the enforcement of users’
potentially different privacy constraints. Inspired by
the idea of treating software as a product line to
support software variability from design-time to
invocation-time to run-time [20] and several other
works in the field of dynamic architecture and run-time
architecture evolution [21-25], we propose a dynamic,
privacy-enabling personalization infrastructure. Parti-
cularly, we propose to leverage the concept of product
line architecture to model the variability that exists in
the privacy and personalization domain, and to
dynamically select architectural instances [24] to tailor
the product line architecture to the specific needs of a
particular user. The infrastructure, thus, considers the
privacy constraints that apply to an individual user and
dynamically selects and instantiates a personalization
architecture that provides personalized services to this
specific user. The result is a flexible approach that not
only helps address the complexity of building
personalized systems, but also strongly supports their
evolution: as new privacy and personalization concerns
arise, they can be modularly added to the product line
architecture.

The main contributions of this paper are the
following:

1. a novel application of PLAs to address a
practical and complex socio-technical problem
– balancing privacy and personalization; and

2. a PLA-based solution that particularly relies on
run-time variability for the dynamic configura-
tion of personalized web-based systems.

In the remainder of this paper, we first discuss
several existing approaches to the problem of taking
users’ potentially differing privacy constraints into
account (Section 2). We then present our PLA-based
approach (Section 3), a detailed example with our
prototype system (Section 4), and finally our
conclusions and planned future work (Section 5).

2. Existing approaches

 Because specialized infrastructures for building
systems that cater to the privacy constraints of
individual users do not yet exist, websites that aim at
addressing this problem currently have to use simple
escape strategies which we list below.

2.1. Pseudonymous interaction

This approach allows users to remain anonymous
with regard to the personalized system and the whole
network infrastructure, whilst enabling the system to
still recognize the same user in different sessions so
that it can cater to her individually [26]. At first sight,
this seems to be a panacea because in most cases,
privacy laws no longer apply when the interaction is
anonymous. However, anonymity is currently difficult
and/or tedious to preserve when payments, physical
goods and non-electronic services are being ex-
changed. This solution also harbors the risk of misuse
and hinders vendors from cross-channel marketing
(e.g. sending a products catalog to a web customer by
postal mail). Moreover, users may still have additional
privacy preferences (e.g., they do not want to be
profiled even when it is only done pseudonymously),
which this approach does not take into account.

2.2. Largest permissible common subset

Ideally, this approach means that only those
personalization methods are used that satisfy all
privacy laws and regulations. The Disney website, for
instance, observes both the U.S. Children’s Online
Privacy Protection Act (COPPA) as well as the
European Union Directive [27]. This solution is likely
to run into problems if more than a very few
jurisdictions are involved, since the largest common
subset of permissible personalization methods may
then become very small.

2.3. Different country/region versions

In this approach, personalized systems have
different country versions, each of which uses only
those personalization methods that are permitted in the
respective country. If some countries have similar
privacy laws, their versions can be combined using the
above-described largest permissible common subset
approach. For example, IBM’s German-language pages
comply with the privacy laws of Germany, Austria and
Switzerland [28], while IBM’s U.S. site meets the legal
constraints in U.S. As with the largest permissible
common subset approach, this approach also has
scaling problems as soon as the number of countries/
regions, and hence the number of different versions of
the personalized system, increases.

2.4. P3P

The Platform for Privacy Preferences (P3P) [29]
enables websites to express their privacy policies in a
standard format that can be retrieved automatically and
interpreted by user agents. Client-side agents can then
inform users about the sites’ privacy policies and warn
them when those deviate from previously-specified
preferences. P3P does not enforce privacy policies nor
does it support different policies for different users. By
itself, it is therefore not an answer to the need for
privacy tailored to different user constraints. However,
several proposals for individual negotiation of P3P
policies have been made [30, 31]. The results of such
negotiations could become the input to our own
approach.

