15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 7: Lazy Segment Trees and
Geometric Applications

Objectives of this lecture

- More examples of applying segtrees to design algorithms.
- Range updates and queries via lazy propagation.

- Coordinate compression techniques and geometric problems.

1 Philosophy

Segment trees open to the door to obtaining speedups for a huge number of algorithm design
problems. Previous lecture you say point updates and range queries. In this class we give more
examples of this, as well as describe how to build even more complicated data structures that
can handle more advanced updates, such as range updates and range queries simultaneously,
and how this additional power lets us solve certain geometric problems.

2 Example Problems

2.1 Decreasingsequences

This is just a warm-up example to get us in the headspace from the previous lecture.

Problem: Decreasing sequences

Leta,,...,a, be an array and let k be a given positive integer. Find the number of subse-
quences of length k that are decreasing, i.e., 1 <i; <---< i <nsuchthata; >--->a; .

Note that when k = 2 this is exactly counting inversions. We give an algorithm for this problem
running in time O(nklogn) based on dynamic programming + range queries.

Step 1: Coordinate compression. Apply sorting to compress the a;’s to the range {1,2,..., n}
without changing the relative ordering. Clearly, this does not affect the answer to the problem.
From now on, we assume that 1 < a; < n for all i.



Definition of DP state. Let DP[i][{]for1<i <nand1</ < k be the number of decreasing
sequences of length ¢ which end at i. Then the DP transition is:

DP[ilt}= Y, DPIjle-1]

Jj<i:aj>a;
Base cases are D P[i][1]=1 for all i. The answer is Z?zl DP[i][k].

Implementing the DP transition faster. Naively implementing the DP transitionis O(n) time
per state. We will improve this to O(log n) by using a point update and range query data struc-
ture.

Recall from the previous lecture that there is a data structure that supports the following oper-
ations in O(log n) time per operation on an array w(l],..., w[n], initialized to all 0 say.

1. POINTUPDATE(, x): sets w[i] — x,
2. RANGESUM(a, b): returns Y, _;_, wl(il.

Now we describe how to implement the DP transition using these operations. Initialize the
initial array that the DS maintains to all 0.

1. Gofromi=1,2,...,n.
2. Set DP[i][{] — RANGESUM(a; + 1, n).
3. Apply the update POINTUPDATE(Z, D P[i][{ —1]).

By the definition of the DP state, this solves the problem correctly. The runtime is O(logn) per
state by the guarantees of the data structure. The total time is O(n klogn).

2.2 Range updates, queries, and lazy propagation

In this problem we build what is sometimes called a “lazy segment tree” or “segment tree with
lazy propagation”.

Problem: Range update and max query

Design a data structure that operates on an array a[1],..., a[n], initially all 0, supporting
the following operations in time O(log n) per operation.

1. RANGEADD(/, r, x): for all indices i satisfying{ <i < r, set ali] — a[i]+ x.

2. RANGEMAX(Y, r): return max;.j<j<, ali].

Approaches that don’t work. You can’'t “pushdown” all the RANGEADD updates because they
might be too expensive if the range is large. We need to be able to terminate once we have split
the interval [/, r ] from the RANGEADD operations into intervals corresponding to segment tree
nodes.



What information to maintain at each node? Recall that each node in the segment tree data
structure corresponds to some interval. What information should we store at this node? Here
is what we need to store (in addition the name of the node, and the corresponding interval):

1. The maximum array element in the interval (this helps to answer the RANGEMAX query.
For notation, we will call this max[v] for a node labeled v.

2. “Unpropagated updates”. This is an integer denoting RANGEADD updates to this node
that have no been pushed down to its children. We need this because for runtime pur-
poses we cannot afford to push down all updates. We call this lazy[v] for a node labeled
v.

Implementing updates and queries. Let’s say that an update or query involves the interval
[£, r]. The segment tree data structure processes this by walking down the tree. Here is the first
critical point:

When moving to children of a node, push down all lazy updates and update its lazy value to 0.
In code, this amounts to doing:
1. lazy[v.L] —lazy[v.L]+lazy[v], and
2. lazy[v.R] < lazy[v.R]+lazy[v], and
3. lazy[v]=0.

