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Abstract

We study the problem of constructing secure multi-party computation (MPC) protocols that
are completely fair — meaning that either all the parties learn the output of the function, or nobody
does — even when a majority of the parties are corrupted. We first propose a framework for fair
multi-party computation, within which we formulate a definition of secure and fair protocols. The
definition follows the standard simulation paradigm, but is modified to allow the protocol to depend
on the runing time of the adversary. In this way, we avoid a well-known impossibility result for fair
MPC with corrupted majority; in particular, our definition admits constructions that tolerate up
to (n − 1) corruptions, where n is the total number of parties. Next, we define a “commit-prove-
fair-open” functionality and construct an efficient protocol that realizes it, using a new variant of
a cryptographic primitive known as “time-lines.” With this functionality, we show that some of
the existing secure MPC protocols can be easily transformed into fair protocols while preserving
their security. Putting these results together, we construct efficient, secure MPC protocols that are
completely fair even in the presence of corrupted majorities. Furthermore, these protocols remain
secure when arbitrarily composed with any protocols, which means, in particular, that they are
concurrently-composable and non-malleable. Finally, as an example of our results, we show a very
efficient protocol that fairly and securely solves the socialist millionaires’ problem.

1 Introduction

Secure multi-party computation (MPC) has been one of the most fundamental problems in cryptog-
raphy. At a high level, the problem is concerned with n parties, each holding a private input xi, that
want to compute a function (y1, y2, . . . , yn)← f(x1, x2, ..., xn) so that each party learns its own output
yi, but no other information is revealed, even in the presence of malicious parties that may deviate
arbitrarily from the protocol [56, 57, 38, 8, 19, 37].

It is standard to define the security of an MPC protocol using a simulation paradigm, where two
experiments are presented: one real world experiment that models the actual setting in which a proto-
col takes place, and one ideal process where an ideal functionality performs the desired computation.
The security of a protocol is defined as the existence of an ideal adversary in the ideal process that
simulates the view of any real world adversary. Many simulation-based security definitions in various
models have been proposed [37, 15, 47, 16, 40, 42]. Among the models, the universal composability
(UC) framework of Canetti [16] provides perhaps the strongest security guarantee in the following
sense: a protocol π that is secure in this framework is guaranteed to remain secure when arbitrarily
composed with other protocols, by means of a “composition theorem.” In particular, this means that
a secure protocol in the UC framework is both concurrently-composable [27] and non-malleable [25].

Fair multi-party computation. This paper focuses on a particular issue in MPC, namely, fairness.
Informally speaking, a protocol is fair if either all the parties learn the output of the function, or no
party learns anything (about the output). This property is also known as “complete fairness,” and
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can be contrasted with “partial fairness,” where fairness is achieved only when some conditions are
satisfied [40]1; see also [30]. In this paper, by “fairness” we will always mean complete fairness.

Clearly, fairness is a very desirable property for secure MPC protocols, and in fact, many of
the security definitions cited above imply fairness. (See [40] for an overview of different types of
fairness, along with their corresponding histories.) Here we briefly describe some known results about
(complete) fairness. Let n be the total number of participating parties and t be the number of corrupted
parties. It is known that if t < n/3, then fairness can be achieved without any set-up assumptions,
both in the information-theoretic setting [8, 19] and in the computational setting [38, 37] (assuming the
existence of trapdoor permutations). If t < n/2, one can still achieve fairness if all parties have access
to a broadcast channel; this also holds both information theoretically [49] and computationally [38, 37].

Unfortunately, the above fairness results no longer hold when t ≥ n/2, i.e., when a majority
of the parties are corrupted. In fact, it was proved that there do not exist fair MPC protocols in
this case, even when parties have access to a broadcast channel [20, 37]. This impossibility result
easily extends to the common reference string (CRS) model (where there is a common string drawn
from a prescribed distribution available to all the parties). Intuitively, this is because the adversary,
controlling a majority of the corrupted parties, can abort the protocol prematurely and always gain
some unfair advantage. Thus, given this impossibility result, much of the previous research on the case
of a corrupted majority focuses on protocols with weakened fairness properties, ranging from being
partially fair to completely unfair. For example, the basic UC framework is, by definition, completely
unfair.2

Nevertheless, fairness is still important (and necessary) in many applications in which at least half
the parties may be corrupted. One such application is contract signing (or more generally, the fair
exchange of signatures) by two parties [9]. To achieve some form of fairness, various approaches have
been explored. One such approach adds to the model a trusted third party, who is essentially a judge
that can be called in to resolve disputes between the parties. (There is a large body of work following
this approach; see, e.g., [2, 14] and references therein.) This approach requires a trusted external
party that is constantly available. This is in contrast to, for example, the PKI model, where after
the public/secret keys are generated, the trusted party is no longer needed. A different approach that
avoids the available trusted party requirement uses a mechanism known as “gradual release,” where
parties take turns to release their secrets in a “bit by bit” fashion. Therefore, if a corrupted party
aborts prematurely, it is only a little “ahead” of the honest party, and the honest party can “catch
up” by investing an amount of time that is comparable to (and maybe greater than) the time spent by
the adversary. (Note that this is basically an ad hoc notion of fairness.) Early works in this category
include [9, 28, 32, 39, 5, 22]. More recent work has focused on making sure — under the assumption
that there exist problems, such as modular exponentiation, that are not well suited for parallelization3

— that this “unfairness” factor is bounded by a small constant [12, 36, 48]. (As we discuss below, our
constructions also use a gradual release mechanism secure against parallel attacks.)