2.5. Summary

Pseudonymous interaction bypasses the applica-
bility of privacy laws and regulations at the price of
tedious operation, but does not provide sufficient
support for dealing with users’ own privacy concerns.
The largest permissible common subset approach and
different country/region versions do not scale up well
and cannot address users’ individual privacy
preferences either. P3P helps websites communicate
their privacy policies to users, but does not support
different policies for different users. In a nutshell, none
of these approaches fulfills our vision of personalized
privacy management. They all fail to provide a
flexible, systematic and scalable solution for the
enforcement of privacy constraints that may differ
among users.

3. Our PLA-based approach

Our goal is to achieve maximum personalization
benefit while at the same time satisfying the prevailing
privacy constraints, at the individual user level. In this
section, we describe how we approach the problem in
the context of personalized system design, and present
our PLA-based personalization infrastructure and its
underlying privacy-enabling mechanism in details.

3.1. User Modeling Server

Most personalized systems employ a user modeling

system, usually in a client-server fashion, which is then
dubbed a User Modeling Server (UMS). A UMS stores
and represents user characteristics and behavior,
integrates external user-related information, applies
user modeling methods to derive additional
assumptions about the user, and allows multiple
external user-adaptive applications to retrieve user
information from the server concurrently [32].

For many personalization goals, more than one user
modeling method can be used, each differing in their
data and privacy requirements and often their
anticipated accuracy and reliability. For example, a
personalized website could use incremental machine
learning (that discards all raw data after the end of a
session) to provide personalization to web visitors
from Germany1, while it can use possibly more
accurate one-time machine learning with data from
several sessions to provide personalization to web
visitors from the U.S. who are not subject to the same
privacy constraints.

Since UMSs are the central repositories for personal
information in personalized systems and the loci of
personal data processing, our solution focuses on using
a product line architecture for UMSs, with which we
address privacy and personalization issues.

3.2. Our dynamic privacy-enabling personal-

ization infrastructure

Figure 1 shows a high level overview of our privacy-
enabling personalization infrastructure. It consists of
external user-adaptive applications (e.g., a personalized
shopping site), the Selector, and the UMS that includes
the Directory Component and a pool of user modeling
components (UMCs). External personalized applica-
tions can query the UMS for existing user information,

1 This is not yet a complete solution, though, since the
German Teleservices Data Protection Act [19] also
mandates that profiling requires the use of pseudonyms or
the consent of the user.

Figure 1. Our dynamic privacy-enabling personalization infrastructure

so as to provide personalized services to their end
users, and can supply additional user information to the
UMS.

In our solution, we implement the UMS as a PLA.
Doing so allows us to provide an infrastructure that
solves the problem of handling privacy constraints in
web personalization in a generic fashion, to take
advantage of commonalities among different needs for
privacy and personalization, and to dynamically update
different privacy and personalization strategies in a
modular fashion, not requiring that the UMS be
entirely rebuilt upon each change.

The Directory Component is essentially a repository
of user models, each of which stores and represents not
only the characteristics, behavior, and inferences about
each user, but also their potentially different individual
privacy constraints. The UMC Pool contains a set of
UMCs, each of which encapsulates one or more user
modeling methods (e.g., collaborative filtering [9]) that
are utilized in drawing additional inferences about
users based on existing user data. Each UMC forms an
optional element [33] guarded by a Privacy Boolean
Expression (PBE; see Section 3.3) in the PLA.

A particular personalization architecture containing
only those UMCs that are allowed to operate under a
user’s prevailing privacy constraints (see Section 3.4)
can be selected from the PLA by the Selector, and then
instantiated to provide services to the external person-
alized applications as a UMS for the respective user.
Moreover, in order to maximize the benefits of

personalization, the Selector can further select the
UMCs with the optimal anticipated personalization
effects among those that are currently permissible
based on a designer-specified preferred order.

