
15-451/651 Algorithm Design & Analysis, Spring 2025

Homework #1 Solutions

1. (*, actual optimal static binary search tree)

Recall the optimum binary search tree problem mentioned briefly at the end of Lecture 1: we want to
arrange keys 1 to n in a binary tree, while minimizing

∑

i

DEPTH (i) ·wi

where DEPTH(i) is the depth of i in the tree, and wi s are given weights. Given an O (n 3) time algorithm for
this problem.

Note that this is not leaf-BST: internal nodes in the binary search tree should also have keys.

References:

• https://en.wikipedia.org/wiki/Optimal_binary_search_tree
• https://chatgpt.com/share/6966e15b-3b60-800c-9312-1ff633d5ad2e, but up to the n ≤

300 part...

Solution: DP (interval DP). Let keys be 1, . . . , n with weights w1, . . . , wn .
State. For 1≤ ℓ≤ r ≤ n , define D P [ℓ][r] to be the minimum

r
∑

i=ℓ

(depth of key i within the subtree) ·wi

over all BSTs whose keys are exactly {ℓ, . . . , r }, where the root of this subtree has depth 1. Define
D P [ℓ][r] = 0 for ℓ > r (empty tree).
Prefix sums for weights. Let P [0] = 0 and P [t] =

∑t
j=1 w j . Then for any interval [ℓ, r],

SumW(ℓ, r) =
r
∑

j=ℓ

w j = P [r]−P [ℓ−1].

Transition. Choose the root to be k ∈ {ℓ, . . . , r }. Then the left subtree uses keys {ℓ, . . . , k − 1} and the
right subtree uses keys {k +1, . . . , r }. When attaching these optimal subtrees under root k , every key in
[ℓ, r] has its depth increased by 1 compared to treating subtrees as rooted at depth 0, which contributes
exactly SumW(ℓ, r) in total weight. Thus:

D P [ℓ][r] =
r

min
k=ℓ

�

D P [ℓ][k −1] +D P [k +1][r] +SumW(ℓ, r)
�

.

Base cases. D P [ℓ][r] = 0 if ℓ > r . If ℓ= r , then D P [ℓ][ℓ] = SumW(ℓ,ℓ) =wℓ (single root at depth 1).
Output. The optimal BST objective value (with root depth 1) is D P [1][n].
Order of computation. Compute D P in increasing interval length l e n = 1, 2, . . . , n .
Running time. There are O (n 2) intervals (ℓ, r) and for each we try O (n) roots k , each in O (1) time
using prefix sums. Total O (n 3) time and O (n 2) space.

2. (**, knapsack with weights from small ranges)

Consider the value optimization version of knapsack without replacement: given n items with weights
w1 . . . wn and values v1 . . . vn , find a subset with weight at most W whose value is maximized. However,
instead of W small, all weights are integers in a small range, from x to x +k .

Give an algorithm for solving this problem that runs in O (n 10k 10) time or faster.

Note:

1

https://en.wikipedia.org/wiki/Optimal_binary_search_tree
https://chatgpt.com/share/6966e15b-3b60-800c-9312-1ff633d5ad2e

• The 10s in exponents are to give some leeway: course staff are aware of O (n 2k).
Note (from post hw1 discussions): the intended solutions, e.g. the one below, take O (n 3k) time. The
reason we asked for O (n 10k 10) is to make it difficult to guess the solution structure / states from the
intended bounds.

The improved bounds come from using the fact that the ‘extra’ weights are in a size k range, and then
incorporating tricks that are extensions of the random ordering optimization from Week 1 recitation.
It is very much speculative, and likely omitted log factors.

This remark was suppose to be speculative, and was not intended as guidance / hint for solutions. A
more appropriate wording would have been “the fastest runtime that the course staff can imagine is
around n 2k ”.

• When x is large, e.g. x > n 100, the O (nW) bound we discussed in class can be much worse than this.

• the reference below gives O ((n/k)k), which does not meet the runtime we ask here when k is large
(e.g. k = n/10).

