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Abstract

We introducea “Statistical Query Samging” model,in
which the god of an algorithm is to producean element
in a hiddensetS C {0,1}™ with reasonale probabil-
ity. Thealgorithm gainsinformationabou S throudh or-
acle calls (statistical queries), whee the algorithm sub-
mits a query function g(-) and receivesan approximaion
to Pr,cs[g(z) = 1]. We showhowthis modé is relatedto
NMR quartumcompting, in which only statisticalproper
ties of an ensemblef quantum systemsan be measued,
andin particular to the questionof whetheronecantrans-
late standad quartumalgorithirs to the NMR settingwith-
out putting all of their classical post-pocessinginto the
guantum system. Using Fourier analysistechniques de-
velopedin therelatedcontext of statisticalquel learring,
we prove a numberof lower bourds (bath information-
theoetic and cryptographic) on the ability of algarithms
to prodwcesan z € S, evenwhenthe setS is fairly sim-
ple. Thesdower bowndspoint out a difficulty in efficiertly
appying NMR quartum comptiing to algorithmssud as
Sha’ s and Simons algorithmthat involvesignifican clas-
sical post-ppcessing We alsoexplicitly relatethe notion of
statisticalquerysamplingto that of statisticalquerylearn-

ing.

1 Intr oduction

Recentyeas have witnessedhe developmentof anum-
berof exciting quantun algoithms: Simons algoiithm for
the hidden XOR secretproblem[28], Shots algorithmfor
factoing anddiscretelogaithms[26, 27], BonehandLip-
ton’s algorithmfor the hidden subgoup problem [4], and
mary generéizations and extersions[21, 11, 12, 18, 15,
17]. At the sametime, work hasbeenongdng on various
proposaldor physicallyrealizingquartumcompuers.Cur-
rently, one of the mostpromising suchproposalsis based
onNuclearMagneticResonancé@\MR) [10, 7, 13, 5]. The
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NMR apprachworksby manipuating alarge ensemke of
guartum systemsin solution One property of the NMR
methal, which is the focus of this paper is thatunlike the
“standad” quanum compuing model, onecanrot directly
measureary individual quartum systemin the ensemble.
Instead,a measurerant is limited to a single qubit, and
when a measuremd takes place, the device returrs (an
appoximationto) the expectedvalueof this measurerant,
over the quantum systemsin the ensemble. For this rea-
son,themodelfor NMR is sometimegalledthe“expectea-
value” (EV) model[6]. In contiast, the measurmentin
the standardquantum mockl yields a randbm samplestate
(which may consistsof multiple bits) accoding to a classi-
cal probaility distribution.

Giventhedistinctionbetweerthestandaranodelandthe
EV model,thefirst questionthatarisesis whetherit is pos-
sibleto translatealgorithms working in the standardnodel
to work in the EV model. In fact,the answelris yes. Con-
siderany BQP algorithm [24]. Recallfrom the definition
thata BQP algorithm solvesa decisionprodem, andsuch
analgorithm hasa special‘target” qulit to indicateaccep-
tance. For alanguage L andaninput z, if x € L, then
themeasurerantof thetargetquht will producea“1” with
prokability atleast3/4; if © ¢ L, the prabability is at most
1/4 whenmeasured Suchan algorithm works naturally
in the EV modé, sinceonecansimply measurehe target
quht, andeven with significantmeasuementerror, usethe
rule thatif the obseredvaluev > 1/2, thenz € L, and
othewise x ¢ L. For a search(as opposedto decision)
prodem, we canperform the usualrediction to a seriesof
decisionprodems,solving eachoneby one In fact,mary
researchrshave usedthis apprach[13, 24], whichwe call
an“all-inclusive” translation

Unfortunately the“all-inclusive” translationcangreatly
increaseheamoun of work thatmustbedore by thequan-
tum system. ConsiderShots algorithm, for instance(see
Apperdix A). Shots algorithm (andotherslike it) consists
of aquarntum samplingcircuit @, whoseoutput is measured
andfed into a classicalextractian circuit C. For the all-
inclusivetranslationtheclassicakxtradion circuit C' need
to be “quantumized, i.e., realizedby a quarium circuit
andappemedto the quarium samplingcircuit (). This can
causasignificantincreasen thesizeof thequariumcircuit



— in the caseof Shors algoiithm, the entire circuitry for
computing contintedfractiors needdo berealizedin quan-
tum — which is a ratherundesirableconsegence. Even
in the most optimistic scenariosguantum compuers will
be ordes of magnituwde more difficult to manufctureand
maintainthanclassicalcomputers,andthuswe would like
to putaslittle of the comgexity aspossiblein thequarium
system. Even more seriousprodems emege when more
than one sampleis neededy the classicalextraction cir-
cuit. For exanple, in Simoris algoritm, Q(n) samplesare
neeced for Gaussiarelimination (seeAppendx A). Now
the all-inclusive translationneedsto mandacturemultiple
copes of the quarium samplingcircuit and then connet
themtogetherwith the “quartumized” classicalextraction
circuit. This cancausesvenmoreblowup in the sizeof the
guantumcircuitin the EV mocel.

In this papey we conside the questionof whetherthere
might be moreefficient translatios that apply geneally to
algoithmsconsistingof a quantumsamplingcircuit @ fol-
lowed by a classicalextradion circuit C', that work with-
out having to puttheclassicalpartof thealgoiithm into the
guantumsystem.Ourmaincortributionsareresultsthatan-
swerthisquestionn thenggative,for severd naturalnotiors
of “generd’. We achievetheseresultsthroughaconrection
to the notion of statistical querylearning [22] studiedin
Compuational Learnirg Theory andin particularto a re-
latednotionthatwe introdice of statisticalquerysampling
Using technquesfrom Fourier analysisand cryptograghy,
we shav thatevenin caseswhere the distribution implied
by @ is quitesimple,it canbe hardto usethe EV modelto
gereratea samplethatcanbe usedby C. Notethatourre-
sultsdo not preclua the possibility of approachegailored
to specificquarium algorithns. For examge, Collins [6]
demastratesa modificatian to Grover’s algorittm thatis
more efficientthantheall-inclusive translation(seealsothe
discussiorbelown). However, aspointedout by the autha,
hisappr@achdoesnot genealizeto algorithns like Shof's.