It is important to stress that if two or more users
have the same set of privacy constraints they will share
a single personalization architecture. This reusability is
fundamental to making our solution scalable.

3.3. Modeling privacy impacts on UMCs

A Privacy Boolean Expression (PBE) captures

whether its associated UMC is allowed to operate
under a set of identified privacy concerns. A PBE is a
logic combination of Privacy Boolean Variables
(PBVs), which are defined during a manual analysis of
the impacts of potential privacy concerns on a UMC. If
the PBE is resolved to be true, then the associated
UMC will be selected in the resulting personalization
architecture; otherwise, the UMC will not be included.

For example, assume that a UMC employs one-time
machining learning combined with a clustering
technique to generate personalized music recommend-
ations for a user. It analyzes both the user’s browsing
history over several sessions in a personalized online
music store and her demographic data such as gender,
address and occupation. Table 1 shows the PBVs that
have been defined to capture the potential privacy
concerns in this scenario, and the resulting PBE.

3.4. Expressing privacy constraints

 Privacy constraints that apply to a user can be
privacy laws and regulations that are in effect, as well
as the user’s own personal privacy preferences. Those
privacy constraints are expressed in name-value pairs
and used as bindings for the Boolean guards associated
with each UMC. We call them Privacy Constraint
Bindings (PCBs).

For example, we may have a German user who did
not mention any personal privacy preferences.
Nevertheless, if she is in principle identifiable, the
German Teleservices Data Protection Act would apply.
Table 2 summarizes the user’s privacy constraints and
their respective PCBs.

During the evaluation of the PBE in Table 1, each
PBV will be bound to its PCB (those in Table 2) for
this German user. If such a binding does not exist, we
set the default binding to be true. We thus take a
“permissive approach”: practices not explicitly
forbidden by the prevailing privacy constraints
(tracking the user in our example) are included. In our
example, the UMC will not be selected because its
PBE is resolved to false given the PCBs.

3.5. Dynamic selection process

The Selector monitors the start and end of user
sessions via bind and unbind operations onto the UMS
by the external applications. When the Selector detects
the start of a user session, it initiates a Privacy Context
Detection process that will collect all the active privacy
constraints and then generate corresponding PCBs. A
similar process will be carried out whenever during a
user session the Selector learns about new or changed
privacy requirements (which for all practical purposes

will stem from user preferences since privacy laws and
regulations are unlikely to change during a session).

The PCBs are fed into the Selector that will carry
out a PLA selection process [24]. Firstly, the PBEs of
all UMCs are evaluated based on the given PCBs, to
determine whether or not these UMCs may be included
in the personalization architecture for the current user
session. Secondly, a binary Privacy Constraint Satis-
faction (PCS) vector is constructed whose nth element
represents whether or not the nth UMC may be used.
The Selector checks whether a run-time system
instance with such a PCS already exists. If so, the
Selector will assign the user session to the existing run-
time system instance that has the same PCS. If not, the
Selector will perform PLA Pruning that automatically
removes any disallowed components from the
architecture, and then the Selector instantiates a new
run-time system instance for the user session. Figure 2
presents the pseudo-code of the above process.

4. A detailed interaction example

In this section we describe a prototype system that

we built for proving the concept of our approach.

4.1. The example scenario

 Let us assume that UniversalFriends.com is a
website that is operated in the USA by a signatory of
the U.S. Network Advertisers Initiative (NAI) [34].
The goal of this website is to bridge physical distances
between people and to foster world-wide friendships
through information technology. It provides
personalized services to help customers make friends
worldwide. Upon registration, users will be asked to
choose a pseudonymous user ID along with a password

Table 1. The Privacy Boolean Expression of the example User Modeling Component in
Section 3.3, and its constituent Privacy Boolean Variables

PBVs Name Corresponding privacy concern
PBV1 combining_profile Combining pseudonymous usage data with

personally identifiable demographic data
PBV2 keeping_n_sessions_data Keeping usage data across sessions
PBV3 tracking_user Monitoring user browsing behavior
PBE combining_profile && keeping_n_sessions_data && tracking_user

Table 2. The Privacy Constraint Bindings for the example user in Section 3.4

PCBs Expression Corresponding privacy constraint
PCB1 combining_profile = false German law prohibits combining user profiles retrievable

under pseudonyms with data relating to the bearer of the
pseudonym.

