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Abstract

We introducea “Statistical QuerySampling” model,in
which the goal of an algorithm is to producean element
in a hiddenset

�������	��

���
with reasonable probabil-

ity. Thealgorithm gainsinformationabout
�

through or-
acle calls (statistical queries),where the algorithm sub-
mits a query function ������� and receivesan approximation
to ��������� � �!�#"$�&% 
('

. We showhowthis model is relatedto
NMRquantumcomputing, in which only statisticalproper-
ties of an ensembleof quantumsystemscan be measured,
andin particular to thequestionof whetheronecantrans-
latestandard quantumalgorithms to theNMRsettingwith-
out putting all of their classicalpost-processinginto the
quantum system. Using Fourier analysistechniques de-
veloped in the relatedcontext of statisticalquery learning,
we prove a numberof lower bounds (both information-
theoretic and cryptographic) on the ability of algorithms
to producesan "*) �

, evenwhenthe set
�

is fairly sim-
ple. Theselower boundspoint out a difficulty in efficiently
applying NMR quantum computing to algorithmssuch as
Shor’ s andSimon’s algorithmthat involvesignificant clas-
sicalpost-processing. Wealsoexplicitly relatethenotionof
statisticalquerysamplingto that of statisticalquerylearn-
ing.

1 Intr oduction

Recentyears have witnessedthedevelopmentof a num-
berof exciting quantum algorithms: Simon’s algorithm for
thehiddenXOR secretproblem[28], Shor’s algorithmfor
factoring anddiscretelogarithms[26, 27], BonehandLip-
ton’s algorithmfor the hidden subgroup problem [4], and
many generalizations and extensions [21, 11, 12, 18, 15,
17]. At the sametime, work hasbeenongoing on various
proposalsfor physicallyrealizingquantumcomputers.Cur-
rently, oneof the mostpromising suchproposalsis based
onNuclearMagneticResonance(NMR) [10, 7, 13, 5]. The+
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NMR approachworksby manipulating a largeensemble of
quantum systemsin solution. One property of the NMR
method, which is the focus of this paper, is thatunlike the
“standard” quantum computing model, onecannot directly
measureany individual quantum systemin the ensemble.
Instead,a measurement is limited to a single qubit, and
when a measurement takes place, the device returns (an
approximationto) theexpectedvalueof this measurement,
over the quantum systemsin the ensemble.For this rea-
son,themodelfor NMR is sometimescalledthe“expected-
value” (EV) model [6]. In contrast, the measurement in
the standardquantum model yieldsa random samplestate
(whichmayconsistsof multiple bits) according to a classi-
calprobability distribution.

Giventhedistinctionbetweenthestandardmodelandthe
EV model,thefirst questionthatarisesis whetherit is pos-
sibleto translatealgorithmsworking in thestandardmodel
to work in theEV model. In fact, theansweris yes. Con-
siderany BQP algorithm [24]. Recall from the definition
thata BQP algorithm solvesa decisionproblem, andsuch
analgorithm hasa special“target” qubit to indicateaccep-
tance. For a language . andan input " , if "/)0. , then
themeasurementof thetargetqubit will producea“1” with
probability at least 13254 ; if "76)8. , theprobability is at most
 294 when measured. Suchan algorithm works naturally
in the EV model, sinceonecansimply measurethe target
qubit, andeven with significantmeasurementerror, usethe
rule that if the observed value :<; 
 2
= , then "*)>. , and
otherwise "?6)@. . For a search(as opposedto decision)
problem, we canperform theusualreduction to a seriesof
decisionproblems,solvingeachoneby one. In fact,many
researchershaveusedthisapproach[13, 24], whichwecall
an“all-inclusive” translation.

Unfortunately, the“all-inclusive” translationcangreatly
increasetheamount of work thatmustbedoneby thequan-
tum system. ConsiderShor’s algorithm, for instance(see
Appendix A). Shor’s algorithm (andotherslike it) consists
of aquantumsamplingcircuit A , whoseoutput is measured
and fed into a classicalextraction circuit B . For the all-
inclusivetranslation, theclassicalextraction circuit B needs
to be “quantumized”, i.e., realizedby a quantum circuit
andappendedto thequantum samplingcircuit A . This can
causeasignificantincreasein thesizeof thequantumcircuit
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— in the caseof Shor’s algorithm, the entirecircuitry for
computingcontinuedfractionsneedsto berealizedin quan-
tum — which is a ratherundesirableconsequence. Even
in the most optimistic scenarios,quantum computerswill
be orders of magnitude more difficult to manufactureand
maintainthanclassicalcomputers,andthuswe would like
to putaslittle of thecomplexity aspossiblein thequantum
system. Even more seriousproblems emerge whenmore
thanonesampleis neededby the classicalextraction cir-
cuit. For example, in Simon’s algorithm, CD�FEG� samplesare
needed for Gaussianelimination(seeAppendix A). Now
the all-inclusive translationneedsto manufacturemultiple
copies of the quantum samplingcircuit and then connect
themtogetherwith the “quantumized” classicalextraction
circuit. This cancauseevenmoreblowup in thesizeof the
quantumcircuit in theEV model.

In this paper, we consider thequestionof whetherthere
might bemoreefficient translations thatapplygenerally to
algorithmsconsistingof a quantumsamplingcircuit A fol-
lowed by a classicalextraction circuit B , that work with-
outhaving to put theclassicalpartof thealgorithm into the
quantumsystem.Ourmaincontributionsareresultsthatan-
swerthisquestionin thenegative,for several naturalnotions
of “general”. Weachievetheseresultsthroughaconnection
to the notion of statistical query learning [22] studiedin
ComputationalLearning Theory, andin particularto a re-
latednotionthatweintroduceof statisticalquerysampling.
Using techniquesfrom Fourier analysisandcryptography,
we show that even in caseswhere the distribution implied
by A is quitesimple,it canbehardto usetheEV modelto
generatea samplethatcanbeusedby B . Notethatour re-
sultsdo not preclude thepossibilityof approachestailored
to specificquantum algorithms. For example, Collins [6]
demonstratesa modification to Grover’s algorithm that is
moreefficient thantheall-inclusivetranslation(seealsothe
discussionbelow). However, aspointedout by theauthor,
hisapproachdoesnotgeneralizeto algorithms like Shor’s.

1.1 Our model and results

We view the quantum samplingcircuit A asrepresent-
ing a hidden set

�H�I�5�J�K
��
�
, andwe view the classical

post-processingasa circuit B suchthat BL�F"!�M% 

for all"N) �

. Thegoalof thetranslationprocedureis to produce
some"O) � . To find suchan " , thealgorithm hastheability
to perform a “statisticalquery” of A by proposinga query
function (a predicate) �QP ���	��
��3�SRT ���	��
��

and asking
for UD�
���V� �!�#"$� ' up to some


 2XWZY9[#\ accuracy. For example,
measuring the ] th qubit correspondsto thequery �!�#"$�^%>"`_ .
TakingtheXOR of thefirst threequbits andthenmeasuring
theresultcorrespondsto thequery ���F"!�^%<"^a9bD"$c5bd"Ze . The
algorithm mayrepeat this processmultiple (polynomially-
many) times,with different query functions � , and in the

endmust(with noticeable probability) producean "O) � .
Notethatthis taskis easyto do if

�
is very large ( f � f	;= � 2XWZY9[F\��#EG� ), sincearandom "g) �5�J��

�
� will do. It is also

easyto do if
�

is verysmall ( f � f�%7W$Y9[F\��FEG� ). In particular,
if f � f
%hW$Y9[F\��FEG� , thenbyaskingfor anaccuracy of


 2i�j=Zf � f �
onecandistinguish thecasethat Uk�����G� ���F"!� ' % �

from the
casethat Ul�
���V� ���F"$� 'nm@�

. This allows oneto walk down
the bits of " , fixing bits from left to right, until a specific"O) � is produced.This is thekey ideaof [6].