1.1 Our modeland resuts

We view the quantum samplingcircuit () asrepresent-
ing a hiddensetS C {0,1}", andwe view the classical
post-pocessingasa circuit C' suchthatC'(z) = 1 for all
x € S. Thegoalof thetranslationprocedureis to produce
somex € S. Tofind suchanz, thealgorithm hastheability
to perfam a “statisticalquery of ) by proposinga query
function (a predcate) g : {0,1}" —~ {0,1} andasking
for E,cs[g(z)] upto somel/poly accuray. For exanple,
measung theith quhit corresponddo thequey g(z) = x ;.
Takingthe XOR of thefirst threequlits andthenmeasuring
theresultcorrespondgo thequey g(z) = x1 Px2Px3. The
algoithm may repet this processmultiple (polynomially-
mary) times, with different quay functions g, andin the

endmust(with noticedle probability) prodiceanz € S.

Note thatthis taskis easyto doif S is verylarge (|S| >
2™ /poly(n)), sincearandon z € {0,1}" will do. It is also
easyto doif S is verysmall(|S| = poly(n)). In particular
if |S| = poly(n), thenby askingfor anaccurag of 1/(2|5])
onecandistingush the casethatE ;< s[g(z)] = 0 from the
casethatE,cs[g(z)] > 0. This allows oneto walk down
the bits of z, fixing bits from left to right, until a specific
x € Sis prodwed. Thisis thekey ideaof [6].

We shav, however, that this task is hard in gereral.
Specifically we givetwo typesof hardressresults.First,we
giveaninformation-tteoretichardressresultif thequey al-
gorithm is not allowedto acces. Thatis, the translator
is allowed to usethe fact that the classicalextractian cir-
cuit C is polynomialin size(sothe setof acceping strings
canna betotally arbitrary) but it is not allowedto examne
C — it canonly gaininformationvia the queies g. Sec-
ond we give a cryptograghic hardressresultif we assume
the translatoris given C' asinput, but that othewise C' is
an arbitray polynomial-sizecircuit. We still do not know
if efficient translationis possiblefor the specificcircuit C'
usedin Shorsalgorittm.

We alsoconside amoregeneal setting,in which .S may
belarge (e.g, |S| = 2"~1), soarandm stringhasreason-
able chanceof belondng to S, but the god of the transla-
tion is to produceastringz € S with probability substan-
tially greatethanrandm guessingWe call this more gen-
eral setting“strong SQ-samplinj andreferto the former
settingas the “weak SQ-samplig”. StrongSQ-sampling
mockls situationssuchas Simons algoiithm, in which the
quarium circuit prodwcesarandmy € {0,1}" suchthat
y - s = 0 for the hiddensecrets. In this case,a rancdbm
string hasprobability 1/2 of belorging to S, but we need
Q(n) correctsamplesn arow in orderto perform Gaussian
elimination We give aninformation-tteoreticharchessre-
sultfor this prodem, thatholds for the specificsetS used
by Simoris algoithm (Theaem?2).!

1.2 Technquesand relation to Statistical Query
learning

Our resultsare basedon a conrectionto the Statistical
Query(SQ)learnirg model firstintroducedby Kearng22]
as a restrictedversion of the popudar Probally Approxi-
matelyCorrect(PAC) mode of Valiant[30]. In thesdearn-
ing modéds, the goal of analgorithmis to learnanappro-
imationto a hiddenfunction f : {0,1}" — {0,1}. In the
PAC model, the algorithm hasaccesgo an “exanple or-
acle”, which producesa randan labeledsample(z, f(z))

INote, for Simons algorithm, we no longer wantto think of thereex-
isting a known classi@l extraction circuit. If we weregiven acessto a
circuit C' suchthatC(z) = 1iff z € S (e.g.,thecircuit with the hidden
secretbuilt in) thenthe sampling goalwould be easy SeeTheoren 4 for
furtherdiscusson.



upa invocaion. In the SQ mockel, hawever, the algorithm
does not seeexplicit exampes or their labels. Instead the
algoithm queries an “SQ-oracle”with predicatesy(z,y),
andreceves anapprximationto Pr,[g(z, f(z)) = 1]. For
instancethe algorithm might askfor the prokability thata
rancom exanple would bothbepositive andhaveits first bit
setto 1 (g(z,y) = =1 Ay).> TheSQmodelhasprovento be
vely usefulbecauséa)it is inhetently tolerantto classifica-
tion noise(thisis thereasorthemodelwasdeveloped),and
(b) nearlyall machire learnirg algorithirs canbe phrased
as SQ algoritms. What makesthe SQ model especially
interestingis that one caninformationtheoreticallyprove
lower bourds on the ability of SQ algoritmsto learncer
tain classe®f functions[22, 3, 20, 31, 37.

Therelationslip betweerthestandardnodel andthe EV
mockl for quartum compuationis quite similar to thatbe-
tweenthe PAC mockl andthe SQ modelin machire learn-
ing, which motivatesour definition of the StatisticalQuery
Samplirg prablem. In particdar, the SQ samplingproblem
can be viewed as the SQ learning prablem with two key
differencesfirst, the goalis notto learnan appraximation
to f butis ratherto prodice a positive example,and sec-
ond the oraclefor SQ samplirg returrs apprximationsto
Prlg(z) = 1| f(z) = 1] ratherthanto Pr[g(z, f(z)) = 1]
(adifferencethatmattersvhenthe setof positive exampges
is quitesmall).

We usetechnigiesfrom Fourier analysisto prove the
following lower bounds. First (Theaem 1) we shaw there
exist simplefunction classesuchthat no algoithm, using
only a polynomial nurrber of quefes of 1/poly accurag,
canproducea positive instancewith even1/poly prokabil-
ity. Second Theorem?2), for the classof “negdive parity’
functionsarisingin Simoris algoiithm, no algoiithm using
only a polynomial nurrber of queres of 1/poly accurag,
canproducea nontrivial positive instancewith prokability
morethanl/2+ 1/poly. (Notethatrandm guessingvorks
with probability 1/2). We alsoshawv thatunlike the caseof
SQlearnirg, the SQsamplingorodem canbe computation-
ally hardevenif f is explicitly givento thealgorithm based
oncryptagraphicassumptios (seeTheoem3).

Finally, we explicitly relatethe notion of SQ sampling
to thatof SQ learring by proving thatif afunction classis
“dense”, meanimg thatarancdmelementasnon-regligible
prabability of being positive, then strong SQ-learnability
impliesstrongSQ-samplaitity (Theoem4). We alsopoint
out thatthereexists function classeghatareperfectly SQ-
samplake, yetnotevenweakly SQ-learmable.