PCB2 keeping_n_sessions_data = false German law mandates personal data to be erased immediately
after each session except for very limited purposes.

Figure 2. Dynamic selection process

and to disclose some information about themselves
(e.g., their hobbies). They will be given some space on
the UniversalFriends web server to create their own
homepages. The system will recommend a
personalized list of likely friends based on a user’s
characteristics, and will automatically send invitations
for pair-wise virtual meetings.

We have three hypothetical users, Alice, Cheng and
Bob. Table 3 describes their characteristics.

 The UniversalFriends web server relies on our
privacy-enabling personalization infrastructure to infer
information about users in order to recommend
potential friends. Table 4 and Table 5 show the types
of input data and the available inference methods,
respectively. Table 6 summarizes the usage of data and
inference methods for each user modeling component.

For example, UMC1 can recommend people in the
same profession cluster. If a user indicates a high
interest in a specific topic, UMC2 can infer that she
would like to meet people with similar ratings for a
topic; alternatively in this case, UMC3 can infer with
95% confidence that she would like to meet people
with similar ratings for the topic.

4.2. Interaction with the personalized system

Users can interact with the system as follows:

1. Users log into UniversalFriends.com using their
registered user names and passwords.

2. The website gathers users’ current privacy
constraints including those imposed by privacy
laws and regulations, and their privacy prefer-
ences. Users can specify their privacy

Table 3. Our hypothetical users

Name Current
location

Personal privacy
preference(s)

Alice Germany None
Cheng China Dislikes being tracked
Bob USA None

Table 4. Types of input data

Abbreviation Type of input data
Demographic Demographic data such as age,

gender, profession, education level
User_supplied User-supplied data, e.g., a user

indicates her levels of interests in
different topics

1_Session UniversalFriends pages that the
user visited in the current session

N_Sessions UniversalFriends pages that the
user visited across sessions

Table 5. Types of inference methods

Abbreviation Type of inference method
Clustering Clustering techniques
Rule-based Rule-based reasoning
Fuzzy Fuzzy reasoning with uncertainty
Incremental
ML

Incremental machine learning

One-time ML One-time machine learning across
several sessions

Table 6. UMCs pool

UMC Data used Methods used
UMC1 • Demographic Clustering
UMC2 • User_supplied Rule-based
UMC3 • User_supplied Fuzzy
UMC4

• Demographic
• User_supplied

Rule-based

UMC5

• Demographic
• User_supplied

Fuzzy

UMC6 • User_supplied
• 1_Session

Incremental ML

UMC7

• User_supplied
• N_Sessions

One-time ML

UMC8

• Demographic
• User_supplied
• N_Sessions

One-time ML
Fuzzy reasoning

The Selector monitors the start and end of user sessions:
On bind (start):

Privacy Context Detection:
Collect active privacy constraints;
Generate variable bindings (PCBs);

PLA selection, based on PCBs:
Evaluate Boolean guards (PBEs) for UMCs;
Construct a new PCS vector V;

IF there already exists an identical PCS THEN
 Assign the user session to the existing
 run-time system instance, say instance i;

instance i . numSessions ++;
 ELSE

 PLA Pruning:
Prune out UMCs whose PBEs are
resolved to FALSE;

Instantiate a new run-time system instance
for the user session, say instance n+1);
instance n+1 . numSessions = 1;

On unbind (end):
 numSessions current - -;
 IF numSessions current == 0 THEN

 Kill run-time system instance current;

If new/changed user privacy preferences are detected, a
similar process starts as on bind.

preferences and change them anytime during
the interaction with the personalized system.
For instance, if they feel that a specific piece of
privacy law or regulation is too strict to get
otherwise much better personalization, they can
give their consent to certain system actions that
are otherwise legally prohibited (e.g., the
storage of personal data across sessions).

