Integer Circuit Evaluation is PSPACE-complete

Ke Yang

Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh,
PA 15213, USA

E-mail: yangke@cmu.edu

Key Words: PSPACE, Integer Circuit, Chinese Remainder Theorem

Wagner [10] introduced the Integer Circuit Evaluation problem. Infor-
mally, the problem concerns a circuit that takes singleton sets, each con-
taining one integer, and combines them using three types of set operations:
AUB, AB={a-b|la€ A, beB},and ADB={a+b|a € A, be B}.
The problem is to determine whether the set output by the circuit contains
a particular integer. In this paper we show that the Integer Circuit prob-
lem is PSPACE-complete, resolving an open problem posed by McKenzie,
Vollmer and Wagner [7].
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1. INTRODUCTION

The Integer Circuit Evaluation problem was first introduced by Wagner [10]
(though in a different representation). Roughly speaking, an Integer Circuit (IC)
takes singleton sets, each containing one integer, as input, and has three types of set
operations as gates: the union gate — A U B; the pair-wise multiplication gate —
A®@B ={a-b|a€ A, be B}, the pair-wise addition gate — A® B ={a+b|a €
A, b€ B}. The Integer Circuit Evaluation problem (ICE) is given an integer X, a
circuit and its inputs, to determine whether or not X is contained in the set output
by the circuit. Wagner proved that this problem is in PSPACE [10]. In this paper
we demonstrate a polynomial-time algorithm that reduces the Quantified Boolean
Formula (QBF) problem to the Integer Circuit Evaluation problem, thus proving
the Integer Circuit Evaluation problem is PSPACE-complete. This result resolves
one of the open problems posed in [7].

Circuit computation is thought to be strictly more powerful than formula compu-
tation. For example, polynomial-size boolean formula evaluation is in NC*, while
polynomial-size boolean circuit evaluation is P-complete. As early as 1973, Stock-
meyer and Meyer studied the complexity of integer expressions [9], which can be
rephrased as the “formula version” of the Integer Circuit Evaluation problem. They
proved that {U, +}-formula problem (where one only has union and pair-wise addi-
tion operations) is NP-complete. Their result easily extends to {U, x, +}-formula
problem (where one allows pair-wise multiplication operations). Furthermore, they
observed that, if one allows negation, namely, operations that negates all elements
in a set, the problem is already PSPACE-complete. But they didn’t consider integer
circuit evaluation problems.

The complexity of circuit evaluation has always been a point of interests and
different models of circuit evaluation are studied. For instance, Beaudry, McKen-
zie, Péladeau, and Thérien proved that circuit evaluation over nonsolvable monoids
is P-complete, and circuit evaluation over solvable monoids can be evaluated in
DET C NC? [3]. Allender et al. [1] discussed depth reduction for commutative
and non-commutative arithmetic circuits. They proved that in the commutative
setting, uniform semi-bounded arithmetic circuits of logarithmic depth are as pow-
erful as uniform arithmetic circuits of polynomial degree (unbounded depth). They
also proved that in the non-commutative case, over the algebra (X*, max, concat),
arithmetic circuits of polynomial size and polynomial degree can be reduced to
O(log® n) depth.

Wagner in his paper [10] defined “hierarchical descriptions”; which are equivalent
to Integer Circuits without pair-wise multiplication gates. He proved that the
membership problem for hierarchical descriptions is in PSPACE, and left open if
this problem is PSPACE-complete.

Recently, McKenzie, Vollmer and Wagner in [7] defined “polynomial replacement
systems” | in which the Integer Circuits arise as a special case. One of the open prob-
lems in their paper is the PSPACE-completeness of the Integer Circuit Evaluation
problem.

In the rest of this paper, section 2 contains the definitions and formal notations;
section 3 contains the reduction from QBF to the Integer Circuit Problem. The
reduction consists of 3 parts: pre-processing the QBF, core reduction to remove
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the quantifiers, and the post-processing to extract the results. Section 4 is the
summary.

2. DEFINITIONS AND NOTATIONS

We give some definitions and notations to be used in the rest of the paper.

We use N to denote the set of all positive integers and Z to denote the set of
all integers. When there is no danger of confusion, we use 1 and -1 to represent
TRUE and FALSE, respectively. For an integer set A, we use ||A|| to denote the
maximum absolute value of elements in A, i.e., ||A|| = max{|z| : € A}. For a
positive integer X, we use [X] to denote the set {1,2,..., X}.