We show, however, that this task is hard in general.
Specifically, wegivetwo typesof hardnessresults.First,we
giveaninformation-theoretichardnessresultif thequery al-
gorithm is not allowed to accessB . That is, the translator
is allowed to usethe fact that the classicalextraction cir-
cuit B is polynomialin size(sothesetof accepting strings
cannot betotally arbitrary) but it is not allowedto examineB — it canonly gain informationvia the queries � . Sec-
ond, we give a cryptographic hardnessresultif we assume
the translatoris given B as input, but that otherwise B is
an arbitrary polynomial-sizecircuit. We still do not know
if efficient translationis possiblefor the specificcircuit B
usedin Shor’salgorithm.

Wealsoconsider amoregeneral setting,in which
�

may
belarge(e.g., f � fJ%o= �ip a ), soa random stringhasreason-
ablechanceof belonging to

�
, but the goal of the transla-

tion is to producea string "q) �
with probability substan-

tially greaterthanrandomguessing.We call this more gen-
eral setting“strongSQ-sampling”, andrefer to the former
settingas the “weak SQ-sampling”. StrongSQ-sampling
models situationssuchasSimon’s algorithm, in which the
quantum circuit producesa random \7) �5�J��

�	�

suchthat\r�3st% �
for the hiddensecrets . In this case,a random

string hasprobability

 2�= of belonging to

�
, but we needCD�FEG� correctsamplesin a row in order to performGaussian

elimination. We give aninformation-theoretichardnessre-
sult for this problem, thatholds for thespecificset

�
used

by Simon’s algorithm (Theorem2).1

1.2 Techniques and relation to Statistical Query
learning

Our resultsarebasedon a connectionto the Statistical
Query(SQ)learning model,first introducedby Kearns[22]
as a restrictedversion of the popular Probably Approxi-
matelyCorrect(PAC) model of Valiant[30]. In theselearn-
ing models, thegoalof analgorithmis to learnanapprox-
imation to a hiddenfunction uvP ���	��

� � RT����	��

�

. In the
PAC model, the algorithm hasaccessto an “example or-
acle”, which producesa random labeledsample wF" � ux�#"$�zy

1Note, for Simon’s algorithm, we no longer want to think of thereex-
isting a known classical extraction circuit. If we weregiven accessto a
circuit { suchthat {}|�~
� �7� if f ~���� (e.g.,thecircuit with thehidden
secretbuilt in) thenthesampling goal would beeasy. SeeTheorem 4 for
furtherdiscussion.
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upon invocation. In theSQmodel, however, thealgorithm
does not seeexplicit examples or their labels. Instead, the
algorithm queries an “SQ-oracle”with predicates���F" � \J� ,
andreceives anapproximationto ���9�	� �!�#" � ux�F"$���}% 
('

. For
instance,thealgorithm might askfor theprobability thata
randomexamplewouldbothbepositiveandhaveits first bit
setto 1 ( �!�#" � \J��%�"�a	�n\ ).2 TheSQmodelhasprovento be
very usefulbecause(a) it is inherently tolerantto classifica-
tion noise(this is thereasonthemodelwasdeveloped),and
(b) nearlyall machine learning algorithms canbe phrased
as SQ algorithms. What makes the SQ modelespecially
interestingis that onecan information-theoreticallyprove
lower bounds on theability of SQ algorithms to learncer-
tainclassesof functions[22, 3, 20, 31, 32].

Therelationship betweenthestandardmodel andtheEV
model for quantum computation is quitesimilar to thatbe-
tweenthePAC model andtheSQmodelin machine learn-
ing, which motivatesour definitionof theStatisticalQuery
Sampling problem. In particular, theSQsamplingproblem
can be viewed as the SQ learningproblem with two key
differences:first, thegoal is not to learnanapproximation
to u but is ratherto produce a positive example,andsec-
ond, theoraclefor SQsampling returns approximationsto���K� ���F"$�`% 
 f�ux�F"$��% 
('

ratherthanto ����� ���F" � ux�#"$�z��% 
('
(adifferencethatmatterswhenthesetof positiveexamples
is quitesmall).

We usetechniques from Fourier analysisto prove the
following lower bounds. First (Theorem1) we show there
exist simplefunction classessuchthatno algorithm, using
only a polynomial number of queries of


 2�WZY9[#\ accuracy,
canproducea positive instancewith even


 2�W$Y9[F\ probabil-
ity. Second(Theorem2), for theclassof “negative parity”
functionsarisingin Simon’s algorithm, no algorithm using
only a polynomial number of queries of


 2�WZY9[#\ accuracy,
canproducea nontrivial positive instancewith probability
morethan


 2�=G� 
 2�WZY9[#\ . (Notethatrandomguessingworks
with probability


 2
= ). We alsoshow thatunlike thecaseof
SQlearning, theSQsamplingproblemcanbecomputation-
ally hardevenif u is explicitly givento thealgorithm, based
oncryptographicassumptions (seeTheorem3).

Finally, we explicitly relatethe notion of SQ sampling
to thatof SQlearning by proving that if a function classis
“dense”,meaning thatarandomelementhasnon-negligible
probability of being positive, then strongSQ-learnability
impliesstrongSQ-samplability (Theorem4). Wealsopoint
out that thereexists function classesthatareperfectly SQ-
samplable, yetnotevenweaklySQ-learnable.

2In both PAC and SQ learning models,the distribution over ~ need
not betheuniform distribution (or evenknown to the learning algorithm).
However, muchwork on SQlearning doesfocuson theuniform distribu-
tion, andthat is thesettingwe aremostinterestedin in this paper.

2 Preliminaries and Definitions

We areinterestedin predicatesthatmapelementsfrom
a domain � (e.g.,

���	��

���
) to

���	��

�
. For a predicateuHPd� RT ���	��
��

, an input " is a positive input to u ifux�F"!�}% 

, elseit is a negativeinput. All thepositive inputs

to u form thepositivesetof u , denotedby
�`�

. A predicate
class, oftendenotedby � � , is simply a collectionof pred-
icatesover

�5�J�K
��9�
. A predicateclassfamily is an infinite

sequenceof predicateclasses�O%o�F�Va � �Jc �K����� � , suchthat � �
is a predicateclassover

�5�J��

���
.

A parity function b��5�#"$� is definedto be b��5�F"!��%�sk�" mod= . A negativeparity function �&b��J�F"$� is thenegation
of theparity function bL�5�F"$� .
2.1 Statistical Query Sampling

Definition 1 (Statistical Query Sampling Oracle) A sta-
tistical query samplingoracle (SQS-oracle) for a predi-
cate u is denoted by �	��� � . On input ��� �z� � , where ��P���	��
�� � RT����d

� � 
�� is thequeryfunction and

� )N� �J��
�' is
the tolerance, theoracle returnsa real number\ such thatf \ � Ul�
���
 3� �!�#"$� ' f3¡ �

.

