
15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 2: Knapsack Dynamic Programs

Objectives of this lecture

- Familiarize with dynamic programming: states, transitions, and base cases.

- Know the formulation of knapsack, subset sum, and its many variations.

- Understand how DP transitions based on knapsack can be optimized.

- Be aware of connections between states and vertices, via connections between
knapsack and shortest paths.

1 Philosophy
Knapsack problems seek to maximize the value of some subset of objects subject to the sum
of their attributes not exceeding some given limit. When this sum is integers in some limited
range, it’s a natural dynamic program state.

A dynamic program consist of:

1. States.

2. Transition function.

3. Base case.

The most important of these is the DP state. There are several ways to come up with states:

- ‘Seen this structure before’ (aka. came to this sequence of lectures).

- Design a brute force search, then reduce the number of inputs to the search function
until they are few enough to be remembered.

Once you have states/transition/base case down, it’s useful to:

1. Justify correctness of the transitions, specifically how they cover how answers to the states
are pieced together from answers to other states.

2. Analyze the running time of computing all the states using the transitions.

3. Describe how to read the answer from the states once you compute them: for ‘optimum
value / number of values’, this is often just one state, for the actual solution one often
needs to trace the states backwards using the transitions again.

1

Knapsack DPs often have simple transition functions consisting of single for loops. So for many
variants of knapsack, first-principled optimizations lead to significant runtime gains.

2 Example Problems

Problem 1: subset sum with replaceable items

Is it possible to make Y dollars using coins of value x1 . . . xn (each xi ≥ 0), each of which
can only be used an arbitrary number of times.

D P
�

y
�

=

¨

1 if it’s possible to make value y

0 if it’s not possible to make value y

The base case here is D P [0] = 1, since state 0 is reachable.

The transition function is that to make value y , we must have used some coin with value xi .
Then it must be possible to make value y − xi as well. So we get

D P
�

y
�

=∨i :xi≤y D P
�

y − xi

�

where ∨ denotes O R .

To analyze the performance of this algorithm, we will use asymptotic complexity. Recall that
big-O notation, in its simplest form, allows us to ignore constants, and only track the leading
term of the complexity. Here we only need to track states between 0 to Y , so O (Y) states, for a
total running time of O (n Y).

Things get trickier when each coin can only be used once:

Problem 2: subset sum with irreplaceable items

Decide if it’s possible to make Y dollars using coins of value x1 . . . xn (each xi ≥ 0), each
of which can be used at most once.

we define a 2-dimensional state:

D P [i]
�

y
�

=

¨

1 if it’s possible to make value y using coins 1 . . . i , each at most once

0 otherwise

Once we get this state, the base case and transition kind of writes themselves. For base case,
we have D P [0, 0] = 1, while the transition becomes just checking whether item i can be used:

D P [i]
�

y
�

=D P [i −1]
�

y
�

∨D P [i −1]
�

y − xi

�

where ∨ denotes OR. Note that the second case should only be considered if y ≥ xi .

2

The running time of this is still O (Y n), but the memory usage becomes O (Y n) as well. To get
that down, the conceptually easier way is to observe that at any given point in time, we only
need D P [i][∗] and D P [i − 1][∗], so we can use a rolling table where only two rows of the DP
table are kept at any given point of time.

That still adds a fair amount of extra code. The even simpler way to realize this is to run things
backward, using the fact that xi ≥ 0. That is, we perform the update

D P [y] =D P [y]∨D P [y − xi]

in decreasing order of y . What happens is that the suffix of the array (y and after) becomes
D P [i][y], while the prefix stays the same as D P [i −1][y].

Problem 3: subset sum, variable amounts

Is it possible to make Y dollars using coins of value x1 . . . xn (each xi ≥ 0), where coin i
can be used between 0 and ni times?

The simplest way to solve this is to turn coin i into ni separate coins, each of which can be used
at most once. That leads to a runtime of

O

�

∑

i

ni ·Y

�

.

With binary representations of numbers, we can do better by creating copies that correspond
to powers of 2. Say we have 7 coins with value x , we can divide them into

x , 2x , 4x

so that any value between 0 and 7x can be made using a subset of these coins. There is some
slight trickiness to this for general values of ni , e.g. 10 = 2+ 8 does not allow one to create 1.
There the method is to find the largest sum of powers of 2 that’s at most ni , create powers of 2
up to there, and then create one coin corresponding to the rest of the sum.