2.1. Quantified Boolean Formula
Quantified Boolean Formula (QBF) is a well-known problem. We consider the
following standard form of QBF:

F=Qi21Q222..Qn%, ¢(z1, 22, ..., 25)

where @; =Vor3,i=1,2,...,n,and ¢(x1, ..., x,) is a DNF of variables 21, zs, ..., 2.
We call this type of QBF “standard form QBF” | since it has special properties that:

1. all variables are quantified, namely, there are no free variables.
2. ¢ is a DNF| i.e., ¢ is the OR of several clauses, while each clause is an AND
of literals.

The QBF problem is: given a QBF F in standard form, decide if the F' is TRUE or
FALSE. It is well-known that the standard QBF is a PSPACE-complete problem[9].

2.2. Integer Circuits
We give the definition of Integer Circuits.

DeFINITION 2.1. [Integer Circuit] An Integer Circuit (IC) is a directed acyclic
graph with n nodes of in-degree zero, called inputs and labeled X3, X5, ..., X,,, and
with all other nodes of in-degree two. The nodes of in-degree two each has a label
from {U, ®, ®}, and one of these nodes is specified as the output gate.

The semantics of the IC are as follows. Each input gate is assigned a singleton
set of integer and an internal gate receiving sets A and B along its two input wires
computes the following:

1. A U gate (or union gate) computes A U B.
2. A @ gate (or addition gate) computes {a+b|a € A, b€ B}.
3. A ® gate (or multiplication gate) computes {a-b|a € A, b€ B}.

The output of the circuit is the set computed by the output gate.

The Integer Circuit Evaluation problem (ICE) is defined as a set of tuples in
the form of (C, X, a1, as, ...., an), where C is an Integer Circuit and X, a1, as, ..., a,
are positive integers. The tuple is in the ICE if X belongs to the set computed by
the circuit C' when the singleton set {a;} is assigned to the input gate X; for each
i=1,2,...,n.



4 KE YANG

(U)1.2 3.4}
AN

U:union {3,4,6,8
+: plus
X: times {6,7,8,9,10,11,12}

FIG. 1. An Integer Circuit

Figure 1 gives an example of an Integer Circuit.
Wagner proved that ICE is in PSPACE [10]. In this paper, we show it is actually
PSPACE-complete. We prove this by showing a reduction from QBF to the ICE.

2.3. Integer Vector
We define integer vectors and the operations on them.

DEFINITION 2.2. [Integer Vector] An n-dimensional Integer Vector v is writ-
ten as v = (vl v? ..., v"), where v' € Z, for i = 1,2,...n. We denote the set of all

n-dimensional integer vectors by Z™.

DEFINITION 2.3. [Lo Norm] We define the Lo, Norm of an integer vector v to
be:

Iv|| = max {|¢v'| :i=1,2,...,n}
We define the Lo, Norm of a finite set S of integer vectors to be:

IS = max {[|v]| : v &S5}

Notice this is consistent with the case when n = 1: now S is a set of integers and
[|S]] is exactly the maximum absolute value of the elements in S.

DEeFINITION 2.4. [Neighbors] Two n-dimensional integer vectors u and v are
Neighbors in the k-th entry, iff:

1wk = -,
2. ut =o' foralli £k, 1<i<n.

We write [v]j for the (unique) neighbor of v in the k-th entry, so that u = [v]y iff
v = [u)g.

DEFINITION 2.5. [Scalar Multiple] Given an integer a and an n-dimensional inte-
ger vector v, their Scalar Multiple is defined as

a-v=_{(a-vta-v* .. a-v")
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We denote —1 - v by —v.

DEFINITION 2.6. [Addition and Multiplication] For n-dimensional integer vectors
u and v, we define their Addition and Multiplication as follows:

utv = (u ot e o e ")

u-v = (u' ol u?e? ")

Notice that the multiplication defined here is entry-wise multiplication, rather
than the inner product.
Now we define some useful constant vectors.

DEFINITION 2.7. We define the following constants:

o 1" =(1,1,..,1).
o e =(e1,€,..,€,), Where e = 1, and e; =0 forall i # k,1 <i < n.
o 17 = (ay,asz,..,a,), where ay = —1, and @; = 1 for all i Z k,1 < i < n.

