15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Week 2 Recitation

1 This Week’s Recap

1. DP mindset: define states so that their dependency graph is acyclic (e.g., a topological
order), then compute in an order that respects dependencies.

2. Shortest paths in a DAG (even with negative edges): topologically sort vertices, then for
each vertex v take dist[v]=min(, ,)(dist{u]+£(u, v)).

3. Subset / bitmask DP: Example: counting topological orderings with

dplsl= > dpIS\{v}]

veES, v can be last

4. String DP on prefixes: edit distance / LCS use 2D prefix states (first i characters vs first j
characters) with O(1) transitions, giving O(n?)-type runtimes.

5. Faster LCS when one string is small: compress the DP by tracking, for each prefix of the
short string and each length ¢, the earliest position in the long string achieving LCS length
¢; support “next occurrence” queries via preprocessing + binary search.

6. Prefixvsinterval DP on sequences: decide whether you truly need intervals or if prefixes
suffice. Example: LIS with state “best increasing subsequence ending at i”, yielding an
O(n?)DP,

7. Interval DP via “last operation”: for “collapse a sequence/string” problems, a common
trick is to condition on the final merge/deletion. Example: chain matrix multiplication
with cost[i, j]=mingc;) (aiakaj + cost[i, k] + cost[k, j]) in O(n®).

8. CFG parsing idea (interval + prefix DP): for each substring S[/, r], track which single
characters it can collapse to; to test a rule ¢; — S;, run a helper DP that matches a prefix
of S; to a partition of S[/, r]. Runtime is something like O(n3|¥|) where ¥ is the size of
the allowed input operations.

2 Another CFG Parsing Example

Problem 1: Palindrome Shrinking***

The inputis a string s oflength n. In one operation, I can pick any palindrome substring
of s and delete it from s. Find the minimum number of operations needed to turn s into
the empty string, in time O(n?).

A palindrome is a string that is the same forwards and backwards. For example, a,

abba,and abcba are all palindromes, but ab ca is not.
. v

Sources:
- https://codeforces.com/problemset/problem/607/B
- (earlier cite) https://vjudge.net/problem/HRBUST- 1847

Solution sketch. We do interval DP. DP[i, j] denotes the minimum number of steps needed
to turn the range s[i, ..., j] into an empty string by deleting palindromes.

Let us understand the DP transition. To do this, consider the leftmost character. Consider the
step on which it is deleted.

Case 1: It’s deleted by itself. This would lead to DP[i, j]<1+DP[i +1, j].

Case 2: It’s deleted by pairing with i + 1. This only can happen if s[i] = s[i + 1]. In this case,
DP[i, j]<1+DP[i +2, j].

Case3: i isdeleted alongwith k, only can happen if s[i] = s[k]. In this case, note that at some
point, the range s[i +1,..., k — 1] was deleted by using palindrome deletions. We can take the
last one that was deleted, and append s[i] and s[k] to that deletion (at the front and the back).
This leads to the transition

DP[i, j]<DP[i+1,k—1]+DP[k+1, j],

only if s[i] = s[k].

The total runtime is O(n3) - n? states and O(n) per state.

https://codeforces.com/problemset/problem/607/B
https://vjudge.net/problem/HRBUST-1847

	This Week's Recap
	Another CFG Parsing Example