In this paper we circumvent the impossibility result discussed above and develop a rigorous
simulation-based security definition (without a trusted third party) which admits fair MPC proto-
cols for the case of corrupted majorities. In a nutshell, we achieve this by allowing the time of the
honest parties to depend on, and be greater than, the time of the adversary. Note that it is the stan-

1For example, in [40] there exists a specific party P1 such that the protocol is fair as long as P1 is uncorrupted; but
when P1 is corrupted, then the protocol may become completely unfair.

2In the basic UC framework, the adversary in the ideal process can block the outputs from the ideal functionality
to all the parties. Thus, the ideal process itself is already completely unfair, and therefore discussing fair protocols is
not possible. We note that Canetti [16] also discusses a modified definition in which the ideal process is “non-blocking,”
meaning that the ideal adversary eventually forwards the outputs of the functionality to the uncorrupted parties. It is
not clear how fair this is compared to other definitions which guarantee when uncorrupted parties get their outputs.

3Indeed, there have been considerable efforts in finding efficient exponentiation algorithms (e.g., [1, 55]) and still the
best methods are sequential.
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dard approach in gradual release to let the honest parties have more time than the adversary (at least
in the worst case), although this is sometimes not explicitely stated; here we make it explicit. Except
for giving the honest parties more time, our underlying framework and security definition are similar
to the well-known UC framework and security definition, and thus achieve similar security properties.

Our definition is designed specifically to allow gradual release to be used to achieve fairness. Typical
protocols using gradual release consist of a “computation” phase, where some computation is carried
out, followed by a “revealing” phase, where the parties gradually release their private information
towards learning a result y.4 Thus to prove security using a simulation-based definition one needs to
be able to simulate both the computation phase and the release phase. Previous (ad hoc) security
definitions did not require this, and consisted, explicitly or implicitly, of the following three statements:

1. The protocol is completely simulatable up to the revealing phase.

2. The revealing phase is completely simulatable if the simulator knows y.

3. If the adversary aborts in the revealing phase and computes y by brute force in time t, then all
the honest parties can compute y in time comparable to t.5

While carrying some intuition about security and fairness, we note that these definitions are not fully
simulation-based. To see this, consider a situation where an adversary A aborts early in the revealing
phase, such that it is still infeasible for A to find y by brute force. At this time, it is also infeasible
for the honest parties to find y by brute force. Now, how does one simulate A’s view in the revealing
phase? Notice that the revealing phase is simulatable only if the ideal adversary S knows y. However,
since nobody learns y in the real world, they should not learn y in the ideal world, and, in particular, S
should not learn y. Thus, the above approach gives no guarantee that S can successfully simulate A’s
view. In other words, by aborting early in the revealing phase, A might gain some unfair advantage.
This can become an even more serious security problem when protocols are composed.

Our results We summarize the main results presented in this paper.

1. A fair multi-party computation framework. In Section 3, we propose a new framework
for fair multi-party computation (FMPC), which is a variation of the UC framework, but with
modifications so that the ideal process is (intuitively) fair.6 We then present definitions for secure
and fair MPC protocols in this framework that completely fit into the (standard) simulation
paradigm and, at the same time, admit protocols that tolerate an arbitrary (i.e., up to (n − 1))
number of corruptions.

We avoid the impossibility result [20, 37] by doing a “quantifier switch” in the security def-
inition. Notice that “standard” definitions calls for a single protocol π against all adversaries.
But whenever we fix a protocol, there always exists an adversary that gains unfair advantage by
aborting. In contrast, we define a collection of protocols {π[t]}, parameterized by a time t, and
call the collection a timed protocol. Then we say a timed protocol is secure, if for any t and any
adversary A whose running time is bounded by t, the particular protocol instance π[t] is secure
against A. In this way, we quantify the protocols on the running time of the adversary (switch-
ing the quantifiers of the protocols and the adversaries), thereby circumventing the impossibility

4For simplicity, we assume that all the parties receive the same result y at the end of the protocol. This can be easily
extended to the case where each party receives a (different) private output, since y may contain information for each
individual party, encrypted using a one-time pad.