Reference: https://atcoder.jp/contests/abc060/tasks/arc073_b, with 3 replaced by k .

Solution: Let each weight be written as wi = x +δi where δi ∈ {0, 1, . . . , k}. If we select exactly j items
and the sum of their extras is s :=

∑

δi , then the total weight is j x + s .
Define the DP:

D P [i][j][s] =maximum total value achievable using items 1..i , selecting exactly j items, with extra-sum exactly s .

Initialize
D P [0][0][0] = 0, D P [0][j][s] =−∞ for all other (j , s).

Transition for item i (with value vi and extra δi):

D P [i][j][s] =max
�

D P [i −1][j][s], D P [i −1][j −1][s −δi] + vi

�

,

where the second term is only considered if j ≥ 1 and s ≥δi .
Finally, the answer is

max{D P [n][j][s] | 0≤ j ≤ n , 0≤ s ≤ j k , j x + s ≤W }.

Running time. The indices satisfy 0≤ j ≤ i ≤ n and 0≤ s ≤ j k ≤ nk , so there are O (n 3k) states. Each
transition is O (1), giving total time O (n 3k).

3. (counting counting knapsack)

We have n items of positive integer weights, and a sum goal S .

(a) (**, skip if you do part b) Give an algorithm that finds the number of subsets of these n items that sum
to S in O (nS) arithmetic operations.

Solution: DP state. Let d pi [s] be the number of subsets of the first i items whose total weight
is exactly s .
Base cases. d p0[0] = 1 and d p0[s] = 0 for all s > 0.
Transition. Let the i -th weight be ai . For each s ∈ {0, 1, . . . ,S},

d pi [s] = d pi−1[s] + 1s≥ai
·d pi−1[s −ai].

(Exclude item i , or include it.)
1D implementation. Maintain a single array d p [0..S] initialized as d p [0] = 1, others 0. For each
i = 1..n , update for s = S ,S −1, . . . , ai :

d p [s]← d p [s] +d p [s −ai].

2

https://atcoder.jp/contests/abc060/tasks/arc073_b

Answer. Return d p [S].
Running time. There are n iterations and each does O (S) constant-time updates, so O (nS)
arithmetic operations.

(b) (***) Compute the sum of the answer of part (a) over all subsets of these n elements. That is, we want
to sum over all subsets of these n elements, A the number of subsets of A that sum to S . Show that
this is still computable in O (nS) arithmetic operations.

hint: you can do this by adding 2 characters to a solution for part (a).

Solution: We want
∑

A⊆[n]

�

#{B ⊆ A :
∑

j∈B

a j = S}
�

.

Equivalently, count pairs (A, B) such that B ⊆ A ⊆ [n] and
∑

j∈B a j = S .
For each item i , there are three possibilities:

• i ∈ B (then automatically i ∈ A): adds weight ai ,
• i ∈ A \B : adds weight 0,
• i /∈ A: adds weight 0.

So “not in B ” has two choices (in A \B or in neither), giving a factor 2.
DP state. Let d pi [s] be the number of valid pairs (A, B) using items {1, . . . , i } with

∑

j∈B a j = s .
Base cases. d p0[0] = 1, and d p0[s] = 0 for s > 0.
Transition. For item i :

d pi [s] = 2 ·d pi−1[s] + 1s≥ai
·d pi−1[s −ai].

The 2 ·d pi−1[s] corresponds to the two choices where i /∈ B , and the second term corresponds to
choosing i ∈ B .
Answer. Return d p [S].
Running time. Each item performs O (S) constant-time arithmetic updates, for total O (nS) arith-
metic operations.

Note: the numbers that arise during these computations are enormous. Autograders keep this cost under
control by asking for answer mod 998244353. For this course, we ask you to bound the number of arith-
metic operations instead: you can assume all arithmetic, in particular, addition, and multiplication, take
O (1) time. Division/round are almost never needed for such problems: they are the point where arithmetic
cost models can be severely abused.

Reference: https://atcoder.jp/contests/abc169/tasks/abc169_f

3

https://atcoder.jp/contests/abc169/tasks/abc169_f