Definition 2 (SQ-Samplability) Apredicateclassfamily �
is SQ-samplableat rate s in time ¢ andtolerance

�
, if there

existsa randomizedoraclemachine £ , such that for everyE m¤�
andevery u¥)O� � , £ with accessto anySQS-oracle�	��� � , runs in at most ¢(�#EG� steps,asksquerieswith toler-

anceat least
�
, andoutputsan "v) �}�

with probability at
least s��#EG� . We say � is strongSQ-samplable if for every ¦ ,� is SQ-samplable at rate


d� ¦ in time ¢ and tolerance
�

such that ¢ and
�Zp a are polynomial in E and


 29¦ . We say �
is weakSQ-samplable if there existsa polynomial W , such
that � is SQ-samplable at rate


 2XW �FEG� in time and inverse
tolerancepolynomial in E .

Definition 3 (Sampling Algorit hms with Auxiliary Inputs)
A predicate classfamily � is SQ-samplablewith auxiliary
input § if it is SQ-samplablebyanalgorithm £ which takes§¨�ju�� as theauxiliary input,where u is thepredicatebeing
sampled.

3 Lower BoundsBasedon Fourier Analysis

We first prove two hardnessresultson SQsampling, us-
ing Fourier analysistechniquesdevelopedin thecontext of
SQlearning.

3.1 A Lower Bound on WeakSQ-Sampling

We prove that thereexist very simplefamiliesof pred-
icate classesthat are not weakSQ-samplable,i.e., no ef-
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ficient algorithm canproducea positive input at any non-
negligible rate.

We introducea bit more notation. We useboldfaceto
denote a vector andindex the entriesof an E -dimensional
vector from

�
to �FE �o
 � . We use ©�� ] ' to denotethe ] -th

entry of © . ©�� ª ��� «�' indicatesthe sub-vectorformed by the
entriesof © betweenthe ª -th andthe

«
-th, inclusive. Let¬� �i­ ® be the setof all E -dimensionalvectors over ¯ ® (the

Galoisfield modulo W ) whoselast E �v

entriesarenot all-

zero, i.e.,¬� �3­ ® % � ©¥)�¯ �® f5©�� 

��� E �v
(' 6%S� �	���	����������� � ��� (1)

It is easyto seethat f ¬� �3­ ® f�%NW ��� W .

Definition 4 (BooleanizedLinear Functions) A
booleanized linear function over

¬� �3­ ® with parameter° is denotedby .`± anddefinedas

. ± �#©G�^% ² 

if ° �(©8% 
 �F³L´iµkW!��
otherwise

(2)

We say .^± is normalized if ° � �9' % 

. The normalized

booleanizedlinearfunction class, denotedby ¶ �3­ ® , consists
of all normalizedbooleanizedlinear functionsover

¬� �i­ ® .
In other words,

¶ �3­ ® % � .�±�f ° )·¯ �® � ° � �9' % 
��
(3)

Theorem1 If a sampling algorithm for the normalized
booleanizedlinear function class ¶ �3­ ® makes less thanW �
¸�¹ queries,each of tolerance


 2�W ��¸ e , then the proba-
bility it produces a positive input ©º) ¬� �i­ ® is at most
 2�W�� 
 2XW �
¸ aze .

Notice that the requirement©*) ¬� �3­ ® is simply to rule
out the trivial positive input


K�
�&�������
, andwe could have

equivalently just modifiedthedefinitionof a “booleanized
linear function” so that this specificexample is madeneg-
ative. Also, noticethat if we chooseW to be muchgreater
than E , say picking W to be an E -bit prime number, then
 2�Wk� 
 2�W ��¸ aze is exponentiallysmall,while thesizeof the
problem is still polynomial in E . Furthermore,if a com-
pletely random © is picked, the probability it is a positive
input is


 2�W . Thuseven exponentially many queries may
only helpthesamplingby anexponentiallysmallmargin.

Proof: Our proof strategy is similar to that used by
Kearns [22] andBlum et.al. [3] in thecontext of SQlearn-
ing. We describe an “adversarial” SQS-oracle »�	��� that
does not commit to any particular predicate at the begin-
ning. Rather, the oraclemaintains a “candidatepredicate
set” ¼ , which initially includesall predicatesin the class¶ �3­ ® (a total W �ip a of them). Eachtime the algorithm £
makesa query, »�	��� replieswith ananswerthatyieldsvery

little information. Somepredicates in the candidateset ¼
mightnotbeconsistentwith theanswerandwill beremoved
from set ¼ . After all the queriesare finished, »�	��� then
commits to a random predicateremaining in ¼ . We shall
prove thateachqueryonly removesa small fractionof the
predicatesfrom ¼ . Thusif £ doesnot make enough num-
berof queries, therewould be enough predicatesleft in ¼
suchthatnoelementcanbepositivewith highprobability.

For a query function �0P ¬� �3­ ® RT ���d
�� � 

� , we say
that a subset

�½�¾���	��

�5�
is a

�
-independent subsetfor� , if f U �
��� � �!�#"$� '}� U �
�D¿ÀxÁ9Â Ã � ���F"$� ' fM¡ �

, and we say a
predicate u is

�
-independent from � , if its positive set

� �
is a

�
-independentset for � . Intuitively, if a predicate u

is
�
-independent from � , then the query �F� ��� � reveals al-

most no information about u , since »�	��� can reply withU �
�l¿À Á9Â Ã � ���F"!� ' instead,which is completely independent
from u .

Wedescribethebehavior of ourSQS-oracle»�Z��� in more
detail. On query � , »�	��� replieswith U �
�l¿À¨Á�Â Ã � �!�#"$� ' , and
removes all predicatesthat are not

�
-independent from �

from thecandidateset ¼ . We assumethatall querieshave
tolerance

� %¤W p$�
¸ e . We shallprove that for any query � ,
thereareatmostW c �
¸ e�ÄVc predicatesnot W p$��¸ e -independent
from � . Thisproof is by aFourieranalysistechnique andis
given asLemma5 in Appendix D. Thus,if lessthan W �
¸�¹
queries are made,the candidate set still containsat leastW �3p a � 
�� W p$�
¸ azc p e � parity functions.

Now consider thedomain
¬� �i­ ® . It is nothardto seethat

every "¥) ¬� �3­ ® is positive for only W �3p c predicates.So,if
theoraclecommitsto a random predicateout of thesetofW �3p a � 
&� W p$��¸ azc p e � , theprobability that " is positive is at
most


 2�W�� 
 2XW �
¸ a�e .
3.2 A Lower Bound on Sampling NegativeParity

Predicates

We prove thata classof negative parity functionsis not
SQ-samplable in polynomialtimeatany ratenon-negligibly
higher than


 2�= .
Theorem2 Let � � % ���	��
��5�3Å3�����	�

and � � be the class
of negative parity functions over � � . If a samplingalgo-
rithm for � � makeslessthan = �
¸�¹ queries,eachof tolerance= p!�
¸�¹ , thentheprobability it producesa positiveinput is at
most ac � ac Á�ÆÈÇ�É
Ê .

Beforeproving thetheorem, wepoint outhow this result
relatesto the translationof Simon’s algorithm to theNMR
model. In Simon’s algorithm, the quantum sampling cir-
cuit producesa random \>) ���	��
��3�

suchthat \r�3s8% �
,

where s is the“hidden” secret(seeAppendix A). Thusthe
hiddensetcorrespondsexactly to thenegative parity func-
tion ��bd� . In thealgorithm, thequantum samplingcircuit is
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invoked Ë��FEG� timesandproducesË��FEG� samplesfor Gaus-
sianelimination. Noticethat \�% �J�

is useless.Therefore,a
translationof thequantumsamplingcircuit will producean
SQ-sampling algorithm £ to be executed Ë��FEG� timesand
to produce Ë��#EG� positive samplesin � � % �5�J��

� � Å��5� � �

.
However, Theorem2 impliesthat it is not possibleto sam-
ple efficiently at any rate non-negligibly higher than


 2�=
(notice that a random "¤)v� � is positive with probability
almost


 2�= ). This resultsuggeststhat it appears necessary
to manufacture Ë��FEG� copiesof the quantum samplingcir-
cuit andrunthesecopiestogetherin theNMR model.

