

15-451/651 Algorithm Design & Analysis, Spring 2026

Homework #2 Solutions

1. (*, dynamic product maintenance mod arbitrary M)

(a) Show that given a tree where each node p is associated with a non-negative integer x_p , and a fixed modulus M , the product of each subtree mod M ,

$$\prod_{q \in \text{SUBTREE}(p)} x_q,$$

for all nodes p , can be computed in $O(n)$ time.

Solution: Store the product of the subtree mod M as state in node:

$$DP[i] = \prod_{j: j \in \text{Subtree}(i)} v_j \pmod{M}$$

$DP[i] = (v[i] \times DP[i.l] \times DP[i.r]) \pmod{M}$ where l is the left child and r is the right child.

(b) Using the DP state from the above part, or some other method of your choice, give a data structure that maintains the product of a set of n non-negative integers mod M under modifications in $O(\log n)$ time per update, and only performs multiplications modulo M on non-negative integers of value at most $O(n^{10}M^{10})$.

Note that M may not be prime, and the intended solution does not use any number theory beyond the fact that $(a \cdot b) \equiv ((a \pmod{M}) \cdot b) \equiv ((a \pmod{M}) \cdot (b \pmod{M})) \pmod{M}$.

Solution: Take a complete balanced binary tree with leaves set to x_1, \dots, x_n in order, and maintain the above value for the product of all leaves in each subtree.

Each internal node is $\text{product[left]} * \text{product[right]} \pmod{M}$. We can make modifications in $O(\log n)$ by updating the path to the root, and can query the root which is the product of all the numbers in $O(1)$.

2. (** weighted k -independent set) Give an algorithm that takes a tree with weights on the vertices, returns the maximum weight of a subset of exactly k vertices such that no two vertices in the set are adjacent, in time $O(n^{10}k^{10})$.

Solution: DP state is $DP[i][k][0]$ is the max weight of a subset of k independent elements in subtree of i without root used, $DP[i][k][1]$ is the max weight where the root is used.

Transitions:

Let the children of i be $1 \dots d$. We want to distribute k between whether i is in the set, and how many from subtree j is in the set, k_j .

If root is not in the set, then each child can be in or out of the set

$$DP[i][k][0] = \max_{k_1 + \dots + k_d = k} \sum_{j \in \text{Children}(i)} \max\{DP[j][k_j][0], DP[j][k_j][1]\}$$

If root is used, each children must be unused,

$$DP[i][k][1] = w_i + \max_{k_1 + \dots + k_d = k-1} \sum_{j \in \text{Children}(i)} DP[j][k_j][0]$$

Base case: $DP[i][0][1] = 0$, $DP[i][1][1] = w_i$.

This DP as given takes time $O(nk^{d_{\max}})$, where d_{\max} is the maximum number of children of a node: the transitions involve d numbers, $k_1 \dots k_d$, each can be up to k .

To make it faster, define DP states on the children prefix $\text{DPpartial}[i][i_1][k][0]$ for $0 \leq i_1 \leq |\text{Children}(i)|$ to be the maximum weight in the tree induced by i and its first i_1 children, using k nodes excluding i . The base case is then

$$\text{DPpartial}[i][i_1][k][0] = \begin{cases} 0 & \text{if } k = 0 \\ -\infty & \text{otherwise} \end{cases}$$

and the transition (for the children list $\text{Children}(i) = \langle j_1 \dots j_d \rangle$) is

$$\text{DPpartial}[i][i_1][k][0] = \max_{0 \leq k_1 \leq k} \text{DPpartial}[i][i_1-1][k-k_1][0] + \max\{DP[j_{i_1}][k_1][0], DP[j_{i_1}][k_1][1]\}$$

for each $i_1 > 0$. Once we compute this, we can let $DP[i][k][0] = \text{DPpartial}[i][d][k][0]$ for each k .