3. For every user, a summary webpage shows:
a. their prevailing privacy constraints, and
b. the selected UMCs used in producing the

personalized service, and the excluded
UMCs and the reasons for their exclusion
(i.e., the specific privacy constraints).

4.3. Privacy-enabling personalization process

The privacy constraints that apply to each of the
three individual users and their implications for the
UMCs are discussed below (due to limited space, the
relevant PCBs and PBEs are not presented here, but
they can be defined as described in Sections 3.3 and
3.4):

For Alice, the German Teleservices Data Protection
Act applies, with the following consequences:
• UMC4, UMC5, and UMC8 are illegal because the

law prohibits combining user profiles retrievable
under pseudonyms with data relating to the
bearer of the pseudonym.

• UMC7 and UMC8 are illegal because the law
mandates personal data to be erased immediately
after each session except for very limited
purposes.

Therefore, UMC4, UMC5, UMC7 and UMC8 cannot
be used for Alice without her explicit consent.

While no privacy law applies to Cheng, she has her
own personal privacy preference, such as that she
“dislikes being tracked”. Hence UMC6, UMC7 and
UMC8 cannot be used because the system may not
keep track of the pages she visits on
UniversalFriends.com.

For Bob from the United States, UMC4, UMC5 and
UMC8 cannot be used according to the NAI self-
regulation [34] if he does not consent to merging non-
personally identifiable usage data with personally
identifiable demographic data.

Figure 3 illustrates the process of selecting and
instantiating personalization architectures for each user
according to their individual privacy constraints (as we
explained in 3.5). Note that, in this case, three different
architectural instances are created since each user has
different privacy constraints.

4.4. Implementation

The prototype system is currently composed of
three basic components: a Context Detector, an
Instance Manager, and a light version of ArchStudio
[35]. To simplify matters, we did not yet include a
Directory Component. Figure 4 gives a high-level
overview of the system structure.

The Context Detector is the component that
interfaces with a user’s web browser, collecting her
privacy constraints and relaying them to the next
component, the Instance Manager. The ArchStudio

Figure 3. Privacy-enabling personalization process

Figure 4. System architecture

component is mainly used for its Selector [24], which
generates the architecture descriptions (expressed in
xADL 2.0 [36] and selected from an overall PLA
description) for the personalization architectures, or
“personalized system instances” tailored to each
individual user based on their privacy constraints. The
Instance Manager is the central core of the system. It
responds to the requests of the Context Detector and
uses ArchStudio to build the personalized system
instances.

All three main components of the system are
implemented in Java and communicate via the Java
Remote Method Invocation (RMI) framework. Using
this method, it is possible for the components to be
distributed across more than one machine, but this is
currently not the case. The Instance Manager and the
RemoteControl subcomponent of ArchStudio extend
the remote interface and sign their names to the RMI
registry, allowing the Context Detector and ArchStudio
to access the Instance Manager directly, as well as
allowing the Instance Manager to invoke ArchStudio’s
Selector functionality.

Minor miscellaneous components of the system
include BootstrapRevised (a modified version of the
Bootstrapper from the orginal ArchStudio), which the
Instance Manager uses to initialize architecture
descriptions into running instances. In Figure 4, the
stored architecture descriptions produced by Arch-
Studio are simply represented as a file directory
located on the server machine. The web pages
produced by the Context Detector are served via

Apache Tomcat servlets, which are also able to make
requests of the Instance Manager directly once a user’s
system instance is produced.

