
15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Week 3 Recitation

1 This Week’s Recap
1. Tree DP

(a) How to approach

i. Have states be nodes

ii. Have base cases be leaves

iii. Have transitions be relations from parents to children

(b) Height of all vertices in a tree in O (n ) time

i. The height of a vertex is the length of the longest path from it to another vertex
in its subtree

ii. States: D P [i ] = height of vertex i

iii. Transition:

D P [i ] =

¨

0 if vertex i is a leaf

1+max j∈children(i )D P [ j ] otherwise

(c) Maximum weighted unrelated subset of size k

i. Given a binary tree with weighted nodes, find the maximum weight of a set of
k nodes such that none are ancestors/descendants of each other.

ii. States: D P [i ][x ] = the maximum value achieved by selecting x nodes from the
subtree rooted at i

iii. Transition (assume children(i ) = { j1, j2}):

D P [i ][x ] =



















0 x = 0

wi x = 1 and i is a leaf

max
�

wi , max0≤x1,x2,x1+x2=x D P [ j1][x1] +D P [ j2][x2]
�

x = 1 and i is not a leaf

max0≤x1,x2,x1+x2=x D P [ j1][x1] +D P [ j2][x2] otherwise

This runs in O (nk 2) time.

iv. Final answer is D P [root][k ].

2. Range Tree Prefix/Suffix Queries
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(a) How to Approach

i. Define a tree whose leaves represent individual entries, and internal nodes de-
fine ranges over elements within its subtree

ii. Define an associative operation (eg. sum, max, min) over the values for each
node within its subtree

Note: when the answer extracted may not be unique, it’s also possible for the op-
erations to be non-associative. For example, ‘10 arbitrary elements in the range
corresponding to the subtree’.

(b) General operations in the tree

i. Update: locate the required entry, and update its value, along with that of all its
ancestors

ii. PrefixOp: To compute a value over range [1, ..., k ], walk upwards from the leaf
corresponding to k , combine everything to the left of the path (as well as k if
the range is inclusive, as it is here).

(c) Dynamic Prefix Sum Under Entry Modification

i. Tree stores original array values in leaves, and internal nodes represent sum of
leaves within its subtree

ii. Combine operation: add together sums of left and right children to get value of
current node.

(d) Inversion Counting

i. Tree represents array V [i ] = total count of value i as we iterate through the orig-
inal array, and internal nodes represent sum over subtree.

ii. Merge operation: Sum

iii. Intuition: as we iterate through the array at index i , we want to count the num-
ber of previous elements that is larger than it. This is a suffix sum on the fre-
quency array of the elements encountered.

(e) Weighted LIS: given length n array A[1 . . . n ], along with weights w [1 . . . n ], find in-
creasing subsequence i1 < i2 < . . . < ik (A[i1] < A[i2] < . . . < A[ik ]) with maximum
total weight
∑k

j=1 A[i j ]).

i. Dynamic program is D P [i ] =w [i ] +max j<i ,A[ j ]<A[i ]D P [ j ].

ii. Tree encodes array B [1 . . . n ] where B [x ] =max j<i :A[ j ]=x D P [ j ]. Tree supports
entry modify and querying prefix maximum.

iii. Algorithm: go through A in increasing order of i . For each A[i ], query for

max
x<A[i ]

B [x ]
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which is the same as the max of D P [ j ] for all j encountered so far with A[ j ] <
A[i ]. Adding w [i ] to this gives D P [i ], which we then update B [A[i ]]with.

iv. Example of the B array at various points of time with the input

A = 〈34, 23, 74, 52, 54, 43, 88, 23, 19〉 ,
w = 〈8, 3, 2, 9, 3, 1, 5, 7, 2〉 .

First, we relabel the elements of A by their positions in the sorted list of unique
elements. This turns A into

bA = 〈3, 2, 7, 5, 6, 4, 8, 2, 1〉

while preserving how all pairs of i and j compare. Then processing things in
order of i , with B as defined above, gives

i ( bA[i ], w [i ]) DP[i] B at end of this step
init - < 0, 0, 0, 0, 0, 0, 0, 0>

1 (3,8) 8 < 0, 0, 8, 0, 0, 0, 0, 0>
2 (2, 3) 3 < 0, 3, 8, 0, 0, 0, 0, 0>
3 (7, 2) 10 < 0, 3, 8, 0, 0, 0, 10, 0>
4 (5, 9) 17 < 0, 3, 8, 0, 17, 0, 10, 0>
5 (6, 3) 20 < 0, 3, 8, 0, 17, 20, 10, 0>
6 (4, 1) 9 < 0, 3, 8, 9, 17, 20, 10, 0>
7 (8, 5) 25 < 0, 3, 8, 9, 17, 20, 10, 25>
8 (2, 7) 7 < 0, 7, 8, 9, 17, 20, 10, 25>
9 (1, 2) 2 < 2, 7, 8, 9, 17, 20, 10, 25>

Note that handling the duplicate element in this setup is easy. We just overwrite
the previous value if the new value (max j∈[1...i−1]B [ j ]+weight) is greater than
the current value to preserve the invariant that B [i ] is the max weighted LIS of
the order i th element in A.

2 One More Problem Using Range Queries
Max weighted non-overlapping intervals: given intervals [l1, r1] . . . [ln , rn ], with associated weights
w1 . . . wn , find the maximum weight of a subset of them that have no overlap (endpoints touch-
ing also counts as overlap).

Solution sketch: Since only the relative ordering of the 2n end points matter, we can sort
them and reduce their values to integers in the range [1, 2n ].

Also, sort the intervals in order of their right end points, aka. r1 ≤ r2 ≤ r3 ≤ . . .≤ rn .

Define DP state D P [i ] to be the maximum weight of a subset of non-overlapping intervals with
[li , ri ] as the rightmost one.
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Then the DP transition is
D P [i ] =w [i ] + max

j<i ,r [ j ]<l [i ]
D P
�

j
�

and the base case is D p [i ]≥wi .

To perform the transition efficiently, at each time, maintain an array B [1 . . . 2n ] that stores for
each right end point the max DP value of an interval ending at it.

Aka, at each point i , we want to have

B [x ] = max
j<i ,x=r [ j ]

D P
�

j
�

Maintain this using a tree that supports prefix max queries. Then as we go through the i s, we
compute D P [i ] using a prefix max query on B [1. . . (li − 1)] (plus Wi as in the transition), and
then updates B [ri ] with D P [i ]. Both of these operations take O (log n ) time each, which gives
O (n log n ) over all i locations.
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