For example, e3 = (0,1,0,0,0) and 13 = (1,1, —1,1).
When the value of n is clear from the context and there is no danger of ambiguity,
we normally eliminate the n — e.g., we write e; rather than e}}.

2.4. Vector Integer Circuit
We will look at another kind of circuits — Vector Integer Circuits (VIC), which
is closely related to the IC. Actually the only difference between VIC and IC is that
in VIC, the operations are over sets of integer vectors, rather than sets of positive
integers in 1C.

DEFINITION 2.8. [Vector Integer Circuit]

A Vector Integer Circuit is a directed acyclic graph with n nodes of in-degree
zero, called inputs and labeled X7, X3, ..., X,,, and with all other nodes of in-degree
two. The nodes of in-degree two each has a label from {U, ®, ®}, and one of these
nodes is specified as the output gate.

The semantics of the VIC are as follows. Each input gate is assigned a singleton
set of integer vector and an internal gate receiving sets A and B along its two input
wires computes the following:

1. A U gate (or union gate) computes A U B.
2. A @ gate (or addition gate) computes {a+b|a€ A /b e B}.
3. A ® gate (or multiplication gate) computes {a-b|a € A,/b € B}.

The output of the circuit is the set computed by the output gate.

The Vector Integer Circuit Evaluation problem (VICE) is defined as a set
of tuples in the form of (C, X, a;,as, ..., a,), where C' is a Vector Integer Circuit
and X, aj,as, ..., a, are integer vectors. The tuple is in the VICE if X belongs to
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the set computed by the circuit C' when the singleton set {a;} is assigned to the
input gate X; foreach : =1,2,....n

{@ 2, 3)} {(—1 0, D@, 0, —3)} {(1,0, 1)}

{(40 -2)}
{(1,2,3),(-1,0,1)

{(4,0,-6),(-4,0,-2)}

U: union

+: plus

X: times
FIG. 2. An Vector Integer Circuit

{(4,0,6),(4,0,—2),(—4,0,—2)}

Figure 2 gives an example of a Vector Integer Circuit.

A Vector Integer Circuit has the same structure as an Integer Circuit, but the
elements under operation are sets of integer vectors, rather than sets of positive
integers, and they have their own version of addition and multiplication. Notice
that an IC is a special case of a VIC since an integer can be regarded as a 1-
dimensional vector. Actually, as we will use Chinese Remainder Theorem to prove
later, they are actually equivalent.

The reason we introduce the VICE is that we will first reduce the QBF to VICE,
and then we further reduce VICE to ICE, thus showing ICE is PSPACE-hard.

3. REDUCING QBF TO ICE

In this section we show how to reduce QBF to VICE. Our reduction contains
three parts: pre-processing the DNF formula to build a truth table; core reduction
to remove the quantifiers; and post-processing to extract the result. The first two
parts reduce QBF to VICE, and the third part reduces VICE to ICE.

3.1. Part 1: Pre-processing the DNF Formula
We begin with some definitions.
It is intuitively clear that we can use integer vectors to represent truth assign-
ments, and we give a formal definition here:

DEFINITION 3.1. [Truth Assignment Vector] An n-dimensional integer vector v
is a Truth Assignment Vector, if all its entries are 1 or -1, i.e., v/ = +1, for
1=1,2,..n.

Claim.  There are 2" truth assignment vectors in Z™.
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DEFINITION 3.2. [Satisfying Vector] For an n-dimensional truth assignment vec-
tor v = (v1,va,...,v,) and a boolean formula ¢ of n variables z1, ..., z,, we say v

satisfies ¢, if ¢(v!,v?,..,v") is TRUE.

Notice that we can add “dummy variables” to a boolean formula, and thus a for-
mula of n variables can also be regarded as a formula of m variables for m > n. For
example, we can view formula (z; Azz2)V 23 as a formula of variables #1, 22, 23, 24,
and so vector (1,1,1,—1) is a satisfying vector for this formula. Moreover, we can
also view the constants TRUE and FALSE as boolean formulas of n variables.
Therefore any n-dimensional truth assignment vector satisfies TRUE and no truth
assignment vector satisfies FALSE.

