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Abstract 
 

Software product line architectures (PLAs) have 
been widely recognized as a successful approach in 
industrial software development for improving 
productivity, software quality and time-to-market. In 
this paper, we focus on the usage of a PLA for a quite 
different purpose, namely, handling privacy con-
straints in web personalization. To provide personal-
ized services such as customized recommendations, a 
personalized website collects users’ personal data, 
which raises various privacy concerns. We aim at 
reconciling the benefits of web personalization with 
privacy constraints that come from users themselves as 
well as from privacy legislations and regulations that 
apply to a given user. We propose a dynamic, privacy-
enabling personalization infrastructure and conceive it 
as a PLA. This infrastructure allows for dynamically 
selecting and instantiating personalization archi-
tectures that provide personalized services to each 
individual user and comply with the prevailing privacy 
constraints. 

  
 
1. Introduction and overview 
 

Software product line architectures (PLAs) have 
gained a lot of momentum in industrial software 
development because of their benefits in improving 
productivity, software quality and time-to-market [1-
3]. In this paper, we show that PLAs can also be used 
for a quite different purpose, namely handling privacy 
constraints in web personalization.  

Personalized (or user-adaptive) systems are 
applications that take individual characteristics of their 
current users into account and adapt their behavior 
accordingly. For doing so, they collect considerable 

amounts of personal data about the user and "lay them 
in stock" for possible future adaptation. This has 
proven to be very beneficial for computer users in 
several application areas including education and 
training (e.g., [4]), online help for complex PC 
software (e.g., [5, 6]), dynamic information delivery 
(e.g., [7]), provision of computer access to people with 
disabilities (e.g., [8]), and information retrieval 
systems (e.g., [9]).  

Recently, personalization technologies have been 
successfully introduced on the World Wide Web where 
they are mostly used for customer relationship 
management [10, 11]. The single most important way 
to provide value to customers is to know them and 
serve them as individuals. Customers need to feel they 
have a unique personal relationship with the business. 
Current web personalization examples include 
customized content (e.g., personalized finance pages or 
news collections), customized recommendations or 
advertisements based on past purchase behavior, 
customized (preferred) pricing, tailored email alerts, 
and express transactions [12]. A number of studies 
show that personalization has provided benefits for 
both online customers and vendors [13, 14].  

However, personalization benefits are offset by 
privacy concerns [12, 15-17]. Web users are not only 
concerned about their privacy (e.g., about being 
tracked online), but already counteract (e.g., by leaving 
websites that require registration information or by 
entering fake registration information). 

Since personalized websites collect personal data, 
they are also subject to privacy laws and regulations if 
the respective individuals are in principle identifiable. 
A review of more than 40 international privacy laws 
[18]  shows that if privacy laws apply to a personalized 
website, they often not only affect the data that are 
collected by the website, the way in which the data is 
transferred and to which party it is transferred, but also 



the methods that may be used for processing them (and 
consequently the components that embed such 
methods). For instance, the German Teleservices Data 
Protection Act [19] mandates personal data to be 
erased immediately after each session except for very 
limited purposes. This provision would affect the use 
of those machine learning methods where the learning 
takes place over several sessions.  

Our primary focus is on the data processing step of 
web personalization where numerous personalization 
methods can be applied to derive additional 
assumptions about users. It is important to note that for 
many personalization goals, more than one method can 
be used, each differing in their data and privacy 
requirements and often their anticipated accuracy and 
reliability. 

From a personalization point of view, we ask the 
research question: how can personalized web-based 
systems maximize their personalization benefits, while 
being compliant with the privacy constraints that are 
currently in effect (such as the aforementioned privacy 
laws, industry and company regulations, and privacy 
preferences of the current user)? Our vision is to 
provide personalized privacy management where the 
personalization process is tailored to each individual 
user’s privacy constraints.  