Proof sketch: Theproof strategy is similar to thatof The-
orem 1. We assumethat eachquery has tolerance

� %
 2�= �
¸�¹ . Weconstruct anSQS-oraclethatonquery function� , replieswith U �
��ÌzÍ ­ a�Î Á � ���F"!� ' , andremove all predicates
thatarenot

�
-independent from � from thecandidateset ¼

(here thedefinitionof “
�
-independent” naturally changestof U ����� � ���F"!� '¨� U �
��Ì�Í ­ a�Î Á � �!�#"$� ' f`¡ �

). We shall prove in
Lemma 7 (in Appendix D) that for any query � , thereare
at most = �
¸ c�ÄGc predicatesnot = p!�
¸�¹ -independentfrom � .
Thus, if lessthan = ��¸z¹ queries aremade, thecandidateset
still contains at least = �k� = e ��¸z¹ ÄVc �v


parity functions.
Now considerthedomain� � % ���J�K
��5�3Å3���
�	�

. It is not
hardto seethatevery "t)O� � is positive for = �3p a negative
parity functions.Now if a random parity function is chosen
from a setof size = ��� = e �
¸�¹ ÄVc ��


, theprobability that "
is positive is at most

= �3p a= � � = e �
¸�¹ ÄVc �v
 ¡ 

= �



= �
¸�¹Kp c �

Thisis truefor any "g)r� � . Therefore,whatever £ outputs,
theprobability thatit is positive is atmost ac � ac Á�ÆÏÇzÉ
Ê .
4 A Cryptographic Lower Bound

We next prove a cryptographic lower bound. Assum-
ing that one-way functionsexist, we show that thereexist
predicate classfamilies that are not weak SQ-samplable,
even if the samplingalgorithm is given the complete de-
scriptionof thepredicateasthe auxiliary input. The tech-
nique we usehereis somewhat similar to that of Angluin
andKharitonov [1], who usedsignature schemesto prove
thatmembershipqueriesdonothelpto learnDNF.

We briefly describetheideasbehind our proof. We will
usea digital signatureschemesecureagainstadaptive cho-
senmessageattack[14], which exists if one-way functions
exist [25]. Let the predicate be the signature verification
function Ð�Ñ
ÒÈÓ(ÔJ�FÕ � s5� , which returns



if s is a valid sig-

nature to messageÕ with respectto the verification key:3Ö . The securityof the signatureschemestatesthat no
“breaker” × , givenaccessto a signingoracle,canproduce

a new valid signatureit hasnot yet seen. We want to ar-
guethatthis impliesnosamplingalgorithm £ , given access
to a SQ-samplingoracle,canproduceanyvalid signature.
We will show that if suchan algorithm £ exists, we can
construct a “breaker” × asfollows. Thebreaker will have
accessto a signingoracleOSign that signsany message
given to it asinput, andruns £ asa subroutine. Theonly
non-trivial part for × is to simulateanSQS-oracleusedby£ without revealing to £ any informationabout whichsig-
naturesit hasalreadyseen(sothat £ is not biasedtowards
producinganalready-seensignature). Upona query ��� �z� �
from £ , × will producea numberof random messages,ask
thesigningoracleto signthem,andusethesesamplesto es-
timate U �����
  � ���F"!� ' . Next, × “randomizes”thisestimateby
adding anartificial noiseto it. With properly chosenparam-
eters,this“randomized”estimateis still avalid answerwith
very high probability, andyet almostindependentfrom the
messages× produces.Finally, £ producesa positive input,
which is a message/signature pair �FÕ¥Ø � s�ØÙ� . The distribu-
tion of thethispair �FÕtØ � s�Ø�� is alsoalmostindependentfrom
themessages× produces,andif £ only makespolynomi-
ally many queries, thenonly polynomially many messages
will be producedby × . Thereforethe probability that Õ�Ø
is oneof themessagesproducedby × is very small,andso× breaks thedigital signature schemewith reasonably high
probability.

Formally, a signature scheme SIG is a triple� sig gen
�
sig sign

�
sig verify � of algorithms, the first

two beingprobabilistic,andall running in polynomial time.
sig gen takesasinput


��
andoutputsasigning/verification

key pair �Ès5Ö � :iÖJ� . sig sign takesa messageÕ anda sign-
ing key s5Ö asinputandoutputsasignatures for Õ . WLOG
we assumethat both Õ and s are E -bits long. sig verify
takesa messageÕ , a verification key :3Ö , anda candidate
signature s9Ø for Õ asinput andreturnsthebit

« % 

if s3Ø is

a valid signature for Õ for the corresponding verification
key :3Ö , and otherwisereturns the bit

« % �
. Naturally,

if sÚ% sig sign �js5Ö � Õ·� , then sig verify �#:3Ö � Õ � s5�q% 

.

In an adaptive chosenmessageattack [14], an adversary
(“breaker”) × is given :iÖ , where �js5Ö � :3ÖJ�`Û sig gen � 
�� � ,
andtriesto forgesignatureswith respectto :3Ö . Thebreaker× is allowed to query a signing oracle OSign Ó(Ô , which
signsany messagewith respectto :iÖ , on messagesof its
choice. It succeedsin existentialforgery if after this it can
output a pair �#Õ � s�� , wheresig verify �F:iÖ � Õ � s5��% 


, butÕ was not one of the messagessignedby the signature
oracle. A signature schemeSIG is existentially unforge-
ableagainst adaptive chosenmessageattacksif thereis no
forging algorithm × that runs in time polynomial in E and
succeedswith probability


 2�WZY9[#\��FEG� . Suchschemesexist
if one-wayfunctionsexist [25].

Theorem3 Let SIG %H� sig gen
�
sig sign

�
sig verify � be

a digital signature schemesecure against adaptive chosen
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message attack. Then the predicateclass family � � %� Ð5Ñ�Ò Ó(Ô � is not weaklySQ-samplable, evenif the sampling
algorithm is given :iÖ as the auxiliary input. Here Ð5Ñ�ÒzÓ(Ô
is definedto be Ð5Ñ�ÒÈÓ(Ôi�#Õ � s5�Ü% sig verify �F:iÖ � Õ � s5� , where�js5Ö � :iÖJ��Û sig gen � 
 � � , and Õ � sD) ���	��

� � .
Proof: Assumeto the contrary that thereexists an algo-
rithm £ that weak SQ-samplesthe function class � � %� Ð5Ñ�ÒFÓ(Ô � . Moreprecisely, weassumethat £ producesapos-
itive input with probability ¦ by making Ý queries, where
both


 29¦ and Ý are bounded by a polynomial in E . We
shall constructa polynomial-time algorithm × that breaks
the signature schemeSIG with probability ¦(2
= , causinga
contradiction.

We now describethe behavior of × . × hasaccessto
a signingoracleOSign Ó(Ô andinteractswith the sampling
algorithm £ as the SQS-oracle.When £ makes a query��� �z� � , × doesthe following. First, × computes

� Í %�Þ�ß àaáÍXâ
and ãä% c3å æ9ç�aáÍXâ ¸ àjèÞ Êé . Then × draws ã random messagesÕ a � Õ c ��������� Õ·êë) ���	��

���

, andasksthe signingoracleto
signall of them. Assumethesignaturesare s a � s c ��������� s�ê .
Next, × usesthesemessage/signature pairsto estimatethe
expectedvalueof � bycomputing "�% aê@ì êÔXí a �!�#Õ Ô � s Ô � .
Then× “randomizes” " bydrawing a \ uniformly randomly
from theinterval � " � Þc � "��îÞc ' , andsending\ to £ asthe
answerto thequery �F� ��� � . × alsomaintainsa “history set”
set ï of all themessagesit hasgenerated,which is initiallyð
. After a query from £ is answered,× addsthemessagesÕOa � Õ·c ��������� Õ ê to set ï .