From now on, unless otherwise stated, we assume we are working with a universe
of n variables: z1, s, ..., z,, and all boolean formulas are regarded as formulas of
n variables. When there is no danger of confusion, we often remove n from our
statements.

DeFINITION 3.3. [Truth Table] For a boolean formula ¢, we define its Truth
Table to be the set of all the truth assignments that satisfy ¢:

T(¢) = {v | v satisfies ¢, v € Z"}

In particular, the truth table of TRUE is the set of all n-dimensional truth
assignment vectors and the truth table of FALSE is the .

Our goal in this subsection is to construct a truth table for a DNF formula, using
a Vector Integer Circuit.
Notice if ¢ is a DNF formula, then it can be written as

¢6=C1vCyV---V(Opy

where each Cj is a conjunctive clause. So we know

which can be implemented by VIC pretty easily, as shown in Figure 3.

T(C1) T(C2) T(C3)

/

‘UNION>

T(Clv C2vC3

FIG. 3. The truth table of a DNF
Now each T'(C;) is easy to compute: WLOG we assume

CZ'2;731/\1‘2/\~~/\:L‘k/\—|;l‘k+1/\~~~/\—|;l‘k+l
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then

k )
@ {erti+1, —€k+i+1} (2)
©® {ena _en}

here the @ is the addition operation in a Vector Integer Circuit. Figure 4 is a
example for the clause 1 A x5 when n = 4.

(0,0,1,0) ((0,0,-1,0) ((0,0,0,1) ((0,0,0,-1]

UNION

n=4

T(x1 & x2)

FIG. 4. The truth table of a clause

Thus we have

LEMMA 3.1. There is a polynomial time algorithm Ay, that takes in a DNF
formula ¢ as input, and outputs a Vector Integer Circuit C' along with its input z,

such that C(z) = T'(¢).

Proof. Suppose the DNF formula ¢ takes the form
o=CiVvCyV---V(Cpy

The algorithm A; does the following: First it uses Equation 2 to generate sub-
circuits that compute T'(C;) for i = 1,2, ..,m, then it uses Equation 1 to generate
sub-circuits that compute T'(¢), and finally composes the two sub-circuits to gener-
ate a circuit that computes the truth table of ¢. The total size of the circuit is poly-

nomial in n and m, and thus is polynomial in |¢|. H

3.2. Part 2: Core Reduction — Remove the Quantifiers
This part is the main part of the reduction.
Notice that the QBF we are studying takes the form

F=Qiz1Q2%3..Qnzn ¢(1‘1, sy ﬂ@n)

By Lemma 3.1, we know we can compute the truth table for ¢. Now we want to
compute the truth table of F. Also notice that since I is closed, i.e. there are no
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free variables in F'| its value is either TRUE or FALSE, and thus its truth table is
either the set of all n-dimensional truth assignment vectors or the empty set.
Let’s look at a QBF with a single quantifier:

DEFINITION 3.4. [Equivalent Formula] Let F = Qmam ¢(21,..., 2m) be a QBF
with one quantifier, where ¢ is a boolean formula. We define its Equivalent
Formula to be

qsl — { ¢(£1: sy m—1, 1) /\¢(xla "'axm—la_l) if Q =V
¢($1, ey Lm—1, 1) V¢(I1, ...,;l‘m_l,—l) if Q =3

which is also a boolean formula.

Then we obviously have

Claim. Let boolean formulas F' and ¢’ be defined as in Definition 3.4. Then F
and ¢’ are logically equivalent, i.e., for all 21, 29, ..., 2m—1 € {1, =1}, F(21,..., Zm-1) =
¢/(I1,...,‘$m_1). |

We can also demonstrate the relationship between the truth tables of ¢ and ¢’:

LEMMA 3.2. Let F = Qmam ¢(21, ..., 2m) be a QBF with one quantifier, and ¢’
be its equivalent formula. We denote the truth table of ¢ by T = T'(¢). Then we
have

oIfQm =V, thenT(¢') ={v : vETA [v]n, €T}
IfQm =3, then T(¢') ={v : veTV [v], €T}

Proof. Immediate from the definition of ¢ and ¢’. [ |

Conceptually, the above lemma gives a way to remove one quantifier from a
boolean formula. Now, given a QBF with n quantifiers, we can remove the quanti-
fiers one by one, from inside to outside.

