

Week 3 Recitation

1 This Week's Recap

1. Tree DP

- (a) How to approach
 - i. Have states be nodes
 - ii. Have base cases be leaves
 - iii. Have transitions be relations from parents to children

- (b) Height of all vertices in a tree in $O(n)$ time

- i. The height of a vertex is the length of the longest path from it to another vertex in its subtree
 - ii. States: $DP[i] =$ height of vertex i
 - iii. Transition:

$$DP[i] = \begin{cases} 0 & \text{if vertex } i \text{ is a leaf} \\ 1 + \max_{j \in \text{children}(i)} DP[j] & \text{otherwise} \end{cases}$$

- (c) Maximum weighted unrelated subset of size k

- i. Given a binary tree with weighted nodes, find the maximum weight of a set of k nodes such that none are ancestors/descendants of each other.
 - ii. States: $DP[i][x] =$ the maximum value achieved by selecting x nodes from the subtree rooted at i
 - iii. Transition (assume $\text{children}(i) = \{j_1, j_2\}$):

$$DP[i][x] = \begin{cases} 0 & x = 0 \\ w_i & x = 1 \text{ and } i \text{ is a leaf} \\ \max(w_i, \max_{0 \leq x_1, x_2, x_1+x_2=x} DP[j_1][x_1] + DP[j_2][x_2]) & x = 1 \text{ and } i \text{ is not a leaf} \\ \max_{0 \leq x_1, x_2, x_1+x_2=x} DP[j_1][x_1] + DP[j_2][x_2] & \text{otherwise} \end{cases}$$

This runs in $O(nk^2)$ time.

- iv. Final answer is $DP[\text{root}][k]$.

2. Range Tree Prefix/Suffix Queries

(a) How to Approach

- i. Define a tree whose leaves represent individual entries, and internal nodes define ranges over elements within its subtree
- ii. Define an associative operation (eg. sum, max, min) over the values for each node within its subtree

Note: when the answer extracted may not be unique, it's also possible for the operations to be non-associative. For example, '10 arbitrary elements in the range corresponding to the subtree'.

(b) General operations in the tree

- i. Update: locate the required entry, and update its value, along with that of all its ancestors
- ii. PrefixOp: To compute a value over range $[1, \dots, k]$, walk upwards from the leaf corresponding to k , combine everything to the left of the path (as well as k if the range is inclusive, as it is here).

(c) Dynamic Prefix Sum Under Entry Modification

- i. Tree stores original array values in leaves, and internal nodes represent sum of leaves within its subtree
- ii. Combine operation: add together sums of left and right children to get value of current node.

(d) Inversion Counting

- i. Tree represents array $V[i] =$ total count of value i as we iterate through the original array, and internal nodes represent sum over subtree.
- ii. Merge operation: Sum
- iii. Intuition: as we iterate through the array at index i , we want to count the number of previous elements that is larger than it. This is a suffix sum on the frequency array of the elements encountered.

(e) Weighted LIS: given length n array $A[1 \dots n]$, along with weights $w[1 \dots n]$, find increasing subsequence $i_1 < i_2 < \dots < i_k$ ($A[i_1] < A[i_2] < \dots < A[i_k]$) with maximum total weight $\sum_{j=1}^k A[i_j]$.

- i. Dynamic program is $DP[i] = w[i] + \max_{j < i, A[j] < A[i]} DP[j]$.
- ii. Tree encodes array $B[1 \dots n]$ where $B[x] = \max_{j < i: A[j] = x} DP[j]$. Tree supports entry modify and querying prefix maximum.
- iii. Algorithm: go through A in increasing order of i . For each $A[i]$, query for

$$\max_{x < A[i]} B[x]$$

which is the same as the max of $DP[j]$ for all j encountered so far with $A[j] < A[i]$. Adding $w[i]$ to this gives $DP[i]$, which we then update $B[A[i]]$ with.

iv. Example of the B array at various points of time with the input

$$A = \langle 34, 23, 74, 52, 54, 43, 88, 23, 19 \rangle, \\ w = \langle 8, 3, 2, 9, 3, 1, 5, 7, 2 \rangle.$$

First, we relabel the elements of A by their positions in the sorted list of unique elements. This turns A into

$$\hat{A} = \langle 3, 2, 7, 5, 6, 4, 8, 2, 1 \rangle$$

while preserving how all pairs of i and j compare. Then processing things in order of i , with B as defined above, gives

i	$(\hat{A}[i], w[i])$	$DP[i]$	B at end of this step
init		-	$\langle 0, 0, 0, 0, 0, 0, 0, 0 \rangle$
1	(3, 8)	8	$\langle 0, 0, 8, 0, 0, 0, 0, 0 \rangle$
2	(2, 3)	3	$\langle 0, 3, 8, 0, 0, 0, 0, 0 \rangle$
3	(7, 2)	10	$\langle 0, 3, 8, 0, 0, 0, 10, 0 \rangle$
4	(5, 9)	17	$\langle 0, 3, 8, 0, 17, 0, 10, 0 \rangle$
5	(6, 3)	20	$\langle 0, 3, 8, 0, 17, 20, 10, 0 \rangle$
6	(4, 1)	9	$\langle 0, 3, 8, 9, 17, 20, 10, 0 \rangle$
7	(8, 5)	25	$\langle 0, 3, 8, 9, 17, 20, 10, 25 \rangle$
8	(2, 7)	7	$\langle 0, 7, 8, 9, 17, 20, 10, 25 \rangle$
9	(1, 2)	2	$\langle 2, 7, 8, 9, 17, 20, 10, 25 \rangle$

Note that handling the duplicate element in this setup is easy. We just overwrite the previous value if the new value ($\max_{j \in [1 \dots i-1]} B[j] + \text{weight}$) is greater than the current value to preserve the invariant that $B[i]$ is the max weighted LIS of the order i th element in A .

2 One More Problem Using Range Queries

Max weighted non-overlapping intervals: given intervals $[l_1, r_1] \dots [l_n, r_n]$, with associated weights $w_1 \dots w_n$, find the maximum weight of a subset of them that have no overlap (endpoints touching also counts as overlap).

Solution sketch: Since only the relative ordering of the $2n$ end points matter, we can sort them and reduce their values to integers in the range $[1, 2n]$.

Also, sort the intervals in order of their right end points, aka. $r_1 \leq r_2 \leq r_3 \leq \dots \leq r_n$.

Define DP state $DP[i]$ to be the maximum weight of a subset of non-overlapping intervals with $[l_i, r_i]$ as the rightmost one.

Then the DP transition is

$$DP[i] = w[i] + \max_{j < i, r[j] < l[i]} DP[j]$$

and the base case is $DP[i] \geq w_i$.

To perform the transition efficiently, at each time, maintain an array $B[1 \dots 2n]$ that stores for each right end point the max DP value of an interval ending at it.

Aka, at each point i , we want to have

$$B[x] = \max_{j < i, x = r[j]} DP[j]$$

Maintain this using a tree that supports prefix max queries. Then as we go through the i s, we compute $DP[i]$ using a prefix max query on $B[1 \dots (l_i - 1)]$ (plus W_i as in the transition), and then updates $B[r_i]$ with $DP[i]$. Both of these operations take $O(\log n)$ time each, which gives $O(n \log n)$ over all i locations.