A review of several existing approaches shows that 
they all fail to provide a flexible, systematic and 
scalable solution for the enforcement of users’ 
potentially different privacy constraints. Inspired by 
the idea of treating software as a product line to 
support software variability from design-time to 
invocation-time to run-time [20] and several other 
works in the field of dynamic architecture and run-time 
architecture evolution [21-25], we propose a dynamic, 
privacy-enabling personalization infrastructure. Parti-
cularly, we propose to leverage the concept of product 
line architecture to model the variability that exists in 
the privacy and personalization domain, and to 
dynamically select architectural instances [24] to tailor 
the product line architecture to the specific needs of a 
particular user. The infrastructure, thus, considers the 
privacy constraints that apply to an individual user and 
dynamically selects and instantiates a personalization 
architecture that provides personalized services to this 
specific user. The result is a flexible approach that not 
only helps address the complexity of building 
personalized systems, but also strongly supports their 
evolution: as new privacy and personalization concerns 
arise, they can be modularly added to the product line 
architecture. 

The main contributions of this paper are the 
following:  

1. a novel application of PLAs to address a 
practical and complex socio-technical problem 
– balancing privacy and personalization; and 

2. a PLA-based solution that particularly relies on 
run-time variability for the dynamic configura-
tion of personalized web-based systems. 

In the remainder of this paper, we first discuss 
several existing approaches to the problem of taking 
users’ potentially differing privacy constraints into 
account (Section 2). We then present our PLA-based 
approach (Section 3), a detailed example with our 
prototype system (Section 4), and finally our 
conclusions and planned future work (Section 5). 
 
2. Existing approaches 
 
     Because specialized infrastructures for building 
systems that cater to the privacy constraints of 
individual users do not yet exist, websites that aim at 
addressing this problem currently have to use simple 
escape strategies which we list below. 
     
2.1. Pseudonymous interaction  
 

This approach allows users to remain anonymous 
with regard to the personalized system and the whole 
network infrastructure, whilst enabling the system to 
still recognize the same user in different sessions so 
that it can cater to her individually [26]. At first sight, 
this seems to be a panacea because in most cases, 
privacy laws no longer apply when the interaction is 
anonymous. However, anonymity is currently difficult 
and/or tedious to preserve when payments, physical 
goods and non-electronic services are being ex-
changed. This solution also harbors the risk of misuse 
and hinders vendors from cross-channel marketing 
(e.g. sending a products catalog to a web customer by 
postal mail). Moreover, users may still have additional 
privacy preferences (e.g., they do not want to be 
profiled even when it is only done pseudonymously), 
which this approach does not take into account. 

  
2.2. Largest permissible common subset  
 

Ideally, this approach means that only those 
personalization methods are used that satisfy all 
privacy laws and regulations. The Disney website, for 
instance, observes both the U.S. Children’s Online 
Privacy Protection Act (COPPA) as well as the 
European Union Directive [27]. This solution is likely 
to run into problems if more than a very few 
jurisdictions are involved, since the largest common 
subset of permissible personalization methods may 
then become very small. 



2.3. Different country/region versions 
 

In this approach, personalized systems have 
different country versions, each of which uses only 
those personalization methods that are permitted in the 
respective country. If some countries have similar 
privacy laws, their versions can be combined using the 
above-described largest permissible common subset 
approach. For example, IBM’s German-language pages 
comply with the privacy laws of Germany, Austria and 
Switzerland [28], while IBM’s U.S. site meets the legal 
constraints in U.S. As with the largest permissible 
common subset approach, this approach also has 
scaling problems as soon as the number of countries/ 
regions, and hence the number of different versions of 
the personalized system, increases. 

 
2.4. P3P 
 

The Platform for Privacy Preferences (P3P) [29] 
enables websites to express their privacy policies in a 
standard format that can be retrieved automatically and 
interpreted by user agents. Client-side agents can then 
inform users about the sites’ privacy policies and warn 
them when those deviate from previously-specified 
preferences. P3P does not enforce privacy policies nor 
does it support different policies for different users. By 
itself, it is therefore not an answer to the need for 
privacy tailored to different user constraints. However, 
several proposals for individual negotiation of P3P 
policies have been made [30, 31]. The results of such 
negotiations could become the input to our own 
approach. 