2In both PAC and SQ learning models, the distribution over = need
not be the uniform distribution (or evenknown to the leaming algarithm).
However, muchwork on SQ learning doesfocuson the uniform distribu-
tion, andthatis the settingwe aremostinterestedin in this paper

2 Preliminaries and Definitions

We areinterestedn predicateghat mapelementgrom
a doman X (e.g., {0,1}™) to {0,1}. For a predicate
f X — {0,1}, aninput z is a positiveinput to f if
f(z) =1, elseit is anegativeinput. All the positive inputs
to f form the positivesetof f, denotedoy S;. A predicate
class oftendenotedby C,,, is simply a collectionof pred-
icatesover {0,1}™. A predicateclassfamily is aninfinite
sequeneof predcateclasse€ = (Cy,C, ...), suchthatC,
is apredcateclassover {0,1}".

A parity fundion @,(z) is definedto be ®;(z) = s -
x mod2. A negativeparity function —@ ; () is thenegdion
of the parity function® s (z).

2.1 Statistical Query Sampling

Definition 1 (Statistical Query Sampling Oracle) A sta-
tistical quey sampling oracle (SQS-oacle) for a predi-
cate f is deroted by SQS’/. On input (g,¢), whee g :
{0,1}" = {—1,+1} isthequeryfunction and¢ € [0,1] is
thetolerarce, the oraclereturnsa real numbery sud that
ly — Eqes, [g(@)]| < €.

Definition 2 (SQ-Samplability) A predicéae classfamilyC
is SQ-samplablatrates in time ¢ andtolerarce &, if there
existsa randomizedoracle madine Z, sud that for every
n > 0 andevery f € C,, Z with accesgo any SQS-oacle
SQS’, runsin at mostt(n) steps,asksquerieswith toler-
anceat least¢, andoutputsanz € Sy with probablity at
leasts(n). We say( is strongSQ-samplale if for everye,
C is SQ-samlable at rate 1 — € in time ¢ andtolerancef
such thatt and¢—! are polyromialin n and1/e. We sayC
is weak SQ-samplale if there existsa polynamial p, such
that C is SQ-sampliele at rate 1/p(n) in time andinverse
tolerance polyromialin n.

Definition 3 (Sampling Algorit hms with Auxiliary Inputs)
A predicae classfamily C is SQ-samplablevith auxiliary
input ¢ if it is SQ-samplble by analgarithm Z which takes
o(f) astheauxiliary input, wheee f is the predicatebeing
sampled.

3 Lower BoundsBasedon Fourier Analysis

We first prove two hardressresultson SQ sampling us-
ing Fourier analysistechnigesdevelopedin the context of
SQlearnirg.

3.1 A Lower Bound on Weak SQ-Sampling

We prove that thereexist very simplefamilies of pred-
icate classeghat are not weak SQ-samplablei.e., no ef-



ficient algoiithm can produce a positive input at ary non-
negligible rate.

We introducea bit more notation We useboldfaceto
derote a vecta andindex the entriesof an n-dimersional
vecta from 0 to (n — 1). We usex[i] to denotethe i-th
entry of x. x[a..b] indicatesthe subvectorformed by the
entriesof x betweenthe a-th andthe b-th, inclusive. Let
X,,p bethe setof all n-dimensionalvectas over Z , (the
Galoisfield moduo p) whoselastn — 1 entriesarenotall-
zerg i.e.,

Xnp={x€Z|x[l.n—1] # (0,0,...,0)}. (1)
It is easyto seethat| X, ,| = p" — p.

Definition 4 (BooleanizedLinear Functions) A
bodeanized linear function over X, , with parameter
ais dendedby L, anddefiredas

|1 if a-x=1 (mod p)
La(x) = { 0  othewise 2)
We say L, is normalizedif a[0] = 1. The nornalized

bodeanizedinearfunction class dendedby £ ,, ,, consists
of all normalizedbodeanizedlinear functionsover X, ;.
In othe words,

Lnp={Lala€Zy, al0] =1} 3)

Theorem1 If a samplingalgorithm for the normalized
bodeanizedlinear functin class £, males less than
p™/* queries, eadt of tolerance 1/p"/%, then the proba-
bility it produce a positiveinput x € Xn,,, is at most
1/p+1/p"/®3.

Notice thatthe requiementx € X'M, is simply to rule
out the trivial positive input 100...0, andwe could have
equvalently just modifiedthe definition of a “boolearnzed
linearfunctior’ sothatthis specificexampe is madeney-
ative. Also, noticethatif we choosep to be muchgreater
thann, say picking p to be an n-bit prime numter, then
1/p + 1/p™/13 is exponentially small,while the sizeof the
problem is still polynomialin n. Furthermore,if a com-
pletely randanm x is picked the probaility it is a positive
input is 1/p. Thuseven exporentially mary queies may
only helpthe samplingby anexponentiallysmallmargin.

Proof: Our prod stratgy is similar to that used by
Kearrs [22] andBlum et.al. [3] in thecontet of SQlearn-
ing. We descrile an “adversarial” SQS-oracleSQS that
does not comnit to ary particdar predcate at the begin-
ning. Rather the oraclemaintairs a “canddate predicae
set” P, which initially includesall predicatesn the class
Lnp (atotal p»~1 of them). Eachtime the algorithm Z

makesaquery 5QS replieswith ananswetthatyieldsvery

little information. Somepredicdesin the canddate set P
mightnotbeconsistentvith theanswerandwill be/r\e/mo/ed
from set P. After all the queriesare finished, SQS then
comnits to a randan predcateremainirg in P. We shall
prove thateachqueryonly remosesa smallfraction of the
predcatesfrom P. Thusif Z doesnotmake enoudp num-
ber of queies, therewould be enowgh predicaesleft in P
suchthatno elementanbe positive with high probability.
For a queryfunction g : Xn,p — {-1,+1}, we say
that a subsetS C {0,1}" is a £-indepenlent subsetfor
g, if [Epeslo(@)] — Byex, [9(@)]| < & andwe saya
predcate f is &-indegenden from g, if its positive setSy
is a £-independentsetfor g. Intuitively, if a predcate f
is ¢£-independen from g, thenthe query (g, £) reveals al-

most no information abou f, since SQS can reply with
Eocx,, [9(x)] instead,which is competely independent
from f. L

We describehebehaior of our SQS-oraclesQS in more
detail. On quey g, SQS replieswith E ¢ P[g(:v)], and
removes all predcatesthat are not &-independen from g
from the candidateset P. We assumehatall queres have
tolerarce & = p~"/3. We shall prove thatfor any queryg,
thereareatmostp?”/3+2 predicatesiotp—"/3-independent
from g. This prod is by a Fourieranalysigechnige andis
given asLemmab in Appendix D. Thus,if lessthanp™/*
gueies are made,the candidhte set still containsat least
p" ' (1 — p~™/12-3) parity functions.

