
15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Week 2 Recitation

1 This Week’s Recap
1. DP mindset: define states so that their dependency graph is acyclic (e.g., a topological

order), then compute in an order that respects dependencies.

2. Shortest paths in a DAG (even with negative edges): topologically sort vertices, then for
each vertex v take dist[v] =min(u ,v)(dist[u] + ℓ(u , v)).

3. Subset / bitmask DP: Example: counting topological orderings with

dp[S] =
∑

v∈S , v can be last

dp[S \ {v }].

4. String DP on prefixes: edit distance / LCS use 2D prefix states (first i characters vs first j
characters) with O (1) transitions, giving O (n 2)-type runtimes.

5. Faster LCS when one string is small: compress the DP by tracking, for each prefix of the
short string and each length ℓ, the earliest position in the long string achieving LCS length
ℓ; support “next occurrence” queries via preprocessing + binary search.

6. Prefix vs interval DP on sequences: decide whether you truly need intervals or if prefixes
suffice. Example: LIS with state “best increasing subsequence ending at i ”, yielding an
O (n 2)DP.

7. Interval DP via “last operation”: for “collapse a sequence/string” problems, a common
trick is to condition on the final merge/deletion. Example: chain matrix multiplication
with cost[i , j] =mink∈(i , j)

�

ai ak a j + cost[i , k] + cost[k , j]
�

in O (n 3).

8. CFG parsing idea (interval + prefix DP): for each substring S [l , r], track which single
characters it can collapse to; to test a rule ci → Si , run a helper DP that matches a prefix
of Si to a partition of S [l , r]. Runtime is something like O (n 3|G |) where G is the size of
the allowed input operations.

1

2 Another CFG Parsing Example

Problem 1: Palindrome Shrinking***

The input is a string s of length n . In one operation, I can pick any palindrome substring
of s and delete it from s . Find the minimum number of operations needed to turn s into
the empty string, in time O (n 3).

A palindrome is a string that is the same forwards and backwards. For example, a ,
a b b a , and a b c b a are all palindromes, but a b c a is not.

Sources:

- https://codeforces.com/problemset/problem/607/B

- (earlier cite) https://vjudge.net/problem/HRBUST-1847

Solution sketch. We do interval DP. DP[i , j] denotes the minimum number of steps needed
to turn the range s [i , . . . , j] into an empty string by deleting palindromes.

Let us understand the DP transition. To do this, consider the leftmost character. Consider the
step on which it is deleted.

Case 1: It’s deleted by itself. This would lead to DP[i , j]≤ 1+DP[i +1, j].

Case 2: It’s deleted by pairing with i + 1. This only can happen if s [i] = s [i + 1]. In this case,
DP[i , j]≤ 1+DP[i +2, j].

Case 3: i is deleted along with k , only can happen if s [i] = s [k]. In this case, note that at some
point, the range s [i + 1, . . . , k − 1] was deleted by using palindrome deletions. We can take the
last one that was deleted, and append s [i] and s [k] to that deletion (at the front and the back).
This leads to the transition

DP[i , j]≤DP[i +1, k −1] +DP[k +1, j],

only if s [i] = s [k].

The total runtime is O (n 3) - n 2 states and O (n) per state.

2

https://codeforces.com/problemset/problem/607/B
https://vjudge.net/problem/HRBUST-1847

	This Week's Recap
	Another CFG Parsing Example

