
15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 4: Prefix/Interval Dynamic
Programming

1 Philosophy
There are many problems which ask to understand some property of a sequence, or are about
applying a sequence of operations to a sequence. These naturally lend themselves to dynamic
programming based on subintervals. Sometimes we can simplify this structure further and
only focus on prefixes of the sequence. In this lecture we will understand how to identify these
structures and design dynamic programming algorithms for them.

Objectives of this lecture

In this lecture we will study dynamic programs on sequences, which natural introduces
subproblems which are prefixes and subintervals. In these problems, it is often impor-
tant to think carefully about exactly which subproblems are necessary in order to obtain
an efficient algorithm. Example problems include:

- Longest increasing subsequence (LIS),

- Chain matrix multiplication,

- Parsing a context-free-grammar (CFG).

2 Example Problems

2.1 Longest Increasing Subsequence
Our first problem is the “longest increasing subsequence” (LIS) problem, which has an O (n 2)
solution.

Problem: Longest Increasing Subsequence

Given a sequence of comparable elements a1, a2, . . . , an , an increasing subsequence is a
subsequence ai1

, ai2
, ..., aik−1

, aik
(i1 < i2 < . . . ik) such that

ai1
< ai2

< . . .< aik−1
< aik

.

1

A longest increasing subsequence is an increasing subsequence such that no other in-
creasing subsequence is longer.

Find some optimal substructure Given a sequence a1, . . . , an and its LIS ai1
, . . . , aik−1

, aik
, what

can we say about ai1
, . . . , aik−1? Since ai1

, . . . , aik
is an LIS, it must be the case that ai1

, . . . , aik−1
is

an LIS of a1, . . . aik
such that aik−1

< aik
. Alternatively, it is also an LIS that ends at (and contains)

aik−1
. This suggests a set of subproblems.

Define our subproblems Let’s define our subproblems to be

LIS[i] = the length of a longest increasing subsequence of a1, . . . ai that contains ai

Note that the answer to the original problem is not necessarily LIS[n] since the answer might
not contain an , so the actual answer is

answer= max
1≤i≤n

LIS[i]

Deriving a recurrence Since LIS[i] ends a subsequence with element i , the previous element
must be anything a j before i such that a j < ai , so we can try all possibilities and take the best
one

LIS[i] =







0 if i = 0,

1+max
0≤ j<i
a j<ai

L I S [j] otherwise.

Analysis We have O (n) subproblems and each one takes O (n) time to evaluate, so we can
evaluate this DP in O (n 2) time.

Optimizing the runtime: better data structures. This runtime can actually be improved to
O (n log n) using data structures. We will revisit this in a few lectures when we introduce Seg-
ment Trees.

2.2 Chain Matrix Multiplication
Our first example of interval DP is the “chain matrix multiplication” problem.

Problem: Chain Matrix Multiplication

We define an operation which can be performed to a sequence (b1, . . . , bm) of positive
integers. Choose an index i ∈ {2, . . . , m − 1} and delete bi from the sequence, reducing
its length to m −1, and incur cost bi−1bi bi+1.

The input is a sequence of positive integers (a1, a2, . . . , an). What is the minimum cost
way to apply n − 2 of the above operations to the sequence (thus ending with the se-
quence (a1, an)?

2

Example. Let (a1, a2, a3, a4) = (10, 30, 5, 60). There are two possible ways to do two operations.
The first way is to first delete a2 and then a3. The cost of this is:

10×30×5+10×5×60= 4500.

The other way, first deleting a3 and then a2, has cost:

30×5×60+10×30×60= 27000.

Thus the answer would be 4500.

Explaining the name. Consider a chain of matrices being multiplied: A1A2 . . . An−1 where Ai

has dimensions ai × ai+1. Because matrix multiplication is associative we can do the multi-
plications in any order. The runtime cost of multiplying an a × b times b × c matrix is about
a b c . So the chain matrix multiplication is asking for the cheapest way to multiply a sequence
of matrices of given dimensions.

2.2.1 Brute-force-approach

The number of possible sequence of operations is (n − 2)× (n − 3)× · · · × 1 = (n − 2)!. This is
exponentially large. You might notice that if you for example do an operation to ai and then
to a j where i and j are separated, then these operations commute (i.e., immediately have the
same cost). It turns out that while this saves significantly runtime, the cost is still exponentially
large (about 4n , we will not discuss why in lecture).

2.2.2 O (n 3) time algorithm using intervals

In this style of problem where you are collapsing a string using local operations, it is often useful
to think about the very last operation performed in the sequence (the (n − 2)-th operation).
Starting with a sequence (a1, . . . , an), right before the last operation our sequence takes the form
(a1, ai , an) for some index i ∈ {2, . . . , n −1}.

How did we reach this state? It must have been through applying operations to the subsequence
(a1, . . . , ai) and (ai , . . . , an) until they are down to length 2. Applying the same logic to these
subproblems, you can see that subintervals are exactly the right structure to use as our dynamic
programming states.

Here is the DP formula table where cost[i , j] represents the minimum cost way of applying
j − i −1 operations to the subinterval (ai , . . . , a j), reducing it to length 2. For i < j :

cost[i , j] =

¨

0 if j = i +1,

mink∈{i+1,..., j−1}
�

ai ak a j + cost[i , k] + cost[k , j]
�

otherwise.

The answer is cost[1, n].