Now consicrthedomainX,, ,. It is nothardto seethat
evely x € X'w, is positive for only p™~2 predcates.So, if
the oraclecommitsto a randan predicateout of the setof
p" (1 — p~/12-3) theprokability thatz is positive is at
most1/p + 1/p"/13. [

3.2 A Lower Bound on Sampling Negative Parity
Predicates

We prove thata classof negative parity functionsis not
SQ-samplale in polynomialtime atary ratenonnegligibly
higherthan1/2.

Theorem?2 Let X,, = {0,1}"\{0"} and(, betheclass
of nggative parity functiors over X,,. If a samplingalgo-
rithm for C,, maleslessthan2™/4 queries ead of tolerance
2-"/4 thentheprobability it produ@sa positiveinputis at
mosty + 5.

Beforeproving thetheoremwe point outhow thisresult
relatesto the translationof Simons algaithm to the NMR
mockl. In Simons algorithm, the quarium samplirg cir-
cuit producesa randomy € {0,1}" suchthaty - s = 0,
wheres is the “hidden” secret(seeAppendix A). Thusthe
hidden setcorrespndsexactly to the negative parity func-
tion ~@;. In thealgorithm, the quantum samplingcircuit is



invoked © (n) timesandproduces®(n) sampledor Gaus-
sianeliminatian. Noticethaty = 0™ isuselessTherfore,a
translationof the quartum samplingcircuit will producean
SQ-samplig algorithm Z to be execued ©(n) timesand
to praduce®(n) positive sampledn X,, = {0,1}™\{0"}.
However, Theoem 2 impliesthatit is not possibleto sam-
ple efficiently at ary rate nonnegligibly higherthan1/2
(ndtice thatarandan z € X, is positive with probability
almost1/2). This resultsuggestshatit appeas necessary
to mandacture®(n) copiesof the quarium samplingcir-
cuit andrunthesecopiestogethelin the NMR model.

Proof sketch: Theprod stratayy is similarto thatof The-
orem1. We assumethat eachquery hastolerane ¢ =
1/2"/*, We constrict an SQS-oracléhaton ques function
g, replieswith E, ¢ 13~ [9(z)], andremove all predcates
thatarenot ¢é-indeendem from g from the candichteset P
(herethedefinitionof “¢-independert’ natually changsto
|Eseslg(@)] — Ezeqo,y-[9(@)]| < €). We shallprove in
Lemma 7 (in Apperdix D) thatfor ary quey g, thereare
at most2m/2+2 predcatesnot 2—"/4-indegendentfrom g.
Thus, if lessthan2”/4 queies aremade the canddate set
still contairs atleast2” — 237/4+2 _ 1 parity functiors.

Now considerthedomainX,, = {0,1}"™\{0"}. It is not
hardto seethatevely z € X, is positive for 27~! negdive
parity functions.Now if arandanm parity function is chosen
from a setof size2” — 23%/4+2 _ 1, the probability thatz
is positive is at most

2n—1 1 1
on _ 93n/4+2 _ | < 2 + on/4-2"

Thisistrueforary z € X,,. Therebre,whatever Z outpus,
thepraobability thatit is positive is atmost% + 2,1,% [ ]

4 A Cryptographic Lower Bound

We next prove a cryptagraphc lower bourd. Assum-
ing that oneway functions exist, we showv thatthereexist
predcate classfamilies that are not weak SQ-samplable,
evenif the samplingalgorithmis given the complde de-
scriptionof the predicateasthe auxliary input. Thetech-
nigue we usehereis somavhat similar to that of Angluin
andKharitorov [1], who usedsignatue schemego prove
thatmemltershipqueriesdonothelpto learnDNF.

We briefly describethe ideasbehird our prod. We will
usea digital signatureschemesecureagainstadaptve cho-
senmessagattack[14], which existsif one-way functiors
exist [25]. Let the predcate be the signatue verification
function ver,;(m, s), which returrs 1 if s is a valid sig-
natue to messagen with respectto the verification key
vk. The security of the signatureschemestatesthat no
“breaker” B, givenaccesgo a signingoracle,canprodice

a new valid signatureit hasnot yet seen. We wantto ar
guethatthisimpliesnosamplingalgorithmZ, given access
to a SQ-samplingoracle,canproduceany valid signature.
We will show thatif suchan algorithm Z exists, we can
constret a “brealer’ B asfollows. The brealer will have
accesdo a signingoracle OSign that signsary message
given to it asinput, andruns Z asa subrotine. The only
nonttrivial partfor B is to simulatean SQS-oracleisedby
Z withou revealirg to Z ary informationabou which sig-
natuesit hasalreadyseen(sothat Z is not biasedtowards
producingan alreag-seensignatue). Upona queay (g, £)
from Z, B will producea numkber of randan messagessk
thesigningoracleto signthem,andusethesesampledo es-
timateE s, [g(x)]. Next, B “randamizes”this estimateby
addirg anartificial noiseto it. With properly choserparam-
etersthis“randamized” estimatés still avalid answemwith
very high prabability, andyet almostindepedentfrom the
messages8 prodiuces.Finally, Z producesa positive input,
which is a message/signate pair (m’, s’). The distribu-
tion of thethis pair (m/', s') is alsoalmostindepelentfrom
the message® prodwces,andif Z only makespolynomi-
ally mary queries, thenonly polynomially mary messages
will be producedby B. Thereforethe probaility thatm’
is oneof themessageproducedby B is very small,andso
B bre&sthedigital signatue schemewith reasoably high
prokability.

Formally, a signatue scheme SIG is a triple
(sig_gen, sig_sign, sig_verify) of algoithms, the first
two beingprobabilistic,andall runring in polynomialtime.
sig_gen takesasinput1™ andoutputsa signing/\erification
key pair (sk,vk). sig_sign takesa messagen anda sign-
ing key sk asinputandoutpus asignatures for m. WLOG
we assumehat both m and s are n-bits long. sig_verify
takesa messagen, a verificaion key vk, anda candidate
signatue s’ for m asinputandreturnsthebit b = 1if s’ is
a valid signatue for m for the correspading vetification
key vk, and otherwisereturrs the bit b = 0. Naturally
if s = sig_sign(sk,m), thensig_verify(vk,m,s) = 1.
In an adaptve chosenmessageattack[14], an adwersary
(“breaker”) B is given vk, where(sk, vk) < sig-gen(1™),
andtriesto forge signaturesvith respecto vk. Thebreder
B is allowed to query a signing orade OSign,,;,, which
signsary messagavith respectto vk, on messagesf its
choice. It succeedn existentialforgeryif afterthisit can
output a pair (m, s), wheresig_verify(vk, m,s) = 1, but
m was not one of the messagesignedby the signature
oracle. A signatue schemeSIG is existentially unforge-
ableaganst adaptve chosemmessagattacksif thereis no
forging algorithm B thatruns in time polynomial in n. and
succeedsvith probability 1/poly(n). Suchschemesxist
if one-way functionsexist [25].