DEFINITION 3.5. [Equivalent QBF Chain] Let F' = Q121Q2z2...Qnzn (21, ..., 2n)
be a closed QBF. An Equivalent QBF Chain of F is a sequence of QBF’s:
{Fo, Fi, ..., F,,}, satisfying:

1. F, = F.
2. Fp_1 = Qr21..Qp_12k_1 dr_1, and ¢x_1 is the equivalent formula of Qg zg ok,
for k=1,2,...,n, and ¢, is defined to be ¢.

So all the QBF’s in the equivalent QBF chain are closed, and in particular,
Fy = ¢g is a constant of value either TRUE or FALSE. Again it is immediate that
all the QBF’s in the chain are equivalent. So F' is true iff Fy is true iff the truth
table of Fj is the set of all n-dimensional truth assignment vectors.

Next we will see how we compute the truth tables of ¢,,, ¢,_1, ..., &g using Vector
Integer Circuits. We do so inductively. When we have the truth table of ¢ (it is
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either the complete set or the empty set), we can tell if the original formula F' is
TRUE or FALSE.

We define a transition function as follows:

DEFINITION 3.6. [Transition Function] The Transition Function f is defined
as follows;

(2 1euse 1)) fQ=3
f(Q’S’k’”)_{S@(Sf@uz}) v ®)

where @) is a quantifier, 7" is a set of integer vectors, and 1 and 1} are defined as
in Definition 2.7. Again, when there is no danger of confusion, we may omit the n.

S {1,1,.,1,-1,1,...,1)}
T S {11,.,1,-1,1,..,1)}
k-th entry /
k-th entry
UNION>  {(2,2, ..., 2)}
Thed Case The V Case

FIG. 5. The transition function

The transition function can be implemented by a Vector Integer Circuit: see
Figure 5. Suppose now we have a QBF F = Q121Q2%2...Qnzn (21, ..., 2,), where
¢ is a DNF, and S = T(¢) is the truth table of ¢. Then we can repeatedly apply

the transition f on S:

DEFINITION 3.7. [Operation Chain] For a closed QBF

F=@Qiz1Q223..Qn7, ¢(I1, sy él‘n),

let S be the truth table of the DNF in F'. We define S, = S, and Sp_1 =
f(Qk, Sk, k,n), for k = n,n — 1,...,1. The sequence {Sy, Si, ..., Sp} is called the
Operation Chain for F.

We have several observations:
LeEMMA 3.3. ||Sk|| < 2=k
This can be easily proved by induction on k.

Next we define the good vectors — roughly speaking, good vectors are the ones
whose each entry achieves its maximally possible absolute value.
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Sk is a Good Vector in S, if |[v!| = 2" 7% for all i = 1,2, ...,n. A vector is a Bad
Vector if it is not a good vector.

DEeFINITION 3.8. [Good Vectors, Bad Vectors] An integer vector v = (vl v? ... v") €

The next lemma is an important one.
LEMMA 3.4. Ifv € Sp_1 is a good vector in Sg_1, then:
1.If Qr =V, then there exists u € Sg, such that:

eu is good in Sk.

o[u]g, which is also good, is also in Sy .
ov=2 u.

o[v]i, which is also good, is also in Sg_1.

2.If Qx = 3, then there exists u € Sk, such that:

eu is good in Sk.
ev=2-uorv=2-u-1; .

o[v]i, which is also good, is also in Sg_1.

Proof. We prove the two statements of the lemma:

1. Suppose Qg = V. Then, by Definition 3.6, there must exist vectors u,w € S,
such that v = u+ w - 1;. Notice v is good in Sx_1, so [v!| = 27~*+1 for all
i =1,2,...,n. However, v' = u' + w’ for i # k, and v* = v* — w*. By Lemma
3.3, each entry of u and w is bounded by 2"~%. Thus the only possibility v is
good is that both u and w are good in Sk, u' = w', for i # k, and v* = —wk.
That means w = [u]g. Sov=u+w 1y = u+ [u]y - 15 = 2 -u. Furthermore,
[V]k =w+u-1; € Sp_1.

