15-451: Algorithm Design and Analysis, Carnegie Mellon University, Spring 2026

Lecture 1: Introduction

Objectives of this lecture

- Cover the course schedule and syllabus.
- Get started on dynamic programming and optimizations.

- Some high level points on how (not to) design algorithms.

1 Course Information

Website: https://www.cs.cmu.edu/ yangp/15-451/

2 Philosophy

Consider the following problem:

Problem: Optimal Leaf-Binary-Search-Tree (leaf-BST, meme name: Rock Combine)

Start with a sequence/list of n numbers. Every step, you can merge two neighboring
numbers and replace by their sum, at cost of the new number created (aka. the sum).
Find the minimum total cost to reduce everything to one number.

This problem is the same as finding an optimal binary search tree with all the entries atleaves in
the order given. Here ‘optimal’ is measured in the sum over depths and weights: the weights can
be viewed as the frequency by which the keys are accessed. This equivalence can be sketched
as:

- each merger creates a new node with the previous two as children,
- the cost accounts for everything there getting deeper by 1,
- the restriction of merging neighbors only means the the ordering of leafs is preserved.

Note that the last item is where things differ from Huffman tree, which doesn’t require the leafs
are ordered. That is called the optimal binary tree problem. An input where the answers to
these two problems differ is < 1,10, 1 >: if we can ignore key orderings, we'd merge the two 1s
together first.

https://www.cs.cmu.edu/~yangp/15-451/

The merge neighbors form, is easier to write a dynamic program. The key observation is that
any number created in some intermediate point of the algorithm comes from an interval of the
original list. This leads to a DP state where D P[[][r] is the minimum cost to turn a range of
numbers [/, r] into a single number.

ifi=j
or Ti,j = . ! .
Zisksj ap+min;<jjOPT; +OPTy,,; otherwise
This gives an O(n3) algorithm. This is usually step 1 towards designing a good algorithm: find

an appropriate structure that one can mathemtically reason about. It corresponds to the first
portion of this class, on dynamic programming.

Things below are for enrichmentn only. It (optimal leaf BST faster than n?) will not be in any
assessment.

The next step is to make these faster. We will systematically discuss these approaches in the
data structures / amortized analysis portion of the course. This usually involves proving more
things based on the structure identified earlier.

That is, we can treat the optimal k for each value of i and j as an array itself:

ki, Sarg min OP T+ OP T .

i<k<

A somewhat intuitive, but not easy to prove fact is

Lemma 1: Monotonicity of Decision Point

orany i < j < Jj, it holds that

* *
F <k
kpj <k

A quick summary of using this fact for speedups:
1. O(n?logn) solution

(a) Use the fact that forany i < j < j, k;k’j < k;kj,

(b) Foreach setofintervalsoflength L, compute the k* for each one using binary search

(c) Since computing each with binary search takes O(n log n) time and there are n total
lengths for the intervals so the total complexity is O(n?logn)

2. O(n?) solution

(@) Use the fact thatk}; | <k, < k?JrL].

(b) Since i,j—1and i +1, j are shorter intervals, we can find k; i by checking values

from k¥ k

*
i,j—1 Kit1, e

(c) Getting all intervals of length L therefore requires O(n) iterations:

Z(k;—l,HL -k}, +1)<0(n)

1

(d) Therefore computing all intervals takes O(n?)

Both of these methods require looking at all intervals of length ¢ together at once: note that
because the transition formula only goes to smaller lengthed intervals, this plus going through
Is in increasing order removes all issues with needing values of not-yet-computed states.

The first is to binary search: relabel all the intervals of length L to
1,2,...(n—L+1),

and abbreviate k;,,; | as k; since we are only looking at things of the same lengths. Note
that k7 is also (non-strictly) monotonically increasing in i. So once we figure out k7 . , (for the
middle one), we have:

ki<ky ., Vi<mid
so we can search only to the left of &}, ; , for indices 1...mid, and only to the right of k7 . , for
indices mid...t. The pseudocode for this is:

FINDOPTK(Z, 1, k}', k)

If r <1+ O(1), find by brute force.

Let mid — |(l+71)/2].

Compute k7 ., by looping over all of [k}, k7].
FINDOPTK(l, mid, k}, k},; ;)

FINDOPTK(mid, 1, k} .., k¥)

mid’

G W=

This completely splits up the n possible candidates for k7. Furthermore, this division process
only goes O(log) levels since the range of i we look for halves at each step. So the total cost is
O(nlogn). We will see such complex divide-and-conquer repeatedly in this course, although
not in exactly format.

The second is to use the alternate inequality

* * *
ki,j—l < ki,j = ki+1,j
to partition up the search space for i, j. Note that both i, j —1 and i + 1, j are shorter so the
total number of things looked at is

Z(k?+l,i+t - k;k,i+t—l + 1) <n+n<0(n).

1

Can we do even faster? Dynamic programming seems doomed now because there are n? states.
This version, up to here, can be found athttps://atcoder. jp/contests/dp/tasks/dp_n.
What about doing even faster?

Note that we are almost at the limit of the interval based structure identified earlier: there are
just n? different intervals.

To go further, we need to start proving some states are not necessary. This often requires trying
to formulate the problem using more advanced mathematical tools. The one that we will use
the most is linear programming: they will be discussed at the start of the second portion of the
class.

What about greedy?

A natural approach is to always merge together the two neighbors with smallest sum. This,
in fact, works when the initial sequence can be permuted arbitrarily (it is known as Huffman
code). However, the restriction of only merging neighbors makes this suboptimal though, con-
sider for example

10,9,9,10.

How to fix this? This natural next question leads to what I feel is one of the most important
takeaways from this course:

AVOID PROPOSING GREEDY ALGORITHMS IF POSSIBLE

I suggest everyone try to converse with neighbors for 10 minutes to come up with something
that the course staff cannot find an example to break...

I'm also quite sure LLMs can search up this algorithm by now.

Fix: Make things that have been merged ‘transparent’. That is, once the two 9s above merged
(into 18), the two 10s can ‘see’ each other through this new number, and merge.

I hope thisillsutrates why it’s better to go dynamic programming first: non-DP based approaches
are so open-ended that one can easily spend a term trying to make something work. I suggest
we all follow the ‘do not attempt greedy until question explicitly tells you to’ approach/agree-
ment... this also means we will clearly indicate when a question involves greedy.

It turns out, after a lot of work, that the total cost of this equals to the optimal merging cost...
Several things remain:

1. Recover a proper merging sequence from the output of this greedy process.
2. Implement this process in O(nlogn) time (using some really fancy priority queues).
3. Prove that nothing can get better costs than this.

If you want a version of this that LLMs have a very hard time with, same problem, but on a
cycle. Circle-square greedy generalizes naturally to it, but have not been able to find a counter
example, or attempted to prove its correctness.

https://atcoder.jp/contests/dp/tasks/dp_n

If you want an open problem, remove the restriction that keys must sit on leaves. This is called
the optimal search tree problem, and it's open whether there is faster than n? for it. Some recent
progresses on it: https://arxiv.org/abs/1505.00357.

Finally, note that it’s usually not the case that we know the frequency of accesses before call-
ing the binary tree. This leads to the notion of online algorithms, where one is working with
partial information. The wikipedia article on optimal binary trees has a good starting point for
these:https://en.wikipedia.org/wiki/Optimal_binary_search_tree#Dynamic_optimality.

https://arxiv.org/abs/1505.00357
https://en.wikipedia.org/wiki/Optimal_binary_search_tree#Dynamic_optimality

	Course Information
	Philosophy