Theorem3 Let SIG = (sig_gen, sig_sign, sig_verify) be
a digital signatue schemesecue against adagive chosen



messge attak. Thenthe predicateclass family C,, =
{ver,i} is not weaklySQ-samplhle, evenif the sampling
algarithm is givenvk as the auxiliary input. Here ver
is defiredto bever,(m, s) = sig-verify(vk, m, s), where
(sk,vk) < sig-gen(1™), andm, s € {0,1}".

Proof: Assumeto the contary that thereexists an algo-
rithm Z that weak SQ-sampleghe fundion classC,, =
{ver,x }. More preciselywe assumehat Z producesapos-
itive input with prokability e by making g queies, where
both 1/e and ¢ are bourded by a polynomial in n. We
shall constructa polynomial-time algorithm B that breals
the signatue schemeSIG with probability €/2, causinga
cortradiction.

We now describethe behaior of B. B hasaccesgo
a signingoracleOSign,,, andinteractswith the sampling
algoithm Z asthe SQS-oracle.When Z makesa query

(g,&), B doesthe following. First, B computeséy = qu

andM = %{;M. ThenB draws M randon messages
mi,ma,....,my € {0,1}", andasksthe signingoracleto
signall of them. Assumethe signatuesaresy, s, -.., sus.
Next, B usesthesemessage/signateipairsto estimatethe
expectedvalueof g by compuingz = - 224:1 g(mg, sg).
ThenB “randamizes”z by drawing ay uniformly randanly
from theintenal [z — %,x + %], andsendingy to Z asthe
answerto thequey (g, &). B alsomaintainsa “history set”
setH of all themessage# hasgeneated,whichis initially
(. After aquey from Z is answered3 addsthe messages
mi,ma,...,mp toSetH.

After all the ¢ queriesare made, Z producesa pair
(m!,s"). If veryx(m',s') = 1 andm' ¢ H, thenB out-
puts(m', s") andsuccessfulljorgesasignature Otherwise
B abortsandannaincedailure.

It is clearthatB runsin polynomial time. Intuitively, we
canshaw thataftertherandmization with high probability
the sample(m/, s') producedby Z is almostindepender
from the history set H. Therdore, with high probability,
m' ¢ H, andso B will succeedMore preciselywe prove
that B will succeedvith probabilit atleaste/2.

We useS,;, to denotehepositive setfor predicatever ..
In other words, S, consistsof valid message/sigtiure
pairswith respecto theveiification key vk.

Claim 1 For a query function g, if we defineoc =
E(m,5)e5.: [9(m, 5)], thenwith probatility atleastl—e/5q,
we have|z — o| < & (all quartities are as defiredin the
proof sketch of Theoem3).

Proof: Thisis dueto a straightfoward applicationof the
Hoeffding Bound Eachsample(m, si) is anindependen
rancbm elementfrom S, andthusE,,, ses,, [9(m, s) =
1] = 0. Sothe expectedvalueof z is 0. Now, the praba-
bility that M indepenxdentsamplesyieldsanaverage belov
o — & is at moste—M&/2 (notice that the rangeof g is

{-1,+1}). Also the prokability thatthe averageis above
o + & is at moste~M¢ /2, Therefae with probability at
leastl — 2¢~M€/2 > 1 — ¢/5q, wehave|z — o < &. ®

We fix a set consistingof M message/sigiure pairs
geneatedby B in resposeto a query (g, &), anddenote
thisby U: U = {(my, sk)}2,. We call this seta sample
set We sayU is typical, if theaverag g(my, sx) is indeed
&o-closeto o. By Claim 1, atmoste/5¢ fractionof thesam-
ple setsarenottypical.

Noticethatatypical samplesetwill yield anaverage that
is £y-closeto o. This is a muchhigher accuagy thanre-
quired by the Z, which hasa tolerarce of £. However, B
needghis accurag to perfam therandmization

Claim 2 If U is a typical set,thenthe answerfrom B for
this quey is valid.

Proof: Noticethatif U is typical, thenthe averag x is
&o-closeto thetruevalueo. After the randmization it is
(&0 + £/2)-closeto o. Thisis lessthan¢. [

We considerthe distribution of the answemproducedby
B for a particdar query(g, £). We dende this distribution
by Dy, whereU is thesamplesetusedby B.

Claim 3 If bothUy andU,; aretypical setsthenthe statis-
tical distancebetweenDy, and Dy, is at moste/5q.

Proof: We usezo andz; to denotethe averagesobtaired
from Uy andU,, respectiely. If bothU, andU; aretypical,
we have [zg — a| < & and|z1 — o] < &. Thuswe have
|zo — z1| < 2&. Noticethat Dy, is a uniform distribution
over theintenal of length¢ centerd atz o, and Dy, auni-
form distribution of samelengthcentere atx,. Theclaim
follows from Lemma4. [ |

Notice the history set H consistsof ¢ samplesets. We
saya historyset H is typical, if all its samplesetsaretyp-
ical. Thenat moste/5 fraction of the history setsare not
typical. We dende the distribution of all answergroduced
by B usinghistorysetH by T'y.

Claim 4 If both Hy and H; are typical, thenthe statistical
distancebetweerl'y, and Ty, is at moste/5.

Proof: Thisdirectlyfollow thesub-addtivity of statistical
distancgseeApperdix C). ]

Now we fix anarbitray typical set H anddende its cor-
responling distribution of theanswersy 7'. Thenwe know
the distribution from ary typical setis at moste/5 away
fromT.

The only information Z recevesfrom B is represented
by the distribution of the answergrodwedby B, whichis



in turn deternined by the historysetB uses.Thus,thedis-
tribution of thepair(m/', s') is comgetely deterninedby the
history set H, andwe dende this distribution by O 7. We
know thatif H is typical, thenPr ,,, 5)co, [Versr (m, s) =
1] > e We fix the distribution O that correspondso the
historysetH. Thenwe have

Pr [veryr(m,s) =1] >e. 4)
(m,s)€0

Furthemore,we know thatfor ary typicalhistorysetH, its
corresponéhg distribution of O g is €/5-closeto 0.

Considera new experiment (a new execuion of the
bre&er B) thatis identicalto theoriginal one,excef when
Z outputsa pair (m', s'), it doessoaccordng to thefixed
distribution O.