2. Suppose @i = 3. Then, again by Definition 3.6, there exists a vector u € Sk,
such that v =2-uor v=2-u-1;. In either case, this u should be good, and notice
[v]g = v-1g. So we have [v]g = 2-[ulg-1x € Sg—10or [v]g =2u-1lg-1py = 2u € Sp_;.
|

Lemma 3.4 implies that, if there is a good vector v in Sg_1, then there must be
a good vector in Sy corresponding to it, and the neighbor of v in the k-th place is
also in Sg.

In the subsequent discussion, we will only focus on the good vectors in Sy, S1, ..., Sp.

DeFINITION 3.9. [Filtering Function and Filtered Operation Chain] We define a
Filtering Function (-, -), as follows:
U(k,S) ={v|veS |v'|=2""" Vi=12 ., n}

For the operation chain {Sp, S1,..., Sy} of a QBF F we define Gy = ¢(k, S), for
k = 0,1,...,n, and call the sequence {Gg,G1,...,G,} the Filtered Operation
Chain of F'.
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As its names suggests, ¥(k,-) “filters” all the bad vectors out of Sj.
Then immediately from Lemma 3.4, we have

Claim. Gp = ¥(k, f(Qk+1, Gr+1,k)). W

The intuition is: there are two ways to do the filtering: one way is that we filter
out the bad vectors in each step of the transition, and only apply the next transition
to the remaining good vectors; the other way is that we do all the transitions first,
and then filter out the bad ones in the end. Actually these two ways of doing the
filtering will yield the same result.

Now we are ready to prove the Main Lemma, which relates our filtered operation
chain {Gg}, to the truth tables of the equivalent QBF chain.

LEMMA 3.5 (Main Lemma). Let

F=Qi21Q222...Qn2z, ¢(21, 22, ..., 25)

be a QBF, and its equivalent QBF chain be {Fy, Iy, ..., F,}. For each i, write ¢;
for the quantifier-free part of F;, and denote the truth table of ¢; by T; = T(¢;).
Let {G} be the filtered operation chain of F' as defined in Definition 8.9. Then we
have

Gr=2""%.Ty
fork=1,2, ..., n.

Proof.

We proceed by induction on k.

The base case is k = n. For k = n, Notice both 7;, and S,, are truth tables of ¢,
so T, = S,. Each vector in the truth table is a truth assignment vector, i.e., their
entries are all 1. Therefore all vectors in S, are good, and thus G, = S, =T,.

Now the inductive case: suppose the Main Lemma is true for &k, we look at k£ — 1.
We inspect the relationship between Ty _; and Tk, the truth table for the formula
¢r_1 and ¢g. ¢r_1 is the equivalent Formula for Qrxi; ¢r. We look at the two
possible cases @ =V and Qg = 3, respectively.

e () = V. For an arbitrary vector v € Gi_1, we know from Lemma 3.4, that
there exists u € Gy, such that v .= 2 - u, and also [u]zy € Gg. By inductive
hypothesis, G, C 2" 7% . T} sou € 2" 7% . T} and [u]y € 2% - T;. By Lemma 3.2,
we know u € 2"~% . T _1, which means v = 2 -u € 27~%+1 . T, _;. Therefore
Groy C2mF+HL Ty,

On the other hand, For an arbitrary vector u € 27~ *+1 .7, _;, we write u = 2 - w.
Then we know w € 2"% . 7}_;. Again by Lemma 3.2, we know both w and
[w]g are in 27~% . 7). By inductive hypothesis, both w and [w]; are in G%. So
u=2-w=w-+[wlg1; € Gp_1.Therefore G,_; D 2"~ **1. T}, ;.

e (= 1.
For an arbitrary vector v € Gg_1, from Lemma 3.4 we can assume there exists
u € Gy, such that v.= 2 -u (if it is not the case, consider [v]g, which is also in
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Gr—1). By induction hypothesis, we have u € 2°7* . T;,. By Lemma 3.2, we know
both u € 2% . T},_; and [u]gy € 2" % - Tj_4, ie., both v =2 u € 27 5+l . 7},
and [v]g € 27 7F+1 .7} | Therefore G_; C 2" F+1 . Tj_y.