Similarly, for the case where we do take i , define $\text{DPpartial}[i][i_1][k][1]$ for $0 \leq i_1 \leq |\text{Children}(i)|$ to be the maximum weight in the tree induced by i and its first i_1 children, using k nodes including i . The base case is

$$\text{DPpartial}[i][i_1][k][1] = \begin{cases} w_i & \text{if } k = 1 \\ -\infty & \text{otherwise} \end{cases}$$

and the transition is

$$\text{DPpartial}[i][i_1][k][1] = \max_{0 \leq k_1 \leq k} \text{DPpartial}[i][i_1-1][k-k_1][1] + DP[j_{i_1}][k_1][0]$$

for each $i_1 > 0$, and when done we set $DP[i][k][1] = \text{DPpartial}[i][d][k][1]$.

For running time, the most immediate bound is to look at all dimensions:

- (a) there are at most n nodes,
- (b) each has at most n children,
- (c) the number of things taken is up to k ,
- (d) the number of values of k_1 is k ,
- (e) and taken/not taken is 2 states,

so $O(n^2 k^2)$.

One can get to $O(nk^2)$ by observing that the total number of children of all nodes is $O(n)$. Another way to see this is to count things in the other direction: each node has at most 1 parent.

UNNECESSARY tighter bounds

We can actually prove a tighter bound of $O(nk)$...

First note that it's actually bounded by the smaller size of a child subtree:

$$\min\{k, \text{Size}[p]\} \cdot \min\{k, \text{Size}[q_1], \text{Size}[q_2]\}.$$

We can actually prove that this total cost in a tree is smaller.

Lemma 1. *In a binary tree with n nodes, for any value k , the total of the value in Equation 2 summed over all nodes is $O(nk)$.*

Proof. We will prove this in two steps, we first handle the case where $\text{SIZE}[p] \leq k$. This implies that the size of both children of p are also at most k as well.

Note that whenever $x = x_1 + x_2$ and $x_1 \leq x_2$, we get via $x_1 \leq x/2 \leq x_2$:

$$x_1^2 + x_2^2 + x_1 \cdot x \leq x_1^2 + x_2^2 + 2x_1x_2 = (x_1 + x_2)^2 = x^2.$$

for any $y \leq x/2$. So we get that as long as $\text{SIZE}[p] \leq O(k)$, the cost is at most $O(k \cdot \text{SIZE}[p])$. So we can prove by induction on the value x that a node x incurs a cost of at most x^2 .

For the case where the size of p is more than k , observe that there are at most $O(n/k)$ nodes with both children having size at most k . So the total cost among such nodes is at least

$$O(n/k) \cdot O(k^2) = O(nk).$$

Then the remaining case is that one of the children has size $< k$, but p has size more than k . For this case, observe that we can charge a cost of k to all nodes in the smaller subtree. Such nodes are never charged again, because in that subtree there are no more nodes of size more than k . So once again we get a contribution of $O(nk)$. \square

One additional trick that can be done to this problem is that we can reduce the total memory usage to $O(\log n \cdot k)$. We always recurse onto the child with bigger size first, and use tail recursion to directly pass up the size k knapsack table. This ensures that the only things we need to keep 'on the stack' are the $O(\log n)$ ancestors with successively doubling sizes.

3. (** pareto optimum points) Give an algorithm that takes a length n array of 2-tuples (a_i, b_i) and computes for **each** i whether there is some $j < i$ such that i is larger than j in both attributes, aka. $a_i > a_j$ and $b_i > b_j$, in a total time of $O(n \log n)$.

Solution: First, use sort to reduce all key values to the range $1 \dots n$.

Build a tree on an array $B[1 \dots n]$ that supports:

- Modify $B[i]$
- Query for prefix min, the minimum of $B[1 \dots i]$ for some i .

Loop through the items in increasing order, for each i , query for the minimum b in the tree where $a < a_i$, by querying for the minimum of

$$B[1 \dots (a_i - 1)].$$

If it's less than a_i , then a_i has such a j .

Then update $B[a_i]$ in the tree with b_i .

This is $O(n)$ update/query operations, giving a total of $O(n \log n)$.