 
2.5. Summary 
 

Pseudonymous interaction bypasses the applica-
bility of privacy laws and regulations at the price of 
tedious operation, but does not provide sufficient 
support for dealing with users’ own privacy concerns. 
The largest permissible common subset approach and 
different country/region versions do not scale up well 
and cannot address users’ individual privacy 
preferences either. P3P helps websites communicate 
their privacy policies to users, but does not support 
different policies for different users. In a nutshell, none 
of these approaches fulfills our vision of personalized 
privacy management. They all fail to provide a 
flexible, systematic and scalable solution for the 
enforcement of privacy constraints that may differ 
among users.  

 

3. Our PLA-based approach 
 

Our goal is to achieve maximum personalization 
benefit while at the same time satisfying the prevailing 
privacy constraints, at the individual user level. In this 
section, we describe how we approach the problem in 
the context of personalized system design, and present 
our PLA-based personalization infrastructure and its 
underlying privacy-enabling mechanism in details. 

 
3.1. User Modeling Server 

  
Most personalized systems employ a user modeling 

system, usually in a client-server fashion, which is then 
dubbed a User Modeling Server (UMS). A UMS stores 
and represents user characteristics and behavior, 
integrates external user-related information, applies 
user modeling methods to derive additional 
assumptions about the user, and allows multiple 
external user-adaptive applications to retrieve user 
information from the server concurrently [32].  

For many personalization goals, more than one user 
modeling method can be used, each differing in their 
data and privacy requirements and often their 
anticipated accuracy and reliability. For example, a 
personalized website could use incremental machine 
learning (that discards all raw data after the end of a 
session) to provide personalization to web visitors 
from Germany1, while it can use possibly more 
accurate one-time machine learning with data from 
several sessions to provide personalization to web 
visitors from the U.S. who are not subject to the same 
privacy constraints.  

Since UMSs are the central repositories for personal 
information in personalized systems and the loci of 
personal data processing, our solution focuses on using 
a product line architecture for UMSs, with which we 
address privacy and personalization issues. 

  
3.2. Our dynamic privacy-enabling personal-

ization infrastructure 
  

Figure 1 shows a high level overview of our privacy-
enabling personalization infrastructure. It consists of 
external user-adaptive applications (e.g., a personalized 
shopping site), the Selector, and the UMS that includes 
the Directory Component and a pool of user modeling 
components (UMCs). External personalized applica-
tions can query the UMS for existing user information, 

                                                             
1 This is not yet a complete solution, though, since the 
German Teleservices Data Protection Act [19] also 
mandates that profiling requires the use of pseudonyms or 
the consent of the user. 



 
Figure 1. Our dynamic privacy-enabling personalization infrastructure 

so as to provide personalized services to their end 
users, and can supply additional user information to the 
UMS. 

In our solution, we implement the UMS as a PLA. 
Doing so allows us to provide an infrastructure that 
solves the problem of handling privacy constraints in 
web personalization in a generic fashion, to take 
advantage of commonalities among different needs for 
privacy and personalization, and to dynamically update 
different privacy and personalization strategies in a 
modular fashion, not requiring that the UMS be 
entirely rebuilt upon each change. 

The Directory Component is essentially a repository 
of user models, each of which stores and represents not 
only the characteristics, behavior, and inferences about 
each user, but also their potentially different individual 
privacy constraints. The UMC Pool contains a set of 
UMCs, each of which encapsulates one or more user 
modeling methods (e.g., collaborative filtering [9]) that 
are utilized in drawing additional inferences about 
users based on existing user data. Each UMC forms an 
optional element [33] guarded by a Privacy Boolean 
Expression (PBE; see Section 3.3) in the PLA.   

A particular personalization architecture containing 
only those UMCs that are allowed to operate under a 
user’s prevailing privacy constraints (see Section 3.4) 
can be selected from the PLA by the Selector, and then 
instantiated to provide services to the external person-
alized applications as a UMS for the respective user. 
Moreover, in order to maximize the benefits of 

personalization, the Selector can further select the 
UMCs with the optimal anticipated personalization 
effects among those that are currently permissible 
based on a designer-specified preferred order. 