To get the runtime back to O (n Y), consider the ‘backward filling’ routine above: instead of
checking whether y − xi is 1, we need to check whether any of

y − xi , y −2xi , . . . y −ni · xi

are 1s. Note this already involves the implicit backward table filling idea from Problem 2
above. Naively, this still incurs an extra factor of ni , but now think about what happens if we
check y , y − xi , and etc in that order. That is, we only work on the indices with a particular
remainder modulo xi . Then as we move ‘down’ the y by xi , the only ‘new’ entry that we need
to consider is

y − xi −ni · xi .

In other words, the set of indices that we consider is gradually moving downward. All we need
to do is to track the smallest index that’s within the range, and 1 in the current DP table. This
leads to a routine that performs O (1) per transition, for a total running time of O (n Y).

3

Some questions / comments from last time:

1. WHY IS THIS PROBLEM DYNAMIC PROGRAMMING?

2. groups for projects, collaboration policy.

the variant below was not covered in class, but is in both recitation 1 and homework 1 (ques-
tion 2).

Knapsack also have optimization versions, where the items have both weight and value, and
the goal is to maximize the values of the items taken.

Problem 4: Value maximization knapsack with irreplaceable items

I have n items, each with size xi ≥ 0, and value vi . Find the maximum value of a subset
with size at most Y .

This is knapsack without replacement. Here instead of storing whether it’s possible to make
weight y , we store the maximum value of a set of items with weight y .

Formally, we let D P [i][j] to denote the maximum value of a subset of x1 . . . xi whose total weight
is y . This leads to the transition

D P [i]
�

j
�

=max
�

D P [i −1]
�

y
�

, D P [i −1]
�

y − xi

�

+ vi .
	

Note that the answer needs to take the max over all values at most Y as well. That is, we return

max
0≤y≤Y

D P [n]
�

y
�

.

4

The materials below (further speeding up balanced subset sum, connections with graphs)
were not covered, and will not be in any assessment.

This routine above for arbitrary number of copies can also be leveraged to give faster algorithm
for the second problem (coins that can only be used once) when Y is close to the total sum of
the xi s, e.g. checking whether it’s possible to divide up a set of coins can be divided into two
even valued halves. Specifically, a complexity of

O

�

∑

i

xi

�1.5
!

is possible by just calling a ‘right’ mix of the two algorithms above: Let S =
∑

i xi , and note that
the number of xi s.t. xi >

p
S is at most

S/S 1/2 = S 1/2,

so combined with the at most S 1/2 different sizes from 1 . . .S 1/2, we get that there are at most
2S 1/2 distinct item sizes.

With fast convolution routines like FFT, a runtime of O (n log2 n) is even possible, but I don’t
recommend implementing that version.

Knapsack can also be combined with other problems by augmenting the nodes with extra
states.

Problem 5: knapsack in a car

Get from point s to point t in a road network with n vertices and m edges, and each
edge having non-negative integer time / toll values, in the fastest time while paying a
total budget of at most Y .

To make progress on this problem, observe that shortest path algortihms themselves are dy-
namic programming based. The state is the vertex that one is at, but the transition function is
evaluated ‘on the fly’:

1. Bellman-Ford repeatedly evalutes it for n rounds.

2. Dijkstra’s algorithm picks the next one to extend from on the fly, in increasing order of
distance.

In either of these cases though, we can just augmenting the state with the amount of toll that
has been paid so far:

D P [u]
�

y
�

=min time needed to get to vertex u after paying y units of toll

With Dijkstra’s algorithm, this leads to an extra factor of Y on the running time, for a total of
O (m Y log n).

The reverse direction is also possible: in cases where ONE of the values is small, we can actually
get faster knapsack algorithms using shortest path.

5

Problem 6: knapsack using shortest paths

Check if one can make Y dollars using an arbitrary number of coins of value x1 . . . xn

(each xi ≥ 0) in O (x 2
1 +n) time.

Here we want to reduce the number of states from Y to x1. To do this, observe that if D P [y] is
true, then so is D P [y + x1]. That is, similar to the situation earlier with multiple copies of xi ,
the states with a particular remainder mod x1 belong to the same class.

Furthermore, because we have an arbitrary number of coins with size x1s, we can instead create
the state

D PM I N [z] =min
�

y : y mod x1 ≡ z AND D P [y] = 1
	

That is, for each group of y s (separated by their residue mod x1), we store the smallest value
that is reachable.

This leads to a shortest path problem: if we add xi to state z , the total size is now D P [z] + xi ,
and the state that we go to is now

(z + xi) mod x1.

So the transition function becomes

D PM I N [z]←min{D PM I N [z] , D PM I N [z − xi mod x1] + xi }

taken over all n coins i .

Using dense graph shortest path, this gives O (x 2
1) time.

6

	Philosophy
	Example Problems