Claim 5 Let M be the maximunsizeof the samplesetsin
H. Thenthe probatlity of the new experimentis at least
e—M-q/2"™.

Proof: Noticethattheoutpu of Z isindependemfromthe
history set H. Moreover, the history setcontainsat most
M - ¢ messagesSothe probability thata particdar m is in
H is atmostM - q/2™. Thisfact,alongwith (4), provesthe
claim. [ |

Now putting things togetter, with probability at most
€/5, the history set H is not typical; if H is typical, the
differencebetweerthe prokabilities of thetwo experiments
is at moste/5; the probability of succes®f the new exper
imentis at leaste — M - g/2™. Therdore the protability
of succes®f theoriginal expeimentis atleast(for n large
enaigh)e — M - q/2" — €/5 — €/5 > €/2.

This finishesthe prod. [ ]

5 SQsamplingand SQ learning

We now point out relationshig betweenour SQ sam-
pling modelandthe SQlearningmodelof Kearng22]. We
begin with definitiors of SQlearnirg. (In thesedefinitiors,
we assumdearningis with respecto the uniform distribu-
tion over examges.)

Definition 5 (Statistica Query Learning Oracle) A sta-
tistical quey learningoracle(SQL-oicle) for a predicae
f is dended by SQLY. On an input (g,¢), whee g :
{0,1}" x {0,1} — {—1,+1} is the queryfunction and
& € [0,1] is thetolerancetheoraclereturnsa real numker
ysuhthat|ly — Eycqo,13[9(z, f(2))]] < &.

Definition 6 (Strong SQ-Leamability) A predicae class
family C is StrongSQ-learmableif there exists a random-
ized oracle madine Z, sud that for everyn > 0, ev-
ery f € C, andfor everye > 0, > 0, Z with access

to any SQL-oecle SQL’ outpus a hypottesis f sud that
Prycqo,1)»[f(z) = f(x)] > 1 — e with probability at least
1 — ¢4, and furthermoe, both the runningtime of Z and
the inverse of the tolerance of ead querymadeby it are
bowndedbya polynamialinn, 1/eand1/4. Heree is called

theaccurag andé the conficence

Definition 7 (Weak SQ-Leamability) A predicate class
family C is weak SQ-learnale if there exists a randam-
ized oracle madines Z and a polynamial p(-), sud that
for every n and for every f € C,, Z with accessto
any SQL-omcle SQL/, outpus a hypothesisf sud that
Pryeqo,132[f(z) = f(z)] > 1/2 + 1/p(n), and further
more, both the running time of Z and the inverse of the
tolerance of each querymadeby Z are bourdedby a poly-
nomid in n.

The first obsenation to malke is that a predcate class
canbe stronglySQ-learnhle andyet not evenweakly SQ-
samplable In particula, any classwith a sufficiently low
densityof positve examgescanbetrivially learna by pro-
ducirg the“all zerd hypothesis.(Formally, if we wish be
correct evenfor values of € thatareexponentiallysmall, it
sufficesto have the densitylessthan1/2"/2 sothatif nec-
essarywe canusethe SQL oracleto identify all positive ex-
amples.)In the otherdirection,a classcanbe strondy SQ-
samplableandyet not evenweakly SQ-learnhle. Indesd,
the family of negative parity functionstaken over the do-
main{0, 1} is trivially SQ-samplabl¢because (0™) = 1
for any suchf), but suchfunctionsarenotevenweakly SQ-
learnalte [22]. It is interestingto compare this to Theo-
rem 2, sincethe predicateclassfamiliesin thesetwo the-
oremns arevery similar (one canthink of the differerce ei-
therasremaoving 0™ from the domain or simply ascharg-
ing the valuesof the fundions at this one poirt), yet they
have completelydifferent chaacterizationn termsof SQ-
samplability

However, we shav thereis arelationshipbetweerthese
notiors when the set of positive exanplesis suficiently
dense.

5.1 SQ-leamability
samplability

sometimes implies SQ-

We prove that under certain circumstaces, SQ-
learnalility implies SQ-samplattity .

Definition 8 (Density of Predicates) The density of a
predicge f : {0,1}" — {0,1}, denotedby p(f), is the
fraction of its inputs that are positive In other words,
p(f) = Prze{o,l}" [f(:v) = 1]-

Definition 9 (DensePredicates) A predicde class family
C is denseif ther exists a polynomial p(-) sud that for
everyn andfor every f € Cp, p(f) > 1/p(n).



Theorem4 If a densepredicateclassfamily is strong SQ-
learnable, thenit is alsostrong SQ-samfable with the aux-
iliary input p.

Proof: Let Z be the algoithm that strondy SQ-learns
derse predicatefamily C. We constret a new algorithm
A thatstrongSQ-sampleC usingthedensityp of thepred-
icate f asauxiliary input. A runsa copy of Z, whoseac-
curacy andconfidere aresetto bee = p - €'/4In(%) and
0 = €'/4, andsimulatesthe SQL-orcle usedby Z. We
shall prove that A prodicesa positive input with probabil-
ity atleastl — €'

We now describethe behaior of A. A worksin two
phaes. In this first phase,it simulatesthe SQL-ora¢e
SQL/. When Z submitsa query (g, ) to A, A doesthe

following.

1. SetM = % drav M independen samples
x1, T2, ...,z from{0,1}", andcompue

1 M
o= LS w0
i=1

2. Construt two query functions go(z) = ¢(z,0) and
g1(z) = g(z,1). Subnit queries(go,&/3) and
(91,€/3) to the SQS-oraclésQS’ andreceie y, and
Y1 asanswers.

3. Compuey = s + (y1 — yo) - p andsendy to Z asthe
answelto thequery(g, £).

Thealgoithm A entersthesecongohasewvhenZ produces
ahypahesisf. ThenA repeatghefollowing procedire. It
dravs arancmz € {0,1}", andcheckif f(z) = 1. If so
it stopsandoutpu z; otherwiset contirues.Theprocedire
is repededIn (}) /p timesandif A still hasnt stoppedit
producesarandmz € {0,1}™ andoutputsit.

It is clearthat A runsin polynomialtime. Now, we prove
that A producesa positive samplewith probability at least
1-¢€.

First, we prove thatwith prabability at least1l — 4, all
answergrovidedby A arevalid in thefirst phase Consider
an avera@ s as an appraimation of E,¢(0,13»[g(2, 0)].
We say s is “bad’, if |s — Eycqo,13n[9(z,0)]| > £/3.
Thenasimpleapplicationof the Hoefding Bound(seeAp-
perdix B) provesthatthe probaility thats is badis atmost
d/q.