Extra Remarks. This problem actually admits an O (n log n) time algorithm by Chin-Hu-Shing
(1981) which I have not personally tried to understand.

3

2.3 Parsing a context-free-grammar
Our final example is parsing a context-free-grammar. We first state the problem abstractly, and
then explain how it arises. For notational clarity, we will try to make strings capital letter vari-
able names, and characters as lowercase letter variable names.

Problem: Parsing a CFG

In this problems, all characters and strings consist of only lowercase English letters. The
input consists of the following:

- An integer g > 0, character c , and a string S .

- For i = 1, . . . , g , let ci → Si be substitution rules where ci is a single character, and
Si is a string of length at least 2.

Decide whether applying the substitution rules starting with c can form string S .

Our goal will be to simply give a polynomial time algorithm for the problem. More precisely,
the runtime will be O (n 4 · |G |), where n = |S | is the length of S , and |G | is defined as the total
size of the strings in the substitution rules:

|G |=
g
∑

i=1

|Si |.

Example. Let g = 3, (c ,S) = (‘a ′, “a b a c ′′), and consider the substitution rules:

- (c1,S1) = (‘a ′, “b c ′′), and (c2,S2) = (‘b ′, “c a ′′), and (c3,S3) = (‘c ′, “a b ′′).

- In other words, we can substitute ‘a ′→ “b c ′′ or ‘b ′→ “c a ′′ or ‘c ′→ “a b ′′.

The answer to this instance is YES, because the following sequence of substitutions works:

‘a ′→ ‘b c ′→ ‘c a c ′→ ‘a b a c ′.

Explaining the name. Informally, when forming syntax/sentences, there are many natural
substitutions one can use to create new valid sentences. For example, nouns can be replaced
with adjective+noun, etc. In the problem statement we abstracted away single parts of speech
as just a character.

2.3.1 Trying to design an algorithm forwards

Again, a natural brute force algorithm is to just start at c and try to generate all possible strings
of length |S | using the rules, finally checking if the input string is generated. Even in the above
example, you can see that we can generate an exponentially large number of strings with length
at most n . Again, we need a different approach.

4

2.3.2 Going backwards: intervals

Just like the example of chain matrix multiplication, it is instead useful to “think backwards”.
Instead of thinking of the input as substitution rules, think of them as collapsing rules. In other
words, we can take the string Si and replace it with a single character ci . Our goal is to end
with the single character c . Now, think of the final collapsing operation. It must have taken the
form Si → ci = c . So we must have found a way to collapse our initial string S to si somehow.
Writing this more explicitly, let Si = z1z2 . . . zm where z j are characters. Then there must be a
way to partition s into substrings S = T1T2 . . . Tm (where Ti are strings) and then each Ti can be
collapsed to zi using some sequence of operations.

S = T1T2 . . . Tm

T1→ z1 using some operations.

T2→ z2 using some operations.

...

Tm → zm using some operations.

z1 . . . zm = Si → ci = c using a single operation.

This suggests a natural DP state: for the substring S [l , r] := S [l] . . .S [r], store the possible single
characters it can be collapsed to after a sequence of operations, say as a lookup table. We now
discuss how to fill in the DP table.

Base case. We start with the base case. If l = r , the set of possible characters is simply Sl itself.

The case l < r . We want to find what S [l] . . .S [r] can be collapsed to. We iterate over all possi-
ble final operations, i.e., i ∈ {1, . . . , g }, and decide whether the final operation could be Si → ci .
If yes, add ci to the set of possible single characters for the substring S [l , r].

For this, we do a prefix DP. The DP states are: for a prefix of the substring S [l] . . .S [r] and a prefix
of Si , is it possible to collapse one to the other? Each state can be computed in O (n) time by
adding a single letter (as the prefix of Si). There are O (n ×|Si |) states in this prefix DP, and each
can be processed in time O (n), for a total runtime of O (n 2|Si |).

Runtime analysis. Let l < r and i ∈ {1, . . . , g }. The runtime cost of deciding whether the final
operation could have been Si → ci is O (n 2|Si |). Thus the total runtime cost is O (n 2 ·

∑g
i=1 |Si |) =

O (n |G |). There are O (n 2) intervals, so the total runtime cost is O (n 4 · |G |).

5

3 Extras (Not Required)

Problem: Returning the sequence in LCS

Give an algorithm that returns the elements in the longest increasing subsequence in
O (n 2) time.

Problem: Improving runtime of CFG Parsing

Improve the runtime of the CFG algorithm to O (n 3 · |G |).

Hint: Your DP states should be an interval/substring S [l , r] and a prefix of one of the input
strings Si . Thus, the total number of DP states is O (n 2

∑g
i=1 |Si |) =O (n 2 · |G |).

Alternate approach: Here is an alternate approach which is more or less equivalent to the hint,
but might be conceptually easier for some to think about. The first step is to just study the case
where each Si is length two: in this case, it it much easier to get the O (n 3|G |) runtime. The
second step is to reduce to this case. Formally, given a CFG, design an equivalent CFG where
all Si are length two (possibly by introducing new letters), whose total size is within a constant
factor of the original size. Building this equivalent CFG is called putting it into Chomsky normal
form (essentially).

6

	Philosophy
	Example Problems
	Longest Increasing Subsequence
	Chain Matrix Multiplication
	Brute-force-approach
	O(n3) time algorithm using intervals

	Parsing a context-free-grammar
	Trying to design an algorithm forwards
	Going backwards: intervals

	Extras (Not Required)