It is important to stress that if two or more users 
have the same set of privacy constraints they will share 
a single personalization architecture. This reusability is 
fundamental to making our solution scalable. 

 
3.3. Modeling privacy impacts on UMCs  

 
A Privacy Boolean Expression (PBE) captures 

whether its associated UMC is allowed to operate 
under a set of identified privacy concerns. A PBE is a 
logic combination of Privacy Boolean Variables 
(PBVs), which are defined during a manual analysis of 
the impacts of potential privacy concerns on a UMC. If 
the PBE is resolved to be true, then the associated 
UMC will be selected in the resulting personalization 
architecture; otherwise, the UMC will not be included.   

For example, assume that a UMC employs one-time 
machining learning combined with a clustering 
technique to generate personalized music recommend-
ations for a user.  It analyzes both the user’s browsing 
history over several sessions in a personalized online 
music store and her demographic data such as gender, 
address and occupation. Table 1 shows the PBVs that 
have been defined to capture the potential privacy 
concerns in this scenario, and the resulting PBE.  

 



3.4. Expressing privacy constraints  
 

 Privacy constraints that apply to a user can be 
privacy laws and regulations that are in effect, as well 
as the user’s own personal privacy preferences. Those 
privacy constraints are expressed in name-value pairs 
and used as bindings for the Boolean guards associated 
with each UMC. We call them Privacy Constraint 
Bindings (PCBs). 

For example, we may have a German user who did 
not mention any personal privacy preferences. 
Nevertheless, if she is in principle identifiable, the 
German Teleservices Data Protection Act would apply. 
Table 2 summarizes the user’s privacy constraints and 
their respective PCBs.  

During the evaluation of the PBE in Table 1, each 
PBV will be bound to its PCB (those in Table 2) for 
this German user. If such a binding does not exist, we 
set the default binding to be true. We thus take a 
“permissive approach”: practices not explicitly 
forbidden by the prevailing privacy constraints 
(tracking the user in our example) are included. In our 
example, the UMC will not be selected because its 
PBE is resolved to false given the PCBs. 
 
3.5. Dynamic selection process  
 

The Selector monitors the start and end of user 
sessions via bind and unbind operations onto the UMS 
by the external applications. When the Selector detects 
the start of a user session, it initiates a Privacy Context 
Detection process that will collect all the active privacy 
constraints and then generate corresponding PCBs. A 
similar process will be carried out whenever during a 
user session the Selector learns about new or changed 
privacy requirements (which for all practical purposes 

will stem from user preferences since privacy laws and 
regulations are unlikely to change during a session). 

The PCBs are fed into the Selector that will carry 
out a PLA selection process [24]. Firstly, the PBEs of 
all UMCs are evaluated based on the given PCBs, to 
determine whether or not these UMCs may be included 
in the personalization architecture for the current user 
session. Secondly, a binary Privacy Constraint Satis-
faction (PCS) vector is constructed whose nth element 
represents whether or not the nth UMC may be used. 
The Selector checks whether a run-time system 
instance with such a PCS already exists. If so, the 
Selector will assign the user session to the existing run-
time system instance that has the same PCS. If not, the 
Selector will perform PLA Pruning that automatically 
removes any disallowed components from the 
architecture, and then the Selector instantiates a new 
run-time system instance for the user session. Figure 2 
presents the pseudo-code of the above process. 
 
4. A detailed interaction example 

 
In this section we describe a prototype system that 

we built for proving the concept of our approach.  
 