Next, noticethat

9(z, f(2)) = 9(=,0) + [g(x,1) — g(=,0)] - f(=).

Thereforewe have
EzE{O,l}" l9(z, f(z))]

EwE{O,l}" [g(m, 0)] +

Esefo3-[(9(2,1) — 9(2,0)) - f(2)]

= EavE{O,l}" [g(ma 0)] +

(Ezes,[9(x,1)] — Ezes,[g(2,0)]) - p

Therefae, if s is notbad,thenthey computedby A is
a valid reply to quey (g,£). SinceZ malkesa total of ¢
queies, with probability atleastl — §, all therepliesby A
arevalid and Z shouldperfam well.

Next, considerthe secondphaseof A. With probability
atleastl — 4, Z shouldproducea hypothesisf thatagress
with f with prabability atleastl — . Let usassumeh Z
doesproducesucha f Now sincea p fractionof theinputs
arepositive, the probability that A doesnt draw a positive
inputinIn () /p roundsis atmostd. Thepraobability that f
makesamistalein ary of therourdsis atmostln (3) -¢/p.

If f doesnt make ary mistales and at leastone positive
input is drawn, then A will correctly output it.
Puttingeventhingtogetter, we know thatwith probabil-
ity atleastl —36 —1In (3) -¢/p =1 —¢, Awill outputa
positive input. ]

We remak thatit appeas necessarjor the SQ-sampling
algoithm to have the densityp asanauxiliaty input. One
differencebetweerSQ-samplig andthe SQ-learnings the
resolution In thereply of anSQS-oracletheuncerlinedis-
tribution is uniform over the *hiddenset” S y; for anSQL-
oracle thedistirbutionis uniformover theentireset{0, 1} ™.
Therdore, a samplirg algorithmneed to know the size of
Sy in order to perfom the simulation(more pregsely, in
step3 of thefirst phase)

It is interestingto compare this resultto Theaem 3,
which shows a predcate classfamily thatis perfectly SQ-
learnalte, but not even weakly SQ-samplable.Neverthe-
less,thereis no contradictionsincethe predicateclassfam-
ily in Theaem3is notdense.
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A Shor’s Algorithm and Simon’s Algorithm

We briefly summaize Shorsalgorithm for factoringand
Simons algoithm for the hiddenXOR-secreprodem.

A.1 Shor'sAlgorithm for Facoring

Standarchumter theoy redwcesfactorirg N to finding
the orde of a randm elementa moddo N, i.e.,r > 0
suchthata™ = 1 (modN) buta® # 1 (modN) for
any0 < s < r. Suppse2”! < N < 27. Shors al-
gorithm uses2n qubits, separatednto two n-qulit regis-
ters. Initially the stateis initialized to | ¢g) = |0™)] 0™).
By applying the Fourier transfomationfollowed by mod-
ular exponentiation this stateis corvertedto |¢;) =
5275 2., | ¥)|a® mod N). Thenone measureshe second
registeranddiscardt, leadingto astate| ¢2) = >, | t-r+c)
for somerandan ¢ € [r], wheret¢ ranges from 0 to
[(2® — 1 — ¢)/r] (we ignore the scalarfactor) Finally,
oneappliestheinverseFouriertransfom to thefirst register



followed by a measurermant. The distribution of the mea-
suremaet resultis appoximatelyuniform over {[t - 2™ /r] :
0<t< (2" —1—-c¢)/r]}. Onecanthensolver from one
instanceof [¢ - 2" /r] usingcontiruedfraction

A.2 Simon’sProblemand Algorithm

A functionf : {0,1}™ — {0,1}" is givenasanoracle,
with the promisethatthereexistsans € {0,1}" (known as
the“hiddensecret”)suchthat f(z) = f(y) iff z ®y = s.
Noticethatif s = 0", thenf is apermuation,andothemwise
fisa2-to-1function Theproblemistotell if s =0".

Simons algorithmworks asfollows. Onestartswith 2n
qubts, separatedhto two n-quldt registers.Originally one
initializesthe stateto | ¢o) = |0™)|0™). Next, oneapplies
theHadamardpematorto thefirst registerandthenthe ora-
cle opeator|z)|y) — | z)| f(z) @ y). Thestatebecones
|¢1) = 525 3, |2)| f(z)). Next, the secondregisteris
measued anddiscared. If s = 07, thenthe measuement
resultis | ¢2) = | z) forarandbmz € {0,1}™. If s # 07,
thenthe measuremntis | ¢5) = %q z) + |z @ s)) fora
rancbm z. Next, aHadamad operato is appliedto thefirst
register In thecases = 07, theresultis | ¢3) = |y) for a
randbmy; in thecases # 0™, theresultis | ¢5) = |y) for
arandomy suchthaty - s = 0. Finally onemeasureshe
first registerandobtans y. Repeatinghe experimentO(n)
times, one cansolwe for s by using Gaussiarelimination
anddistinguishthe cases = 0™ from thecases # 0™.

B The Hoeffding Bound

We statethe Hoeffding Bound a classicalresultin esti-
matingtail prokabilities.

Lemma 1 (Hoeffding Bound [19]) Let k (p — e)n,
whee € is a real numberbetweer) and1/2, andp is a
realnumbe betweerd and1. We have

k

> (3)pa-pm cene

J=0

()

C Statistical Distance

We definethe statisticaldistanceand statesomeof its
properties. The definitions andthe resultsare standard A
god refererte to the statisticaldistanceis Vadhars the-
sis[29].

Definition 10 (Statistical Distance) The statistical dis-
tance betweentwo probablity distributions A and B,

10

dendedasSD(A, B), is defnedto be

B) =53 |A() -

whelethesummatia is takenover thesuppat of A and B.
If SD(A, B) < ¢, wesayA is e-closeto B.

(6)

This definitioncanbe easilyexterdedto the continwous
casewith thesummaion beingreplaceddy integral andthe
distributions replacedy densityfunctiors.

Lemma 2 LetT'(z) beaproballistic eventwith z asinput.
Let A and B betwo distributions.We have

Pr[T(2)] - Pr[T(2)]| < SD(4,B)

()
n

Lemma 3 (Sub-additivity) Let A;, A, By, B> bedistri-
butions, thenwe have

SD(A By, Ay Bs) < SD(Ay, Ay) + SD(B1, By)  (8)

whele AB denoteghetensormprodict of thedistributions A
andB, i.e, AB(a,b) = A(a) - B(b). [ |

Lemma4 Let D; bea uniformdistribution over an inter-
val [a, a + I] and D, a uniform distributionsover [b, b + I].
ThenSD(D,, D,) is atmost|ja — b|/I.