When a user first interacts with the system using her
web browser, she will be prompted by the Context
Detector for her privacy constraints. When submitted,
these constraints are transferred to the Instance
Manager as a new user request. They are packaged by
the Instance Manager and posted to the ArchStudio
Component for selection processing. Then a
customized architecture is selected and its description
saved to a file. The Instance Manager, thereupon,
receives a request to instantiate the newly completed
architecture. It first analyzes the new architecture to
construct a PCS Vector describing which UMCs are
included in the description. This PCS Vector is
compared with those of the currently running
instances. If one of them matches, then no new
instantiation takes place but rather the found instance is
used. If no running service instance matches the new
architecture description, BootstrapRevised is invoked
to turn the architecture into a running service instance.
This new service instance is assigned to the user, who
may now access its functionality via requests to the
Instance Manager. If the user’s privacy constraint
information changes later on, the process may be
restarted to consider the new constraints.

5. Conclusion and future work

Software product lines have been recognized as a
software development paradigm that leads to improve-
ments in terms of software cost, productivity, quality,
etc. Relatively little research focuses on the potential of
their use at runtime. In this article, we showed that a
PLA combined with runtime variability allows for an
elegant solution to address the privacy issues in web
personalization relating to the fact that privacy
constraints may be different for each individual user.
Our approach offers the following benefits:

1. Generality: different types of privacy constraints
are addressed in a unified way.

2. Enforcement: our approach does not only allow
one to specify privacy requirements (such as in
P3P [29]), but it also enforces their consequences
on personalization methods.

3. Runtime dynamics: privacy requirements can be
addressed dynamically during runtime, e.g. when
users change their privacy preferences.

4. Reusability of architectural instance: if two or
more users have the same set of privacy
constraints, they will share a single instance of a
personalization architecture.

5. Update modularity: new privacy constraints and
personalization methods can be added in the PLA
in a modular fashion, resulting in local update
effects only.

Of course, we do not claim this to be a complete
solution to all privacy issues. Our approach focuses on
the architectural aspects of user-tailored privacy
provisioning but does not control (let alone enforce)
what and how user data are collected by the different
user modeling components.

Ackerman pointed out a “social-technical gap”
between human activities or decisions (which are
inherently flexible and nuanced) and what we can
support technically [37]. Such a gap also exists when
we deal with people’s privacy because no system can
ever know all potential user privacy constraints in
advance. One future task is to conduct a user study to
solicit personal privacy preferences of real users.
Ensuring that our system can handle the most common
privacy constraints would greatly help bridge the gap.

While we currently use a set of Boolean variables to
express identified privacy constraints, ultimately these
constraints should be expressed in a privacy constraint
specification language such as APPEL [38] or EPAL
[39], or semantic web technologies [40].

Last but not least, performance and scalability are
of critical interest in practice. We need to determine
empirically whether our system is able to manage
architectures that provide personalization services to

hundreds of thousands of users from all over the world.
Since the number of privacy jurisdictions is limited
(currently to about 40 countries and 100 states), we
assume that many of our users will share the same
architecture. The resource-intensive architecture
selection and instantiation process is therefore likely
not to be invoked too often. This reusability is key to
performance and scalability, but its effects will need to
be more thoroughly tested. We are currently evaluating
the performance and scalability of our approach.

Acknowledgements. We thank Eric Dashofy, Ping
Chen and Chris van der Westhuizen for their
discussions on the above material and for their support
of ArchStudio 3.0. We also thank Yun Huang, Suzanne
Schaefer, Norman Su and our anonymous reviewers
for their comments on the paper. This research has
been supported through NSF grant IIS 0308277, and
the preparation of the paper by a Humboldt Research
Prize.

6. References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.

Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wust,
and J. Zettel, Component-based Product Line
Engineering with UML. New York, New York:
Addison-Wesley, 2002.

[2] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach. New
York: Addison-Wesley, 2000.

[3] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. New York, New York:
Addison-Wesley, 2002.

