15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 8: String Hashing

Objectives of this lecture

- Introduce the concept of hashing.
- Introduce hashing for strings.

- Combine hashing for strings with segment trees to design data structure for dy-
namic string processing.

1 Philosophy

Hashing is a general term that means a randomized procedure for compressing a large space
of possible inputs down to a single integer. In this lecture we describe a specific way of hashing
strings, and certain applications.

2 Example Problems

2.1 Hashing a string

Let s =s;...s, be astring (assume that n is large, like a million or even large). Let’s say we want
to compress the string down to a single 32 or 64 bit integer. How do we do this?

Here is a polynomial hash introduced by Rabin and Karp. Let p be a prime number that fits in
32 bits (you can pick your favorite, turns out 10 +7 and 10 + 9 are both primes that fit neatly
in 32 bits). Let x be a random integer in the range {0, 1, ..., p —1}. Define the hash of s as:

n

H,(s)= Z sixi (mod p).
i=1

Here I am being a bit lazy and using s; to denote an integer: for example let the letter a corre-
spondsto’l’, b is 2/, etc.

Polynomial hashing is a powerful technique for string matching. We will informally argue that
if strings s and ¢ are different, then their hashes are not the same with high probability.

Collision analysis. Lets=s;...s,and t =t¢;...t,. Let's understand if it’s possible to get “un-
lucky” and for H,(s) = H,(t) evenif s # t. Expand out H,(s) = H,(t):

n n
Zs,-xi =Z t;x" (mod p)
i=1 i=1

n
Z(s,- — t,-)xi =0 (mod p).
i=1
Consider the left hand side of the equation. This is a polynomial in x and it is a nonzero poly-
nomial because s; # t; for some i. The degree is at most n. Now we require that x is random
and the following lemma.

Lemma 1: One-Dimensional Schwarz-Zippel Lemma

et P(x) be a nonzero polynomial of degree at most n. Then the probability over x €
{0,1,...,p—1} that P(x)=0 (mod p) is at most n/p.

This follows from the fact that a polynomial of degree n over a finite field has at most 7 roots.

Thus as long as p > 10n there’s a 90% chance that the hashes don't collide. You can repeat the
same algorithm over and over to increase the success probability.

In practice, you probably shouldn’t pick x to be too small or its easy to manually construct hash

collisions.

Note. If you didn’t understand the last few minutes, that’s fine. For now, it's OK to just take
on faith that if two strings s and ¢ are not the same, then their hashes are equal with very low
probability (just assume 0). We won't discuss this for the rest of the lecture.

2.2 String matching

Problem: String matching

Let s and ¢ be input strings. Find all locations where ¢ appears as a substring of s, in
time O(|s|+|t]).

For notation let the length of s be n, length of t be m, and n < m. The idea is just to compute
the hash of each length n substring of ¢ and check if it matches the hash of s. In other words,
foreachie€{1,2,...,m—n+1} we have to find

n—1
VIil:= > tlj+ilx’.

j=0
To start just compute V[m — n + 1] directly. Now we can use the following formula to get the
value of V[i] from V[i+1]:

VI[i]=x(V[i+1]—t[n+ilx")+ ¢[i].

Thus we can find all V[i]’s in total time O(m) as desired.

2.3 Dynamic Longest Common Prefix

Problem: Dynamic LCP

Let s; and s, be strings of length n. Design an algorithm that supports the following
operations.

1. UPDATE(D, i,c), where b € {1,2} and i €{1,2,...,n} and c is a character. This sets
spli] to the character c.

2. LCP(i, j). Find the largest integer ¢ such that the string s,[7,i +1,...,i +{] is equal
tos[j,j+1,...,j+L].

. .

We give an algorithm that supports UPDATE in time O(log n) and supports LCP in time O(log” n).
Hashing. Let p be alarge prime and let x €{1,..., p — 1} be the base for the hash.

Binary search over . By binary searching over ¢, we can reduce to checking equality: decide
if s1[i,i+1,...,i+{]isequalto s,[f, j+1,..., j+{]as strings. If we can do this in time O(logn),
then we can answer LCP in time O(log2 n), since binary search uses O(log n) iterations.

Checking equality. The hashes of the two strings are respectively

{
sl[i,i+1,...,i+€]—>Zsl[i+t]xt, and
t=0

4
Sl j+ 1 j+ 0= slj+11x".
t=0

At ahigh level, the idea is to use a segment tree (point update and range query) to able to query
both of these values in O(log) time per query.

Let’s explain how to do this for s; (and s, is the same). Maintain an array w|i] filled with w[i] =
s1[i]x’. Upon UPDATE, just update the relevant entry of w[i]. To find the hash of s,[i,i+1,...,i+
¢}, call arange sum query on the range [i, i +{] — this will give you the value

¢ ¢
Zsl[i +t]xit = xiZsl[i +t]xt,
=0

t=0

i.e., x! times the desired hash values. There’s two approaches going forwards, depending on
how comfortable you are with modular inverses.

Modularinverse approach. Thehashofs[i,i+1,...,i+{]is x "RANGESUM(s,, i,i+{) (mod p).
You can compute x~ by finding the modular inverse of x modulo p and taking it to the i-th
power.

Without modular inverses. As described above, the hashes of s1[i,i+1,...,i+¢]and s,[], j +
1,..., j+€]are given by x "RANGESUM(s,, i, i+¢) (mod p)and x /RANGESUM(s,, j, j+¢) (mod p)
respectively. So we want to check if

x 'RANGESUM(sy, i,i +¢) = x /RANGESUM(s,, j, j +¢) (mod p).
We can instead multiply out the negative exponents to get an equivalent equation to check:

x/RANGESUM(sy, 7,7 +£) = x ' RANGESUM(S,, j, j +£) (mod p).

This way we can avoid negative exponents.

	Philosophy
	Example Problems
	Hashing a string
	String matching
	Dynamic Longest Common Prefix