On the other hand, For an arbitrary vector u € 27~ #+1 .7, _; we write u = 2 - w.
Then we have w € 2"~ % . T},_;. Again by Lemma 3.2, we know either w or [w]g
is (or both) in 2"~* . 7). By induction hypothesis, either w or [w]g is in G, and
thus either u = 2 -w € Gg_1, which means u = 2 -w - 1; € Gi_1.Therefore
Gro1 D27=FH1 . Ty

|

The important consequence of the Main Lemma is that Gy = 2” - Ty. From
Definition 3.3, we know Ty is either the set or all n-dimensional truth assignment
vectors or the empty set. Therefore we know that Gy is also either the set of all
good vectors or the empty set — so we have:

CoroLLARY 3.1 (All-or-Nothing Rule). Let F' and Gy be as defined in Lemma 3.5.
If F is TRUE, then Gy contains all good vectors for Sy, namely, all the 2™ vectors
whose entries are £2"; if F' 1s FALSE, then Gy is the empty set.

If we combine lemma 3.1 with the All-or-Nothing Rule, we have

LEMMA 3.6. There exists a polynomial time algorithm As, that takes a QBF in
standard form, F, and outputs a Vector Integer Circuit C' along with the input X,
such that F is TRUE, iff (2",2",...,2") € C'(X).

Proof. The Vector Integer Circuit is constructed as follows: first we apply
Lemma 3.1 to construct a sub-circuit that outputs the truth table S of the DNF
¢ inside the QBF F. Then we construct another sub-circuit that applies the tran-
sition function defined in Definition 3.6 n times. Putting the two pieces together,
we now have a circuit that outputs Sy. By the All-or-Nothing Rule, if F'is TRUE,
and the filtered set, Gy = (0, Sp) contains all good vectors, and in particular,
vector (27,27, ...,2™), thus Sy also contain this vector; if I/ is FALSE, then Gy is
the empty set, and thus Sy doesn’t contain any good vector, including the vector

(2m,2",..,2". n
Notice this result already implies

THEOREM 3.1. VICE is PSPACE-hard. W

3.3. Part 3: Post-processing to extract the result
Now we will reduce the Vector Integer Circuit Evaluation problem to the Integer
Circuit Evaluation problem, where each element in the sets is a positive integer.
We state the Chinese Remainder Theorem first: the version given here is adapted

from [6].

THEOREM 3.2 (Chinese Remainder Theorem(CRT)). IfM = [[;_, a; and GCD(a;, a;) =
1fori#i,1<i<n, and 1 < j<n, then any solution of f(z) =0 (mod M) is a
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stmultaneous solution of the system

and conversely.

It it not hard to see the theorem above is equivalent to the following version
of CRT (the main difference here is that we actually “pin down” the range of the
residues for aq, as, ..., an).

THEOREM 3.3 (CRT, version 2). For any n positive numbers ay, as, ..., ap which
are pairwise relatively prime, that is, GCD(a;,a;) = 1, for all 1 <i < j < n, let
M =TI, ai. Let

V = {v|vis an Integer Vector and

—a;/2 < v <a;/2,i=1,2,..,n}

Then there exists a 1-1, polynomial-time computable mapping h fromV to{1,2,..., M}.
And the mapping is homomorphic, in that for any u,v € V, ifu+v € V and
u-v eV, then we have

Now it is almost immediate for us to reduce the VICE problem to ICE problem.

LEMMA 3.7. There exists a polynomial time algorithm A, which takes a QBF in
standard form, I, and output a triple (C,z, N), where C is an Integer Circuit, x
is the input to C, and N a positive integer, such that F' is TRUE, iff N € C(x).

Proof. First by Lemma 3.6, we have a Vector Integer Circuit Cy, whose output
contains (2"7,2", ..., 2"} iff F'is TRUE.

Now we pick the smallest n distinct prime numbers: p; = 2,ps = 3, ..., pp, and
let a; = p?“, for : = 1,2,..,n. Then we know ay, as, ..., a, are pairwise relatively
prime. By the Prime Number Theorem (see [6]), we know p, < n? and thus
a; = pPtt < n? < 237" and a; > 27+ fori=1,2...,n. Let M = [[;_, @;. Then
all the a;,as,...,a, and M can be generated in time polynomial in n. Now notice
for each vector generated in circuit Cy, its entry is bounded by 27 in absolute value
(see Lemma 3.3). So by CRT, we have a 1-1 mapping A(-) from set of all integer
vectors in the VIC Cj to the set of all integers in the IC Cy modulo M, and h(-) is