After all the Ý queriesare made, £ producesa pair�FÕ·Ø � sKØÙ� . If Ð�Ñ
ÒjÓ(Ôi�FÕ·Ø � s�Ø���% 

and ÕOØ�6)oï , then × out-

puts �FÕOØ � s�Ø�� andsuccessfullyforgesasignature. Otherwise× abortsandannouncesfailure.
It is clearthat × runsin polynomial time. Intuitively, we

canshow thataftertherandomization, with highprobability
the sample �FÕOØ � s�Ø�� producedby £ is almostindependent
from the history set ï . Therefore, with high probability,Õ Ø 6)hï , andso × will succeed. More precisely, we prove
that × will succeedwith probabilit at least ¦(2�= .

Weuse
� Ó(Ô to denotethepositivesetfor predicateÐ5Ñ�Ò Ó(Ô .

In other words,
� Ó(Ô consistsof valid message/signature

pairswith respectto theverificationkey :3Ö .

Claim 1 For a query function � , if we define ñ %U ç�ò ­ � è ���9ózô � �!�#Õ � s�� ' , thenwith probability at least

i� ¦(2�õ
Ý ,

we have f " � ñ�fö¡ � Í (all quantities are as defined in the
proofsketch of Theorem3).

Proof: This is dueto a straightforwardapplicationof the
HoeffdingBound. Eachsample�FÕ Ô � s Ô � is anindependent
random elementfrom

� Ó(Ô andthus U ç�ò ­ � è ���9ózô � ���FÕ � s5�l%
(' %@ñ . So theexpectedvalueof " is ñ . Now, theproba-
bility that ã independentsamplesyieldsanaveragebelowñ �>� Í is at most ÷ p ê Þ Êé ¸ c (notice that the rangeof � is

���d
�� � 
�� ). Also the probability that the averageis aboveñg� � Í is at most ÷ p ê Þ Êé ¸ c . Therefore with probability at
least


�� =
÷ p ê Þ Êé ¸ c ; 
�� ¦(2�õ
Ý , we have f " � ñ�fi¡ � Í .
We fix a set consistingof ã message/signaturepairs

generatedby × in response to a query �F� ��� � , anddenote
this by ø : ø�% � �FÕ Ô � s Ô � � êÔXí¨a . We call this seta sample
set. We say ø is typical, if theaverage �!�#Õ¥Ô � s5Ô�� is indeed� Í -closeto ñ . By Claim1,atmost ¦(2�õ�Ý fractionof thesam-
plesetsarenot typical.

Noticethatatypicalsamplesetwill yield anaveragethat
is
� Í -closeto ñ . This is a muchhigher accuracy thanre-

quired by the £ , which hasa tolerance of
�
. However, ×

needsthisaccuracy to perform therandomization.

Claim 2 If ø is a typical set, thenthe answerfrom × for
this query is valid.

Proof: Notice that if ø is typical, then the average " is� Í -closeto the truevalue ñ . After the randomization, it is� � Í�� � 2
=
� -closeto ñ . This is lessthan
�
.

We considerthedistribution of theanswerproducedby× for a particular query ��� �z� � . We denote this distribution
by ùûú , where ø is thesamplesetusedby × .

Claim 3 If both ø^Í and ø�a are typicalsets,thenthestatis-
tical distancebetweenù ú é and ù úiü is at most¦X2
õ�Ý .
Proof: We use " Í and " a to denotetheaveragesobtained
from ø Í and ø a , respectively. If both ø Í and ø a aretypical,
we have f " Í � ñ�f ¡ � Í and f " a � ñ�f ¡ � Í . Thuswe havef " Í � " a f	¡¤= � Í . Noticethat ùûú é is a uniform distribution
over theinterval of length

�
centered at " Í , and ùûú ü a uni-

form distribution of samelengthcentered at "`a . Theclaim
follows from Lemma4.

Notice the history set ï consistsof Ý samplesets. We
saya historyset ï is typical, if all its samplesetsaretyp-
ical. Thenat most ¦(2�õ fraction of the history setsarenot
typical. We denote thedistributionof all answersproduced
by × usinghistoryset ï by ýxþ .

Claim 4 If both ï Í and ï a are typical, thenthestatistical
distancebetweený þ é and ý þ ü is at most ¦X2
õ .
Proof: Thisdirectly follow thesub-additivity of statistical
distance(seeAppendix C).

Now wefix anarbitrary typicalset ÿï anddenote its cor-
respondingdistribution of theanswersby ÿý . Thenweknow
the distribution from any typical set is at most ¦X2
õ away
from ÿý .

The only information £ receivesfrom × is represented
by thedistribution of theanswersproducedby × , which is
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in turn determinedby thehistoryset × uses.Thus,thedis-
tributionof thepair �FÕ¥Ø � s�Ø�� is completelydeterminedby the
historyset ï , andwe denote this distribution by ��þ . We
know that if ï is typical, then ��� ç�ò ­ � è ����� � Ð5Ñ�Ò#Ó(ÔJ�FÕ � s5�l%
(' ;H¦ � We fix the distribution ÿ� that correspondsto the
historyset ÿï . Thenwehave

���ç�ò ­ � è ���� � Ð�Ñ
Ò Ó(Ô �FÕ � s5�^% 
(' ;<¦ � (4)

Furthermore,weknow thatfor any typicalhistoryset ï , its
corresponding distributionof � þ is ¦(2�õ -closeto ÿ� .

Considera new experiment (a new execution of the
breaker × ) thatis identicalto theoriginal one,except when£ outputs a pair �#ÕgØ � s�ØÙ� , it doessoaccording to thefixed
distribution ÿ� .

Claim 5 Let
¬ã bethemaximumsizeof thesamplesetsinÿï . Thenthe probability of the new experimentis at least¦ � ¬ã���Ý
2
= � .

Proof: Noticethattheoutput of £ is independent fromthe
history set ï . Moreover, the history setcontainsat most¬ã���Ý messages.Sotheprobability thata particular Õ is inï is atmost

¬ã���Ý
2
= � . This fact,alongwith (4),provesthe
claim.

Now putting things together, with probability at most¦X2
õ , the history set ï is not typical; if ï is typical, the
differencebetweentheprobabilitiesof thetwo experiments
is at most ¦(2
õ ; theprobability of successof thenew exper-
iment is at least ¦ � ¬ã ��Ý
2
= � . Therefore the probability
of successof theoriginal experiment is at least(for E large
enough) ¦ � ¬ã ��Ý
2�= ��� ¦(2�õ � ¦X2
õ m ¦(2�= .

This finishestheproof.

5 SQ samplingand SQ learning

We now point out relationships betweenour SQ sam-
pling modelandtheSQlearningmodelof Kearns[22]. We
begin with definitions of SQlearning. (In thesedefinitions,
we assumelearningis with respectto theuniform distribu-
tion overexamples.)

Definition 5 (Statistical Query Learning Oracle) A sta-
tistical query learningoracle(SQL-oracle) for a predicateu is denoted by �Z��� � . On an input �F� ��� � , where ��P���J�K
�� �
	 �5�J�K
��NRT ���d

� � 
�� is the query function and� )7� �	��
�' is the tolerance, theoraclereturnsa real number\ such that f \ � U �
��Ì�Í ­ a�Î Á � �!�#" � ux�F"$��� ' fi¡ �

.