4.1. The example scenario  
 

 Let us assume that UniversalFriends.com is a 
website that is operated in the USA by a signatory of 
the U.S. Network Advertisers Initiative (NAI) [34]. 
The goal of this website is to bridge physical distances 
between people and to foster world-wide friendships 
through information technology. It provides 
personalized services to help customers make friends 
worldwide. Upon registration, users will be asked to 
choose a pseudonymous user ID along with a password 

Table 1. The Privacy Boolean Expression of the example User Modeling Component in 
Section 3.3, and its constituent Privacy Boolean Variables  

 

PBVs Name Corresponding privacy concern 
PBV1 combining_profile Combining pseudonymous usage data with 

personally identifiable demographic data  
PBV2 keeping_n_sessions_data Keeping usage data across sessions 
PBV3 tracking_user  Monitoring user browsing behavior  
PBE combining_profile && keeping_n_sessions_data && tracking_user 

 
Table 2. The Privacy Constraint Bindings for the example user in Section 3.4 

 

PCBs Expression Corresponding privacy constraint 
PCB1 combining_profile = false German law prohibits combining user profiles retrievable 

under pseudonyms with data relating to the bearer of the 
pseudonym. 

PCB2 keeping_n_sessions_data = false German law mandates personal data to be erased immediately 
after each session except for very limited purposes. 

 



 
Figure 2. Dynamic selection process 

 
and to disclose some information about themselves 
(e.g., their hobbies). They will be given some space on 
the UniversalFriends web server to create their own 
homepages. The system will recommend a 
personalized list of likely friends based on a user’s 
characteristics, and will automatically send invitations 
for pair-wise virtual meetings.  

We have three hypothetical users, Alice, Cheng and 
Bob. Table 3 describes their characteristics. 

 The UniversalFriends web server relies on our 
privacy-enabling personalization infrastructure to infer 
information about users in order to recommend 
potential friends. Table 4 and Table 5 show the types 
of input data and the available inference methods, 
respectively. Table 6 summarizes the usage of data and 
inference methods for each user modeling component.  

For example, UMC1 can recommend people in the 
same profession cluster. If a user indicates a high 
interest in a specific topic, UMC2 can infer that she 
would like to meet people with similar ratings for a 
topic; alternatively in this case, UMC3 can infer with 
95% confidence that she would like to meet people 
with similar ratings for the topic. 

 
4.2. Interaction with the personalized system  
 
Users can interact with the system as follows: 

1. Users log into UniversalFriends.com using their 
registered user names and passwords. 

2. The website gathers users’ current privacy 
constraints including those imposed by privacy 
laws and regulations, and their privacy prefer-
ences. Users can specify their privacy 

Table 3. Our hypothetical users 
 

Name Current 
location 

Personal privacy 
preference(s) 

Alice Germany None 
Cheng China Dislikes being tracked 
Bob USA None 

 
Table 4. Types of input data 

 

Abbreviation Type of input data 
Demographic Demographic data such as age, 

gender, profession, education level  
User_supplied User-supplied data, e.g., a user 

indicates her levels of interests in 
different topics 

1_Session UniversalFriends pages that the 
user visited in the current session   

N_Sessions UniversalFriends pages that the 
user visited across sessions 

 
Table 5. Types of inference methods 

 

Abbreviation Type of inference method 
Clustering Clustering techniques  
Rule-based Rule-based reasoning 
Fuzzy Fuzzy reasoning with uncertainty 
Incremental 
ML 

Incremental machine learning 

One-time ML One-time machine learning across 
several sessions  

 
Table 6. UMCs pool 

 

UMC Data used Methods used 
UMC1 • Demographic Clustering  
UMC2 • User_supplied Rule-based 
UMC3 • User_supplied Fuzzy 
UMC4 
 

• Demographic 
• User_supplied 

Rule-based  

UMC5 
 

• Demographic  
• User_supplied 

Fuzzy  

UMC6 • User_supplied 
• 1_Session   

Incremental ML 
 

UMC7 
 

• User_supplied 
• N_Sessions  

One-time ML 
 

UMC8 
 

• Demographic  
• User_supplied 
• N_Sessions 

One-time ML 
Fuzzy reasoning  

 

The Selector monitors the start and end of user sessions: 
On bind (start):  

Privacy Context Detection: 
Collect active privacy constraints; 
Generate variable bindings (PCBs); 

PLA selection, based on PCBs: 
Evaluate Boolean guards (PBEs) for UMCs; 
Construct a new PCS vector V; 

IF there already exists an identical PCS THEN  
 Assign the user session to the existing  
         run-time system instance, say instance i; 

instance i . numSessions ++;  
       ELSE 

       PLA Pruning: 
Prune out UMCs whose PBEs are 
resolved to FALSE; 

Instantiate a new run-time system instance  
for the user session, say instance n+1); 
instance n+1 . numSessions = 1; 

On unbind (end): 
       numSessions current - -;  
       IF numSessions current == 0 THEN 

 Kill run-time system instance current;   
 

If new/changed user privacy preferences are detected, a 
similar process starts as on bind. 