[4] A. Corbett, M. McLaughlin, and K. C. Scarpinatto,
"Modeling Student Knowledge: Cognitive Tutors in
High School and College," User Modeling and User-
Adapted Interaction, vol. 10, pp. 81-108, 2000.

[5] F. Linton and H.-P. Schaefer, "Recommender Systems
for Learning: Building User and Expert Models
through Long-Term Observation of Application Use,"
User Modeling and User-Adapted Interaction, vol. 10,
pp. 181-208, 2000.

[6] L. Strachan, J. Anderson, M. Sneesby, and M. Evans,
"Minimalist User Modelling in a Complex Commercial
Software System," User Modeling and User-Adapted
Interaction, vol. 10, pp. 109-146, 2000.

[7] D. Billsus and M. J. Pazzani, "User Modeling for
Adaptive News Access," User Modeling and User-
Adapted Interaction, vol. 10, pp. 147-180, 2000.

[8] A. Kobsa, "Adapting Web Information to Disabled and
Elderly Users (Invited Paper)," Proceedings of
WebNet-99, 1999, pp. 32-37.

[9] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl, "GroupLens: an Open Architecture for
Collaborative Filtering of Netnews," Proceedings of
ACM Conference on Computer Supported Cooperative
Work, 1994, pp. 175-186.

[10] A. Kobsa, "Tailoring Privacy to Users' Needs (Invited
Keynote)," in User Modeling 2001: 8th International
Conference, M. Bauer, P. J. Gmytrasiewicz, and J.
Vassileva, Eds. Berlin - Heidelberg: Springer Verlag,
2001, pp. 303-313.

[11] A. Kobsa, J. Koenemann and W. Pohl, "Personalized
Hypermedia Presentation Techniques for Improving
Online Customer Relationships.," The Knowledge
Engineering Review, vol. 16, pp. 111-155, 2001.

[12] FOR, "The Privacy Best Practice," Forrester Research,
Cambridge, MA 1999.

[13] R. Hof, H. Green, and L. Himmelstein, "Now it's
YOUR WEB," Business Week, October 5, pp. 68-75,
1998.

[14] PC, "Personalization & Privacy Survey." Edgewater
Place, MA: Personalization Consortium, 2000.

[15] M. DePallo, "AARP National Survey on Consumer
Preparedness and E-Commerce: A Survey of Computer
Users Age 45 and Older", AARP, 2000.

[16] IBM, "IBM Multi-National Consumer Privacy Survey,"
IBM, 1999.

[17] M. Teltzrow and A. Kobsa, "Impacts of User Privacy
Preferences on Personalized Systems: a Comparative
Study," in Designing Personalized User Experiences
for eCommerce, C.-M. Karat, J. Blom, and J. Karat,
Eds. Dordrecht, Netherlands: Kluwer Academic
Publishers, 2004, pp. 315-332.

[18] Y. Wang and A. Kobsa, "Impacts of Privacy Laws and
Regulations on Personalized Systems," Proceedings of
PEP06, CHI06 Workshop on Privacy-Enhanced
Personalization, 2006.

[19] DE-TS, "German Teleservices Data Protection Act,"
1997.

[20] A. v. d. Hoek, "Design-Time Product Line Architec-
tures for Any-Time Variability," Science of Computer
Programming, special issue on Software Variability
Management, vol. 53, pp. 285-304, 2004.

[21] J. Magee and J. Kramer, "Dynamic Structure in
Software Architectures," Proceedings of The 4th ACM
SIGSOFT Symposium on Foundations of Software
Engineering, 1996, pp. 3-14.

[22] P. Oreizy, N. Medvidovic, and R. N. Taylor,
"Architecture-based Runtime Software Evolution,"
Proceedings of The 20th International Conference on
Software Engineering, 1998, pp. 177-186.

[23] J. C. Georgas, A. v. d. Hoek, and R. N. Taylor, "Archi-
tectural Runtime Configuration Management in
Support of Dependable Self-Adaptive Software,"
Proceedings of The 2005 Workshop on Architecting
Dependable Systems, 2005, pp. 1-6.