Definition 6 (StrongSQ-Learnability) A predicate class
family � is StrongSQ-learnable if there exists a random-
ized oracle machine £ , such that for every E m¾�

, ev-
ery u0)o� � and for every ¦ m �

, � m?�
, £ with access

to anySQL-oracle �	��� � outputs a hypothesis
¬u such that��� ����ÌzÍ ­ a�Î Á � ¬ux�#"$��%oux�F"!� ' ; 
&� ¦ with probability at least
k� � , and furthermore, both the running time of £ and

the inverse of the tolerance of each querymadeby it are
boundedbyapolynomial in E ,


 2�¦ and

 2�� . Here ¦ is called

theaccuracy and � theconfidence.

Definition 7 (WeakSQ-Learnability) A predicate class
family � is weak SQ-learnable if there exists a random-
izedoracle machines £ and a polynomial W¨����� , such that
for every E and for every u )¾� � , £ with accessto
any SQL-oracle �	��� � , outputs a hypothesis

¬u such that��� ����ÌzÍ ­ a�Î Á � ¬ux�#"$��% ux�#"$� ' ; 
 2�= � 
 2XW �#EG� , and further-
more, both the running time of £ and the inverse of the
toleranceof each querymadeby £ are boundedby a poly-
nomial in E .

The first observation to make is that a predicate class
canbestronglySQ-learnable andyet not evenweaklySQ-
samplable. In particular, any classwith a sufficiently low
densityof positiveexamplescanbetrivially learned by pro-
ducing the“all zero” hypothesis.(Formally, if we wish be
correct evenfor values of ¦ thatareexponentiallysmall, it
sufficesto have thedensitylessthan


 2
= �
¸ c so that if nec-
essarywecanusetheSQLoracleto identify all positiveex-
amples.)In theotherdirection,a classcanbestrongly SQ-
samplableandyet not evenweakly SQ-learnable. Indeed,
the family of negative parity functions taken over the do-
main

���	��

�5�
is trivially SQ-samplable(becauseux� �J� ��% 


for any suchu ), but suchfunctionsarenotevenweaklySQ-
learnable [22]. It is interestingto compare this to Theo-
rem 2, sincethe predicateclassfamilies in thesetwo the-
orems arevery similar (one canthink of thedifference ei-
therasremoving

�J�
from thedomain, or simply aschang-

ing the valuesof the functions at this onepoint), yet they
have completelydifferent characterizationin termsof SQ-
samplability.

However, we show thereis a relationshipbetweenthese
notions when the set of positive examples is sufficiently
dense.

5.1 SQ-learnability sometimes implies SQ-
samplability

We prove that under certain circumstances, SQ-
learnability impliesSQ-samplability .

Definition 8 (Densityof Predicates) The density of a
predicate u@P �5�J�K
��9�>RT ���	��

�

, denotedby 
!�ju�� , is the
fraction of its inputs that are positive. In other words,
$�Èu���%>�^� �
��ÌzÍ ­ a�Î Á � ux�F"!�^% 
�'

.

Definition 9 (DensePredicates) A predicate class family� is denseif there exists a polynomial W �z� � such that for
every E andfor every ug)r� � , 
!�ju��`; 
 2XW �FEG� .
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Theorem4 If a densepredicateclassfamily is strongSQ-
learnable, thenit is alsostrongSQ-samplablewith theaux-
iliary input 
 .

Proof: Let £ be the algorithm that strongly SQ-learns
dense predicatefamily � . We construct a new algorithm�

thatstrongSQ-samples � usingthedensity
 of thepred-
icate u asauxiliary input.

�
runsa copy of £ , whoseac-

curacy andconfidencearesetto be ¦d%�
L�9¦ Ø 294����V� ¹à�� � and�7% ¦�ØÙ294 , andsimulatesthe SQL-oracleusedby £ . We
shallprove that

�
producesa positive input with probabil-

ity at least

�� ¦�Ø .

We now describethe behavior of
�

.
�

works in two
phases. In this first phase,it simulatesthe SQL-oracle�	��� � . When £ submitsa query ��� �z� � to

�
,
�

doesthe
following.

1. Set ã % � å æ9ç�c�â ¸�� èc Þ Ê , draw ã independent samples" a � " c ��������� "$ê from
�5�J�K
��9�

, andcompute

sÜ% 

ã

ê�
_�í¨a ���F"$_

��� � �
2. Construct two query functions �ZÍ��F"!�¥%½���F" ��� � and��a5�F"!� % �!�#" ��
 � . Submit queries �F��Í ��� 291�� and����a �z� 291�� to theSQS-oracle�Z��� � andreceive \�Í and\ a asanswers.

3. Compute \�% s}�>�F\ a � \ Í �¨��
 andsend\ to £ asthe
answerto thequery ��� �z� � .

Thealgorithm
�

entersthesecondphasewhen £ produces
a hypothesis

¬u . Then
�

repeatsthefollowing procedure. It
draws a random "N) �5�J�K
��
�

, andcheckif
¬ux�F"$�&% 


. If so
it stopsandoutput " ; otherwiseit continues.Theprocedure
is repeated ����� a��� 2�
 timesandif

�
still hasn’t stopped,it

producesa random "g) ���	��

��� andoutputsit.
It is clearthat

�
runsin polynomialtime. Now, weprove

that
�

producesa positive samplewith probability at least
�� ¦�Ø .
First, we prove that with probability at least


 � � , all
answersprovidedby

�
arevalid in thefirst phase.Consider

an average s as an approximation of U �
��ÌzÍ ­ a�Î Á � �!�#" ��� � ' .
We say s is “bad”, if f s � U ����ÌzÍ ­ a�Î Á � ���F" ��� � ' f m � 2�1 .
Thenasimpleapplicationof theHoeffding Bound(seeAp-
pendix B) provesthattheprobability that s is badis atmost�
29Ý .

Next, noticethat

�!�#" � ux�F"$���^%��!�#" ��� �V�>� ���F" �K
 � � ���F" ��� � ' ��ux�#"$� �
Thereforewehave

U �
��ÌzÍ ­ a�Î Á � ���F" � ux�F"!�z� ' % U ����ÌzÍ ­ a�Î Á � �!�#" ��� � ' �U ����ÌzÍ ­ a�Î Á �������F" �K
 � � ���F" ��� ���x�Kux�F"!� '% U ����ÌzÍ ­ a�Î Á � �!�#" ��� � ' �� U �
���
  � ���F" �K
 � '	� U �
���
  � �!�#" ��� � ' ����


Therefore, if s is not bad,thenthe \ computedby
�

is
a valid reply to query ��� �z� � . Since £ makesa total of Ý
queries,with probability at least


&� � , all therepliesby
�

arevalid and £ shouldperform well.
Next, considerthesecondphaseof

�
. With probability

at least

�� � , £ shouldproducea hypothesis

¬u thatagrees
with u with probability at least


Ü� ¦ . Let usassumeth £
doesproducesucha

¬u . Now sincea 
 fractionof theinputs
arepositive, theprobability that

�
doesn’t draw a positive

input in ��� � a� �¨2!
 roundsis atmost � . Theprobability that
¬u

makesamistakein any of theroundsis atmost ���"� a� � ��¦(2!
 .

If
¬u doesn’t make any mistakes and at leastone positive

input is drawn, then
�

will correctly output it.
Puttingeverythingtogether, weknow thatwith probabil-

ity at least

Ü� 1#� � ��� � a�$�&�5¦(2!
û% 
Ü� ¦�Ø , � will output a

positive input.