 
 



preferences and change them anytime during 
the interaction with the personalized system. 
For instance, if they feel that a specific piece of 
privacy law or regulation is too strict to get 
otherwise much better personalization, they can 
give their consent to certain system actions that 
are otherwise legally prohibited (e.g., the 
storage of personal data across sessions). 

3. For every user, a summary webpage shows: 
a. their prevailing privacy constraints,  and 
b. the selected UMCs used in producing the 

personalized service, and the excluded 
UMCs and the reasons for their exclusion 
(i.e., the specific privacy constraints). 

  
4.3. Privacy-enabling personalization process  
 

The privacy constraints that apply to each of the 
three individual users and their implications for the 
UMCs are discussed below (due to limited space, the 
relevant PCBs and PBEs are not presented here, but 
they can be defined as described in Sections 3.3 and 
3.4): 

For Alice, the German Teleservices Data Protection 
Act applies, with the following consequences: 
• UMC4, UMC5, and UMC8 are illegal because the 

law prohibits combining user profiles retrievable 
under pseudonyms with data relating to the 
bearer of the pseudonym. 

• UMC7 and UMC8 are illegal because the law 
mandates personal data to be erased immediately 
after each session except for very limited 
purposes. 

Therefore, UMC4, UMC5, UMC7 and UMC8 cannot 
be used for Alice without her explicit consent.  

While no privacy law applies to Cheng, she has her 
own personal privacy preference, such as that she 
“dislikes being tracked”. Hence UMC6, UMC7 and 
UMC8 cannot be used because the system may not 
keep track of the pages she visits on 
UniversalFriends.com.  

For Bob from the United States, UMC4, UMC5 and 
UMC8 cannot be used according to the NAI self-
regulation [34] if he does not consent to merging non-
personally identifiable usage data with personally 
identifiable demographic data.  

Figure 3 illustrates the process of selecting and 
instantiating personalization architectures for each user 
according to their individual privacy constraints (as we 
explained in 3.5). Note that, in this case, three different 
architectural instances are created since each user has 
different privacy constraints. 
 
4.4. Implementation 
 

The prototype system is currently composed of 
three basic components: a Context Detector, an 
Instance Manager, and a light version of ArchStudio 
[35]. To simplify matters, we did not yet include a 
Directory Component. Figure 4 gives a high-level 
overview of the system structure.  

The Context Detector is the component that 
interfaces with a user’s web browser, collecting her 
privacy constraints and relaying them to the next 
component, the Instance Manager. The ArchStudio 

 
Figure 3. Privacy-enabling personalization process 



 
Figure 4. System architecture 

component is mainly used for its Selector [24], which 
generates the architecture descriptions (expressed in 
xADL 2.0 [36] and selected from an overall PLA 
description) for the personalization architectures, or 
“personalized system instances” tailored to each 
individual user based on their privacy constraints.  The 
Instance Manager is the central core of the system. It 
responds to the requests of the Context Detector and 
uses ArchStudio to build the personalized system 
instances.  

All three main components of the system are 
implemented in Java and communicate via the Java 
Remote Method Invocation (RMI) framework. Using 
this method, it is possible for the components to be 
distributed across more than one machine, but this is 
currently not the case. The Instance Manager and the 
RemoteControl subcomponent of ArchStudio extend 
the remote interface and sign their names to the RMI 
registry, allowing the Context Detector and ArchStudio 
to access the Instance Manager directly, as well as 
allowing the Instance Manager to invoke ArchStudio’s 
Selector functionality. 