[24] A. Garg, M. Critchlow, P. Chen, C. v. d. Westhuizen,
and A. v. d. Hoek, "An Environment for Managing
Evolving Product Line Architectures," Proceedings of
International Conference on Software Maintenance,
2003, pp. 358-367.

[25] P. Chen, M. Critchlow, A. Garg, C. v. d. Westhuizen,
and A. v. d. Hoek., "Differencing and Merging within
an Evolving Product Line Architecture," Proceedings
of The Fifth International Workshop on Product Family
Engineering, 2003, pp. 269-281.

[26] A. Kobsa and J. Schreck, "Privacy through Pseudo-
nymity in User-Adaptive Systems," ACM Transactions
on Internet Technology, vol. 3, pp. 149-183, 2003.

[27] EU, "Directive 95/46/EC of the European Parliament
and of the Council of 24 October 1995 on the Protec-
tion of Individuals with Regard to the Processing of
Personal Data and on the Free Movement of such
Data," Official Journal of the European Communities,
pp. 31ff, 1995.

[28] A. S. Patrick and S. Kenny, "From Privacy Legislation
to Interface Design: Implementing Information Privacy
in Human-Computer Interfaces," in Privacy Enhancing
Technologies, vol. LNCS 2760, R. Dingledine, Ed.
Heidelberg, Germany: Springer, 2003, pp. 107-124.

[29] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-
Marshall, and J. Reagle, "The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification. W3C Recom-
mendation 16 April 2002," 2002.

[30] S. Buffett, K. Jia, S. Liu, B. Spencer, and F. Wang,
"Negotiating Exchanges of P3P-Labeled Information
for Compensation," Computational Intelligence, vol.
20, pp. 663-677, 2004.

[31] S. Preibusch, "Personalized Services with Negotiable
Privacy Policies," Proceedings of PEP06, CHI 2006
Workshop on Privacy-Enhanced Personalization, 2006.

[32] A. Kobsa, "Generic User Modeling Systems," in The
Adaptive Web: Methods and Strategies of Web Person-
alization, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds.
Heidelberg, Germany: Springer Verlag, forthcoming.

[33] A. v. d. Hoek, M. Mikic-Rakic, R. Roshandel, and N.
Medvidovic, "Taming Architectural Evolution,"
Proceedings of The Sixth European Software
Engineering Conference (ESEC) and the Ninth ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-9), 2001, pp. 1-10.

[34] NAI, "Self-Regulatory Principles for Online Preference
Marketing by Network Advisers," Network Advertising
Initiative, 2000.

[35] ArchStudio, "ArchStudio 3.0," 2005,
http://www.isr.uci.edu/projects/archstudio/.

[36] E. M. Dashofy, A. v. d. Hoek, and R. N. Taylor, "A
Comprehensive Approach for the Development of
XML-Based Software Architecture Description Lan-
guages," ACM Transactions on Software Engineering
and Methodology, vol. 14, pp. 199-245, 2005.

[37] M. S. Ackerman, "The Intellectual Challenge of
CSCW: The Gap between Social Requirements and
Technical Feasibility," Human-Computer Interaction,
vol. 15, pp. 179-203, 2000.

[38] L. Cranor, M. Langheinrich, and M. Marchiori, "A P3P
Preference Exchange Language 1.0 (APPEL1.0): W3C
Working Draft 15 April 2002," 2002.

[39] M. Schunter and C. Powers, "The Enterprise Privacy
Authorization Language (EPAL 1.1): Reader's Guide to
the Documentation." IBM Research Laboratory, 2003.

[40] F. L. Gandon and N. M. Sadeh, "Semantic Web Tech-
nologies to Reconcile Privacy and Context Awareness,"
Journal of Web Semantics, vol. 1, pp. 241-260, 2004.