Proof: Noticethatboth D; and D, areuniform distribu-
tions of samelength,andthustheir densityfunctionshave
value 1/1 over their suppots and O elsavhere. Consider
the absolde differencebetweerthe two dersity fundions,
|D1(z) — D2(x)|. Thesizeof its suppot is atmost2|a — b|.
ThusSD(D4, D>) < |a — bl|/L. [ |

D Proofs

Lemma5 Let X, , bethedoman defiredin (1) and £,
betheclassof normalizedbodeanizedinear functimsover
an For any quey functiong : an — {0,1}, there
are at mostp?"/3+2 predicaesin £, , thatarenot1/p™/3-
independentfromg.

For the proof we will need

Lemma6 ([31]) LetQ = {f;} beasetoffunctionofrange
{—1,+1} andd beits cardinality. If (f;, ;) = A for all
i # j, thentheset{ f;} formsan orthorormal basisfor the
linear spacespanmredby 2, whee

1 1

fio) = ==

)ng

(9)

\/1+



Proof of Lemmab5: We first slightly modfy the class Puttingthingstogetter, we cancompue thatFourier co-
L, So thatits range becaones {—1,+1}. We define efficientof g over thecompnentL,,.
La(x) = 2- La(x) — 1. It is nothardto seethateachof the

p"~1 normdized bodeanizedinear functions mapsa 1/p <gjjja) — 1 (9, La) —
fraction of the elementsin X, , to +1, anda straightfor V1i-A
ward but tediousanalysis(see[31] for a detailedaccount) 1 1 1 .
shavsthatary two nomalizedbodeanizedinearfunctiors S NEICEE g (9, Ln)
agree atexactly (p?> — 2p + 2)p" 2 — p placesn X, ,. We b[0]=1
defineaninnerproductbetweerfunctionsover X,, ,, as _ I [(1 3 g) _ (1 _2a ) + 40 ] B
1-AX p pr—p pt—p
(f,9) > f@ (10) 1 1 2 2
TP - f1=-=)-(1-
2€Xnp Vi-X 1+ (d-1)A p pr—p
With thisinnerprodict, ary queryfunction hasnorm1, and - I S (1 — g) . (1 __2a ) +
ary pair of distinctfunctions L., and L;, have the samein- 1+(d-1A p pr—p
nerprodict. Thiswill allow usto “extract” anorthanormal 1 49
basisfrom theclass(,, , usingLemma 6. Vi—X pi—p
Now we fix a quer functiong andrelatepredcatesthat 1 2
arenoté-indepadentfrom g to theFourier coeficientsof g. = oz (1 — T) +
Considera booleaized linear function L 5, andwe dende P L
its positive setby S. We have that|S| = p"~1 —1. Suppse 26 1-1/pn—t
g mapsa elementsn X, , to +1, andb elementsn S to Vp(pr—1 — 1) ' 1—4/p
+1. Thenif L, is noté-independentrom g, we have 2% 1
2 n—1_1) pn-1/2
2a—p"+p_2b—p"_1—|—1 ¢ (1) VPPt =1) p
o n—1 _ 1 ’
prop b Now we substitutein ¢ = 1/p™/3, andwe have
or|a — bp| > & EP¢ Wewrite b = a/p + 6, andwe have . 3 1 1
|5| > P! 15_ |<gaLa)| > ﬁ - p(”_l)/2 > pn/3+1 (12)
Next we compue the inner product of g and L,.
Straighforwardcompuationshows that Thus g canhave at mostp?/3+2 such Fourier coefi-
cients,andsotherecanbe at mostp2"/3+2 predcatesthat
~ 2b — —D(prt-1 n/3_
(9,La) = 2- ( a+ (Zn L(p )) _1 arenot1/p™/3-indegenden from g. [ ]
%2 2 45 Lemma? LetX, = {0,1}"\{0"} andC,, betheclassof
= ( T _p) ( - 5) P —p negative parity functionsover X ,,. For anyqueryfunction

g : {0,1}" = {—1,+1}, there are at most2™/2+2 predi-

Ontheotherhand theinnerproductof g with anaverage catesin C,, thatare not2~"/*-independen fromg.

over booleaizedlinearfunctionsis _ . . .
Proof: We fix a negative parity function f. Let a denote

Z (9,Fn) = z Z the numter of x € {0,1}" suchthatg(z) = 1, andlet b

ot b[0]=1 e l(p - D) blO]=1 e % dende the nurberof 2 € Sy suchthatg(z) = 1. Notice
) TExnp thatsinceall parity functionsarebalarced,we have | S| =
n—1 H n n i i
— fo(z) 2" -1 (sincef(0™) = 1 but0™ ¢ S¢). Thenif f is not
p"~(p" —p) ngz ; b[%: ¢-indeenden from g, we have
2a 2 2—2""1 41 2a—2"
= 1-— 1—- —
(1-75) (-3) P o
Now we apply Lemmas, settingd = p™ ! and\ = or
2 n—2
%. We will obtain an orthaormal basis, a— % a
whichwe dende by { I} on=1 1‘ > &5y Tn—1 1)~ = om (14)
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Next we perfom Fouiier analysis. We first definean
innerproductof realfunctiors over {0, 1} ™

(f0)=g X [@e@. @5

z€{0,1}"

We definea setof “modified parity fundions” as ©,(z) =
(—1)**, which mapelementsin {0,1}" to {—1,+1}. It
is clearthatthe setof all parity fundions {&,(x)}s form
an orthonormal basis,and &,(z) = 1 — 2- &, (z). If a
parity function — @, () is noté-indepedentfrom g, then
(13 holds(by settingf = —®,). Lett = ¢g(0™). Within
the subsetwhere®;(z) = —1, whichincludes0™ andthe
positive setof =&, g mapsb + ¢ inputsto +1. Outsidethis
subsetg mapsa — b — t inputsto +1, and2™ ! —a + b+t
input to —1. Thus,we cancompue the Fouiier coeficient
of gond,.

(Ds9) = 1-2- :ce{PO,rl}"[@s(m) = g(z)]
—p— n—1 _
_ {_9. a—b>b t+2 a+b+t
2n 2n
_ 2a—-4b—-4
= o

Substituting in (14), we have
|(®s,9)| > € —6/2". (16)

However, notice that the quey function g(z) hasnorm 1
andthusit canhave at most1/(¢ — 6/2™)? Fourier coefi-
cientssuchthat(16) holds. Now pluggngin £ = 2"/ we
have1/(¢ — 6/2")% < 27/2+2 andthe Lemmais proved.
[
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