Minor miscellaneous components of the system 
include BootstrapRevised (a modified version of the 
Bootstrapper from the orginal ArchStudio), which the 
Instance Manager uses to initialize architecture 
descriptions into running instances. In Figure 4, the 
stored architecture descriptions produced by Arch-
Studio are simply represented as a file directory 
located on the server machine. The web pages 
produced by the Context Detector are served via 

Apache Tomcat servlets, which are also able to make 
requests of the Instance Manager directly once a user’s 
system instance is produced.   

When a user first interacts with the system using her 
web browser, she will be prompted by the Context 
Detector for her privacy constraints. When submitted, 
these constraints are transferred to the Instance 
Manager as a new user request. They are packaged by 
the Instance Manager and posted to the ArchStudio 
Component for selection processing. Then a 
customized architecture is selected and its description 
saved to a file. The Instance Manager, thereupon, 
receives a request to instantiate the newly completed 
architecture. It first analyzes the new architecture to 
construct a PCS Vector describing which UMCs are 
included in the description. This PCS Vector is 
compared with those of the currently running 
instances. If one of them matches, then no new 
instantiation takes place but rather the found instance is 
used. If no running service instance matches the new 
architecture description, BootstrapRevised is invoked 
to turn the architecture into a running service instance. 
This new service instance is assigned to the user, who 
may now access its functionality via requests to the 
Instance Manager. If the user’s privacy constraint 
information changes later on, the process may be 
restarted to consider the new constraints. 
 
 



5. Conclusion and future work 
 

Software product lines have been recognized as a 
software development paradigm that leads to improve-
ments in terms of software cost, productivity, quality, 
etc. Relatively little research focuses on the potential of 
their use at runtime. In this article, we showed that a 
PLA combined with runtime variability allows for an 
elegant solution to address the privacy issues in web 
personalization relating to the fact that privacy 
constraints may be different for each individual user. 
Our approach offers the following benefits: 

1. Generality: different types of privacy constraints 
are addressed in a unified way. 

2. Enforcement: our approach does not only allow 
one to specify privacy requirements (such as in 
P3P [29]), but it also enforces their consequences 
on personalization methods.  

3. Runtime dynamics: privacy requirements can be 
addressed dynamically during runtime, e.g. when 
users change their privacy preferences. 

4. Reusability of architectural instance: if two or 
more users have the same set of privacy 
constraints, they will share a single instance of a 
personalization architecture. 

5. Update modularity: new privacy constraints and 
personalization methods can be added in the PLA 
in a modular fashion, resulting in local update 
effects only. 

Of course, we do not claim this to be a complete 
solution to all privacy issues. Our approach focuses on 
the architectural aspects of user-tailored privacy 
provisioning but does not control (let alone enforce) 
what and how user data are collected by the different 
user modeling components.  

Ackerman pointed out a “social-technical gap” 
between human activities or decisions (which are 
inherently flexible and nuanced) and what we can 
support technically [37]. Such a gap also exists when 
we deal with people’s privacy because no system can 
ever know all potential user privacy constraints in 
advance. One future task is to conduct a user study to 
solicit personal privacy preferences of real users. 
Ensuring that our system can handle the most common 
privacy constraints would greatly help bridge the gap.  

While we currently use a set of Boolean variables to 
express identified privacy constraints, ultimately these 
constraints should be expressed in a privacy constraint 
specification language such as APPEL [38] or EPAL 
[39], or semantic web technologies [40].  

Last but not least, performance and scalability are 
of critical interest in practice. We need to determine 
empirically whether our system is able to manage 
architectures that provide personalization services to 

hundreds of thousands of users from all over the world. 
Since the number of privacy jurisdictions is limited 
(currently to about 40 countries and 100 states), we 
assume that many of our users will share the same 
architecture. The resource-intensive architecture 
selection and instantiation process is therefore likely 
not to be invoked too often. This reusability is key to 
performance and scalability, but its effects will need to 
be more thoroughly tested. We are currently evaluating 
the performance and scalability of our approach. 
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