Weremark thatit appearsnecessaryfor theSQ-sampling
algorithm to have thedensity 
 asanauxiliary input. One
differencebetweenSQ-sampling andtheSQ-learningis the
resolution. In thereplyof anSQS-oracle,theunderlinedis-
tribution is uniform over the“hiddenset”

� �
; for anSQL-

oracle,thedistirbutionis uniformover theentireset
���	��

�Z�

.
Therefore, a sampling algorithmneeds to know thesizeof�V�

in order to perform the simulation(moreprecisely, in
step3 of thefirst phase).

It is interestingto compare this result to Theorem 3,
which shows a predicateclassfamily that is perfectly SQ-
learnable, but not even weakly SQ-samplable.Neverthe-
less,thereis nocontradictionsincethepredicateclassfam-
ily in Theorem3 is notdense.
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A Shor’s Algorithm and Simon’s Algorithm

Webriefly summarizeShor’salgorithm for factoringand
Simon’s algorithm for thehiddenXOR-secretproblem.

A.1 Shor’s Algorithm for Factoring

Standardnumber theory reducesfactoring % to finding
the order of a random elementª modulo % , i.e., & m �
such that ª$'�( 
 � mod %8� but ª � 6( 
 � mod %8� for
any

�*) s ) & . Suppose = �3p a ) % ¡H= � . Shor’s al-
gorithm uses =�E qubits, separatedinto two E -qubit regis-
ters. Initially the stateis initialized to fz§ Í yû%ºf � � y�f � � y .
By applying the Fourier transformationfollowed by mod-
ular exponentiation, this state is converted to f�§^a(y %ac Á5ÆÏÊ ì � fá"$yKf�ª � mod %8y � Thenonemeasuresthe second
registeranddiscardit, leadingtoastatefz§xcKy^% ì,+ fá¢K�-&��/.�y
for some random .I) � & ' , where ¢ ranges from

�
to0 �È= �g�0
k� .���2�&21 (we ignore the scalarfactor). Finally,

oneappliestheinverseFouriertransform to thefirst register
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followed by a measurement. The distribution of the mea-
surement resultis approximatelyuniform over

� � ¢G�K= � 2!& ' P� ¡v¢`¡ 0 �È= �d�7
^� .���2!&21 � . Onecanthensolve & from one
instanceof � ¢x�K= � 2!& ' usingcontinuedfraction.

A.2 Simon’sProblemand Algorithm

A function u P ���	��
��
�rRT ���	��

���
is givenasanoracle,

with thepromisethatthereexistsan sd) ���	��
���� (known as
the“hiddensecret”)suchthat ux�F"!�Ü% ux�F\J� if f "ûbq\8% s .
Noticethatif sÜ% � �

, thenu is apermutation,andotherwiseu is a 2-to-1 function. Theproblemis to tell if sÜ% �!�
.

Simon’s algorithmworksasfollows. Onestartswith =�E
qubits, separatedinto two E -qubit registers.Originally one
initializesthestateto fz§ Í yÜ% f �
� yKf ��� y . Next, oneapplies
theHadamardoperatorto thefirst registerandthentheora-
cle operator fá"!y�f�\iy RT f�"$y�f�ux�F"!�xb<\iy . Thestatebecomesfz§�a(y�% ac Á5ÆÏÊ ì � fá"$yKfzux�#"$�zy . Next, the secondregister is
measuredanddiscarded. If sL% � �

, thenthemeasurement
resultis fz§$c5y&%�f�"$y for a random "N) �5�J��

���

. If s·6% ���
,

thenthemeasurement is fz§GØc yl% a3 c ��f�"$y��of�"ûb�s5yz� for a
random " . Next, a Hadamard operator is appliedto thefirst
register. In thecasesL% � �

, theresultis f�§!e�yn% f�\iy for a
random \ ; in thecasesO6% �i�

, theresultis fz§!Øe yn% fá\Jy for
a random\ suchthat \M�
s�% �

. Finally onemeasuresthe
first registerandobtains \ . Repeatingtheexperiment �L�FEG�
times,onecansolve for s by usingGaussianelimination
anddistinguishthecasesÜ% �i�

from thecasesL6% �3�
.

B The Hoeffding Bound

We statetheHoeffding Bound, a classicalresultin esti-
matingtail probabilities.

Lemma 1 (Hoeffding Bound [19]) Let Ö % � W � ¦X�áE ,
where ¦ is a real numberbetween

�
and


 2�= , and W is a
realnumber between0 and1. We have

Ô�4 í�Í 5 E 687 W 4 � 
�� W!� ò p 4 ¡v÷ p c � à Ê (5)

C Statistical Distance

We definethe statisticaldistanceandstatesomeof its
properties.Thedefinitions andthe resultsarestandard. A
good reference to the statisticaldistanceis Vadhan’s the-
sis[29].

Definition 10(Statistical Distance) The statistical dis-
tance betweentwo probability distributions

�
and 9 ,

denotedas �;:�� � � 9k� , is definedto be

�;:�� � � 9��^% 

=
�
� f � �#"$� � 9û�#"$�Kf (6)

where thesummation is takenover thesupport of
�

and 9 .
If �;:�� � � 9k��¡v¦ , wesay

�
is ¦ -closeto 9 .

This definitioncanbeeasilyextendedto thecontinuous
casewith thesummation beingreplacedby integral andthe
distributions replacedby densityfunctions.

Lemma 2 Let ý��#"$� beaprobabilistic eventwith " asinput.
Let

�
and 9 betwo distributions.We have<<<< ����
��= � ýk�F"$� 'Z� �^�����> � ýk�F"$� ' <<<< ¡<�;:�� � � 9k� (7)

Lemma 3 (Sub-additivity) Let
� a , � c , 9da , 9Üc be distri-

butions, thenwehave

�;:�� � a 9 a � � c 9 c �`¡<�;:�� � a � � c �G�q�;:��?9 a � 9 c � (8)

where
� 9 denotesthetensorproductof thedistributions

�
and 9 , i.e.,

� 9r�#ª ��« ��% � �#ªi�x�@9r� « � .
Lemma 4 Let ù a bea uniformdistribution over an inter-
val � ª � ªD� [ ' and ù c a uniform distributionsover � «5��« �7[ ' .
Then �;:��jù a � ù c � is at most f ª �h« f 2�[ .
Proof: Notice thatboth ù a and ù c areuniform distribu-
tionsof samelength,andthustheir densityfunctionshave
value


 29[ over their supports and 0 elsewhere. Consider
the absolute differencebetweenthe two density functions,f ù a �F"$� � ù c �#"$�Kf . Thesizeof its support is atmost =	f ª �r« f .
Thus �;:��jù a � ù c �`¡Úf ª �N« f 29[ .
D Proofs

Lemma 5 Let
¬� �3­ ® bethedomain definedin (1) and ¶ �3­ ®

betheclassofnormalizedbooleanizedlinear functionsover¬� �3­ ® . For any query function �oP ¬� �3­ ® RT ���J�K
��
, there

areat mostW c ��¸ e�ÄVc predicatesin ¶ �i­ ® thatarenot

 2�W �
¸ e -

independentfrom � .

