
15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 8: String Hashing

Objectives of this lecture

- Introduce the concept of hashing.

- Introduce hashing for strings.

- Combine hashing for strings with segment trees to design data structure for dy-
namic string processing.

1 Philosophy
Hashing is a general term that means a randomized procedure for compressing a large space
of possible inputs down to a single integer. In this lecture we describe a specific way of hashing
strings, and certain applications.

2 Example Problems

2.1 Hashing a string
Let s = s1 . . . sn be a string (assume that n is large, like a million or even large). Let’s say we want
to compress the string down to a single 32 or 64 bit integer. How do we do this?

Here is a polynomial hash introduced by Rabin and Karp. Let p be a prime number that fits in
32 bits (you can pick your favorite, turns out 109+7 and 109+9 are both primes that fit neatly
in 32 bits). Let x be a random integer in the range {0, 1, . . . , p −1}. Define the hash of s as:

Hx (s) =
n
∑

i=1

si x i (mod p).

Here I am being a bit lazy and using si to denote an integer: for example let the letter a corre-
sponds to ′1′, b is ′2′, etc.

Polynomial hashing is a powerful technique for string matching. We will informally argue that
if strings s and t are different, then their hashes are not the same with high probability.

1

Collision analysis. Let s = s1 . . . sn and t = t1 . . . tn . Let’s understand if it’s possible to get “un-
lucky” and for Hx (s) =Hx (t) even if s ̸= t . Expand out Hx (s) =Hx (t):

n
∑

i=1

si x i =
n
∑

i=1

ti x i (mod p)

n
∑

i=1

(si − ti)x
i = 0 (mod p).

Consider the left hand side of the equation. This is a polynomial in x and it is a nonzero poly-
nomial because si ̸= ti for some i . The degree is at most n . Now we require that x is random
and the following lemma.

Lemma 1: One-Dimensional Schwarz-Zippel Lemma

et P (x) be a nonzero polynomial of degree at most n . Then the probability over x ∈
{0, 1, . . . , p −1} that P (x) = 0 (mod p) is at most n/p .

This follows from the fact that a polynomial of degree n over a finite field has at most n roots.

Thus as long as p > 10n there’s a 90% chance that the hashes don’t collide. You can repeat the
same algorithm over and over to increase the success probability.

In practice, you probably shouldn’t pick x to be too small or its easy to manually construct hash
collisions.

Note. If you didn’t understand the last few minutes, that’s fine. For now, it’s OK to just take
on faith that if two strings s and t are not the same, then their hashes are equal with very low
probability (just assume 0). We won’t discuss this for the rest of the lecture.

2.2 String matching

Problem: String matching

Let s and t be input strings. Find all locations where t appears as a substring of s , in
time O (|s |+ |t |).

For notation let the length of s be n , length of t be m , and n ≤m . The idea is just to compute
the hash of each length n substring of t and check if it matches the hash of s . In other words,
for each i ∈ {1, 2, . . . , m −n +1}we have to find

V [i] :=
n−1
∑

j=0

t [j + i]x i .

To start just compute V [m −n + 1] directly. Now we can use the following formula to get the
value of V [i] from V [i +1]:

V [i] = x
�

V [i +1]− t [n + i]x n−1
�

+ t [i].

Thus we can find all V [i]’s in total time O (m) as desired.

2

2.3 Dynamic Longest Common Prefix

Problem: Dynamic LCP

Let s1 and s2 be strings of length n . Design an algorithm that supports the following
operations.

1. UPDATE(b , i , c), where b ∈ {1, 2} and i ∈ {1, 2, . . . , n} and c is a character. This sets
sb [i] to the character c .

2. LCP(i , j). Find the largest integer ℓ such that the string s1[i , i +1, . . . , i + ℓ] is equal
to s2[j , j +1, . . . , j + ℓ].

We give an algorithm that supports UPDATE in time O (log n)and supports LCP in time O (log2 n).

Hashing. Let p be a large prime and let x ∈ {1, . . . , p −1} be the base for the hash.

Binary search over ℓ. By binary searching over ℓ, we can reduce to checking equality: decide
if s1[i , i +1, . . . , i +ℓ] is equal to s2[j , j +1, . . . , j +ℓ] as strings. If we can do this in time O (log n),
then we can answer LCP in time O (log2 n), since binary search uses O (log n) iterations.

Checking equality. The hashes of the two strings are respectively

s1[i , i +1, . . . , i + ℓ]→
ℓ
∑

t=0

s1[i + t]x t , and

s2[j , j +1, . . . , j + ℓ]→
ℓ
∑

t=0

s2[j + t]x t .

At a high level, the idea is to use a segment tree (point update and range query) to able to query
both of these values in O (log n) time per query.

Let’s explain how to do this for s1 (and s2 is the same). Maintain an array w [i] filled with w [i] =
s1[i]x i . Upon UPDATE, just update the relevant entry of w [i]. To find the hash of s1[i , i+1, . . . , i+
ℓ], call a range sum query on the range [i , i + ℓ] – this will give you the value

ℓ
∑

t=0

s1[i + t]x i+t = x i
ℓ
∑

t=0

s1[i + t]x t ,

i.e., x i times the desired hash values. There’s two approaches going forwards, depending on
how comfortable you are with modular inverses.

Modular inverse approach. The hash of s1[i , i+1, . . . , i+ℓ] is x−i RANGESUM(s1, i , i+ℓ) (mod p).
You can compute x−i by finding the modular inverse of x modulo p and taking it to the i -th
power.

3

Without modular inverses. As described above, the hashes of s1[i , i +1, . . . , i +ℓ] and s2[j , j +
1, . . . , j+ℓ]are given by x−i RANGESUM(s1, i , i+ℓ) (mod p)and x− j RANGESUM(s2, j , j+ℓ) (mod p)
respectively. So we want to check if

x−i RANGESUM(s1, i , i + ℓ)≡ x− j RANGESUM(s2, j , j + ℓ) (mod p).

We can instead multiply out the negative exponents to get an equivalent equation to check:

x j RANGESUM(s1, i , i + ℓ)≡ x i RANGESUM(s2, j , j + ℓ) (mod p).

This way we can avoid negative exponents.

4

	Philosophy
	Example Problems
	Hashing a string
	String matching
	Dynamic Longest Common Prefix