Now we describe updates and queries separately, starting with updates. When you end at a
node (the intervals match), update lazy[v] < lazy[ v ]+ x. Also, update max[v] « max[v]+x (the
max goes up by x if the whole interval goes up by x). Afterwards, go up the tree to all nodes you
visited and update their max[v] values (simply by setting max[v] = max(max[v.L], max[v.R])).

Finally, queries. This is pretty simple, essentially the same as the case of point updates in the
previous lecture. You still do the pushdowns, and just max over the max[-] values of all nodes
that you visited in the segment tree. Since each update and query visit O(log ) nodes, the cost
is O(log n) per operation.

2.3 Coordinate compression

This is a warm-up problem that does not require any segment trees, but introduces a simple
version of ideas we will need for the next problem.

Problem: Interval union

Intervals [¢,, 11],...,[¢,, ;] are given. Find the total length of the union of these intervals
in time O(nlogn).

Coordinate compression again. By sorting, etc., compress the values ¢4,...,¢,, and ry,..., 1,
to the range {1,2,...,2n} without changing the ordering. Also, remember which location each
of 1,2,...,2n correspond to — call these d[1],...,d[2n]. Each d[i] will be some original £; or r;.
In other words, you remember the mappings from ¢;’s and r;’s to the range {1,2,...,2n}.



Algorithm. Now for each interval, mark the corresponding range in {1,2,...,2n}. In particu-
lar, mark its left endpoint (this is when the interval gets added in) and its right endpoint (this
is when the interval gets removed). Now sweep from 1 to 27, and count the number of inter-
vals which have been added but not removed (we will call such intervals “alive”). This can be
done simply by maintaining a counter, and adding in intervals when their left endpoint arrives
(increment counter), and removing them (decrement counter) when their right endpoint ar-
rives. If a segment (i, i +1) has a count of at least 1, some interval covers it. Now just add up the
lengths of all covered segments.

2.4 Rectangle Area

Problem: Rectangle total area

n axis-aligned rectangles are given in the plane. Find the total area of the union of these
rectangles in time O(nlogn).

Formally, an axis aligned rectangle is the set of points (x, y) satisfying a < x < b and
¢ <y <d for some real numbers a < b and ¢ < d.

Coordinate compression. Just like the third problem (Section 2.3), we first compress coordi-
nates, so that all left/right/lower/upper boundaries of rectangles are compressed to be in the
range {1,2,...,2n}. We also remember the distance between adjacent vertical and horizontal
coordinates, just like the above problem.

Left-to-right sweep. We sweep over the horizontal axis. For each rectangle, we remember
its left and right boundaries. When we reach a left boundary, we mark that the vertical spread
of the rectangle exists for now, i.e., its “alive”. When we reach a right boundary, we remove
the vertical spread of the rectangle. A vertical segment is alive if some rectangle containing
that vertical segment is alive. Between two horizontal points, we compute the total area as the
distance times the total length of the “alive” vertical spread.

Datastructure problem. Thisrequires designing a data structure for the following data struc-
ture problem. The input is an array w[1],..., w[n] of weights and an initial array a[1],...,a[n]
of all 0’s. These weights are distance between adjacent vertical markers. We want to support
the following updates to a.

1. RANGEADD(/,r,x): forall{ <i < r, set a[i] — a[i]+ x. It is guaranteed that a[i]> 0 at
all times.

2. PosITIVEWEIGHT(): Find the sum of w/[i] over all indices i where a[i]> 0.

Relation to the rectangle problem. The index a|i] stores the number of alive rectangles cov-
ering the segment. We will set x = —1 or +1 in calls to RANGEADD depending on whether we
are inserting a rectangle or deleting it. Calling POSITIVEWEIGHT tells us the total length of the
“alive” vertical segments.



It turns out that it is possible to design a data structure to handle these operations in time
O(logn) per update but is a bit more complicated than the above example of a lazy segment
tree. The boldface is critical for this problem to be solvable in O(logn) time. Since this data
structure needs to be called O(n) times in the above algorithm, the total runtime is O(n logn).

The algorithm for this data structure is deferred to the oral homework.



	Philosophy
	Example Problems
	Decreasing sequences
	Range updates, queries, and lazy propagation
	Coordinate compression
	Rectangle Area