For theproof we will need:

Lemma 6 ([31]) Let C<% � u _ � bea setof functionof range���d
�� � 
�� and A be its cardinality. If wju _ � u 4 yL%CB for all]n6% 6
, thentheset

� ÿu _ � formsan orthonormal basisfor the
linear spacespannedby C , where

ÿu _ �#"$�^% 
D 
�� B u _ �F"!� � 
A �FE 
D 
�� B � 
G 
 �¤�?A �q
 �HBJI �LK�4 í a u 4 �#"$�
(9)

10



Proof of Lemma 5: We first slightly modify the class¶ �3­ ® so that its range becomes
���d
�� � 

� . We defineÿ. ± �F©G�}%>=���. ± �F©G� �¥
 . It is nothardto seethateachof theW �3p a normalized booleanizedlinear functions mapsa


 2�W
fraction of the elementsin

¬� �3­ ® to � 
 , anda straightfor-
wardbut tediousanalysis(see[31] for a detailedaccount)
showsthatany two normalizedbooleanizedlinearfunctions
agree atexactly � W c � =XW �N=���W �ip c � W placesin

¬� �3­ ® . We
defineaninnerproductbetweenfunctionsover

¬� �3­ ® as

wju � �iy�% 

W � � W

�
���D¿À Á�Â Ã ux�F"!�Ï���F"!�

�
(10)

With this innerproduct,any queryfunction hasnorm1,and
any pair of distinct functions ÿ.^± and ÿ.JM have thesamein-
nerproduct. This will allow usto “extract” anorthonormal
basisfrom theclass¶ �3­ ® usingLemma 6.

Now we fix a query function � andrelatepredicatesthat
arenot

�
-independentfrom � to theFourier coefficientsof � .

Considera booleanized linear function .D± , andwe denote
its positivesetby

�
. Wehavethat f � f
%hW �3p a �O
 . Suppose� maps ª elementsin

¬� �3­ ® to � 
 , and
«

elementsin
�

to� 
 . Thenif .`± is not
�
-independentfrom � , wehave<<<< =�ª � W � �gWW � � W � = «}� W �3p a � 


W �3p a �v
 <<<< mq�i�
(11)

or f ª � « Wxf m ® Á pJ®c �
. We write

« %oªJ2XW��N� , andwe have

f �Jf3; ® Á9É ü p ac �
.

Next we compute the inner product of � and ÿ. ± .
Straightforwardcomputationshows that

wF� � ÿ.�±
y % =l� 5 = «�� ªD�¤� W �v
 ��� W �3p a �v
 �W � � W 7 �q

% 5 
�� =�ªW � � W 7 5 
�� =W 7 � 4#�W � � W

Ontheotherhand,theinnerproductof � with anaverage
overbooleanizedlinearfunctionsis


W �3p a
�MPO ÍHQ í a w�� � ÿ.JM	y�% 


W �3p a � W � � W$�
�MRO ÍHQ í a �

���D¿ÀxÁ9Â Ã �!�#"$� ÿu!MG�F"!�
% 


W �3p a � W � � W$�
�

�
�d¿ÀxÁ9Â Ã �!�#"$�
�MRO ÍSQ í a ÿu M �F"!�

% 5 
�� =�ªW � � W 7 5 
�� =W 7
Now we apply Lemma6, setting A¤%?W �3p a and BS%ç ® Ê pZ¹z® Ä ¹ è ® Á9É
Ê pJ®® Á pJ® . We will obtain an orthonormal basis,

whichwe denote by
� ¬.JM � .

Puttingthingstogether, wecancompute thatFourier co-
efficientof � over thecomponent

¬.^± .
w�� � ¬. ± y�% 
D 
�� B wF� � ÿ. ± y �E 
D 
�� B � 
G 
 �¤�?A �q
 �HB I � 
A �MRO ÍSQ í a w�� � ÿ. M y

% 
D 
�� B �UT 5 
�� =W 7 � 5 
�� =�ªW � � W 7 � 4#�W � � WJV �E 
D 
�� B � 
G 
 �¤�?A �q
 �HB�I � 5 
�� =W 7 � 5 
�� =�ªW � � W 7
% 
G 
 �>��A �v
 �SB 5 
�� =W 7 � 5 
�� =�ªW � � W 7 �


D 
�� B � 4 �W � � W
% 


W ç �3p a è ¸ c
5 
�� =
ªW � � W 7 �

=W�D W � W �3p a �q
 � ��X 
��q
 2�W �3p a
�� 4i2�W
; =W�D W � W �3p a �q
 � �



W ç �3p a è ¸ c

Now wesubstitutein
� % 
 2�W �
¸ e , andwe have

f wF� � ¬.�±
y�fJ; �D W � 

W ç �ip a è ¸ c ;



W ��¸ e�Ä a (12)

Thus � can have at most W c �
¸ e�ÄVc suchFourier coeffi-
cients,andso therecanbeat most W c �
¸ e�ÄVc predicatesthat
arenot


 2XW �
¸ e -independent from � .

Lemma 7 Let � � % �5�J��

���iÅ��5�
�Z�
and � � betheclassof

negativeparity functionsover � � . For anyqueryfunction� P ���	��
��5�tRT ���d
�� � 

� , there are at most = �
¸ c�ÄVc predi-
catesin � � thatare not = p!�
¸�¹ -independent from � .

Proof: We fix a negative parity function u . Let ª denote
the number of " ) ���	��
����

suchthat ���F"!��% 

, andlet

«
denote thenumberof "<) �^�

suchthat �!�#"$�d% 

. Notice

thatsinceall parity functionsarebalanced,we have f ��� f�%= �3p a �<

(since ux� ��� �&% 


but
��� 6) � �

). Thenif u is not�
-independent from � , we have<<<< = «^� = �3p a � 


= �3p a �q
 � =�ª � = �= �
<<<< m7�

(13)

or<<<< ª � = «= �3p a �q
 <<<< mq��� ª= �3p a �j= �ip a �v
 � mv��� 

= �3p a �q
 (14)

11



Next we perform Fourier analysis. We first definean
innerproductof realfunctions over

�5�J�K
��Z�
:

wÈu � �Jy�% 

= �

�
�
��ÌzÍ ­ a�Î Á ux�F"$�á�!�#"$�

�
(15)

We definea setof “modified parity functions” as ÿbD�5�#"$�Ü%� �d
 � � ß � , which mapelementsin
�5�J��

���

to
���d

� � 
�� . It

is clear that the setof all parity functions
� ÿbÜ�5�#"$� � � form

an orthonormal basis,and ÿbD�5�F"!�û% 
�� =�� bD�l�F"$� . If a
parity function �gbk���#"$� is not

�
-independentfrom � , then

(13) holds(by setting u<% ��b�� ). Let ¢ %/��� ��� � . Within
thesubsetwhere ÿbD�5�F"!� % �d


, which includes
� �

andthe
positivesetof ��b � , � maps

« �8¢ inputsto � 
 . Outsidethis
subset,� mapsª �g«¨� ¢ inputsto � 
 , and = �3p a � ª�� « �8¢
input to

�d

. Thus,we cancompute theFourier coefficient

of � on ÿb � .
w ÿbD� � �iy�% 
�� =l� �������ÌzÍ ­ a�Î Á � ÿbD�5�F"!�^%<���F"!� '

% 
�� =l� 5 ª �N«}� ¢= � � = �3p a � ªD� « � ¢= � 7
% =�ª � 4 «^� 4
¢= �

Substituting in (14), wehave

f w ÿbD� � �Jy�f m7�D�"Y 2�= � � (16)

However, notice that the query function �!�#"$� hasnorm 1
andthusit canhave at most


 2J� �d�ZY 2�= � � c Fourier coeffi-
cientssuchthat(16) holds. Now plugging in

� % = p!�
¸�¹ , we
have


 2J� �l�"Y 2�= � � c ¡�= �
¸ c�ÄVc , andtheLemmais proved.
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