homomorphic.
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Then we construct an Integer Circuit C from Cy: for every input gate in Cy with
vector v, we put an input gate in C, with number h(v). For every computational
gate in Cy, we put a computational gate in C' in the corresponding place. The
type of the computational gates in Cy and C also correspond to each other: for a
union gate in Cy, we put a union gate in C'; for an addition gate in Cy, we put an
addition gate in C; for a multiplication gate in Cy, we put a multiplication gate
in C. Finally, we mark the “output” gate in C' in the corresponding place of the
“output” gate in Cy — and we denote the output of this “output” gate by R —
notice R is a set of positive integers

Then from CRT and Lemma 3.6, we know, I3m € R,m = 2" (mod M) iff
the original QBF, F' is TRUE: Notice that A((2",27,...,2")) = 2". But we are
not done yet: the 1-1 mapping A in the CRT is only homomorphic to modulo
additions and multiplications, while Integer Circuits performs integer additions
and multiplications. Actually the integers in the output set R can be quite large
— much larger than M.

Now we need a way to find out if a set R contains a specific residue modulo M:
in other words, we need a way to find out if R contains any integer from the set
{z | = 2" (mod M)}.

Let B= R® {M — 2"}, then we know the original QBF is TRUE, iff B contains
a multiple of M.

We show that each number of B is bounded by 28n*,

Claim. ||B|| < 287",

Notice in the construction of the integer circuit C, the numbers in every input
gate is bounded by M = []}_, a;, which in turn is bounded by 237" When we look
at the computations within the circuit C, in part 1, constructing the truth table,
at most n multiplications (by a constant, which is bounded by M) are performed
to each number; in part 2, there are n transition function operations, each has
one multiplication with a constant and one addition or a doubling. Therefore the
maximum number we can get is bounded by (2M)?"+! < 277" __ that is a bound
for ||A||. Finally since B = A® {M — a}, we have ||B|| < 28n"

Then, we show we can construct a set

L=1{k-M|1<k<A\}

for A = 287",

Notice that for an integer X, if X is odd, then [X] = ((X —=1)/2]®[(X —-1)/2]®
{1}) U{1,2};if X is even, then [X] = ([X/2] ®[X/2]) U {1}. Thus for any integer
X, we can construct the set [X] in O(log X) time. Therefore we can construct
L=[A®{M} in time O(n*).

Then we know B contains a multiple of M, iff
A+1) - Me(Bal)
|

So now we have theorem

THEOREM 3.4. ICE s PSPACE-hard.
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4. SUMMARY AND FURTHER QUESTIONS

We have shown a polynomial-time reduction from Quantified Boolean Formula
(QBF) to the Integer Circuit Evaluation problem (ICE), and thus proved that
ICE is PSPACE-hard. This result, together with the paper [10], shows the ICE is
PSPACE-complete.

There are two techniques used in the proof that have independent interests. The
first technique is: we use the truth table to compute the value of a QBF: we started
by computing the truth table of the un-quantified DNF formula and then keep
track of the truth table as we add quantifiers. Finally we get a truth table that
is either contains all truth assignments or is the empty set and thus we can test
it. The second technique is to use the Chinese Remainder Theorem to reduce the
Vector Integer Circuits to Integer Circuits. In this way we reduce the problem
of manipulating vectors (which correspond to truth assignments) to manipulating
integers.

An interesting question about this proof is: the All-or-Nothing Rule is actually
stronger than needed for our purpose, and what can we do to fully exploit its
strength? One thought is that maybe we can slightly weaken the problem. So
consider the “size-version” of the ICE: we still have an Integer Circuit C, along
with input z and an integer N, but now the problem is not membership but the
size — if |C'(z)| = N or not.

One can easily modify the Part 3 of the reduction to show the size-version of ICE
is also PSPACE-hard, and it is also PSPACE-complete.

But now one can ask the “approximation” problem: given an Integer Circuit C,
its input z, and an integer N, and a real number ¢, we ask if N is an approximation
of |C(x)| within a factor of €, or, if (1 — €)|C(x)] < N < (1 4+ ¢)|C(x)|. Is the
problem still PSPACE-complete? Does the complexity depend on € now?
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