5As we discusses before, an honest party typically will spend more time than the adversary in this case.
6We stress that it is always possible to write unfair functionalities even in a framework that allows for fairness. For

example, imagine a functionality which, after computing the output (assume it is y), sends y to S first, waits for an
“acknowledgment” from S back, and then sends y to all parties. In this way, S will have an opportunity to block
the parties by simply not sending the acknowledgment. Thus, this functionality will be inherently unfair. The FMPC
framework only provides the possibility to have fair functionalities. See also [3], which uses a similar argument to simulate
an asynchronous network (which is inherently unfair) using a synchronous one (which can be fair).
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result. Furthermore, we prove a composition theorem similar to the one in the UC framework,
which implies that if a protocol π is proved secure in the stand-alone model, then it remains
secure when arbitrarily composed with any other protocols. In particular, this means that π is
concurrently-composable and non-malleable.

2. The “commit, prove and fair-open” functionality. We define (in Section 5) a commit-prove-
fair-open functionality FCPFO in the FMPC framework. This functionality allows all parties to
each commit to a value, prove relations about the committed value, and more importantly, open
all committed values simultaneously (and thus fairly). This functionality lies at the heart of our
constructions of fair MPC protocols. Furthermore, we construct an efficient protocol GradRel

that securely realizes FCPFO, assuming static corruptions. Our protocol uses a new variant of a
cryptographic primitive known as time-lines [33], which enjoys a property that we call “strong
pseudorandomness” (Section 4). Our new variant allows us to construct the first fair protocols
that are fully simulatable. In turn, the construction of time-lines hinges on a further generalization
of an assumption presented in [12], which has broader applicability (Section 2).

3. Efficient and fair MPC protocols. We show that by using the FCPFO functionality, many
existing secure MPC protocols can be easily transformed into fair protocols, while preserving
their security. In particular, we present two such constructions. The first construction converts
the universally-composable MPC protocol by Canetti et al. [18] into a fair MPC protocol that
is secure against static corruptions in the CRS model in the FMPC framework. Essentially, the
only thing we need to do here is to replace an invocation of a functionality in the protocol called
“commit-and-prove” by our FCPFO functionality.

The second construction turns the efficient MPC protocol by Cramer et al. [21] into a fair
one in the “public key infrastructure” (PKI) model in a similar fashion. The resulting protocol
becomes fair and secure (assuming static corruptions) in the FMPC framework, while preserving
the efficiency of the original protocol — an additive overhead of only O(κ2n) bits of communica-
tion and an additional O(κ) rounds, for κ the security parameter. These MPC constructions are
presented in Section 6.

Finally, as an illustration of our results, we construct a very efficient protocol that solves the
socialist millionaires’ problem [29, 41] (a problem also called “private equality testing”), where
two (or more) parties want to know whether they hold the same value, but nothing else. Our
protocol, which builds on the MPC construction by Cramer et al. [21], is completely fair, and
remains secure when arbitrarily composed. Compared with the construction by Boudot et al. [13],
our construction is as efficient (asymptotically), but enjoys much stronger security and fairness.
Furthermore, our construction can be easily extended to the multi-party case. These results are
presented in Section 7.

2 Preliminaries

Let κ be the cryptographic security parameter. A function f : Z → [0, 1] is negligible if for all α > 0
there exists an κα > 0 such that for all κ > κα, f(κ) < |κ|−α. All functions we use in this paper will
include a security parameter as input, either implicitly or explicitly, and we say that these functions
are negligible if they are negligible in the security parameter. (They will be polynomial in all other
parameters.) Furthermore, we assume that n, the number of parties, is polynomially bounded by κ
as well.

A prime p is safe if p′ = (p− 1)/2 is also a prime (in number theory, p′ is also known as a Sophie-
Germain prime). A Blum integer is a product of two primes, each equivalent to 3 modulo 4. We will
be working with a special class of Blum integers N = p1p2 where p1 and p2 are both safe primes. We
call such numbers safe Blum integers.7

7Integers that are the product of two equally-sized safe primes have also been called rigid integers [6].
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We model all computations as non-uniform polynomial-time interactive PRAM machines (IPRAM).
IPRAMs are simply extensions to the PRAM machines with special read-only and write-only mem-
ories for interacting with each other. For simplicity, we assume that these IPRAM machines can
compute modular squaring operations (i.e., computing x2 mod M on input (x,M)) in constant time.
All protocols and adversaries are assumed to be polynomial-time unless otherwise stated.

We use the composite decisional Diffie-Hellman (CDDH) assumption [11] and the decisional com-
posite residuosity assumption (DCRA) [45] in this paper.

We also propose a further generalization of the generalized BBS assumption (G-BBS) by Boneh
and Naor [12], which we call the yet-more-general BBS assumption (YMG-BBS). See Section 4 for
discussions.

The CDDH assumption. We briefly review the composite decisional Diffie-Hellman (CDDH) as-
sumption. (We refer the reader to [11] for more in-depth discussions.) Let N = p1p2 where p1, p2

are κ-bit safe primes. Let g be a random element from Z
∗
N , a, b, c random elements in ZN , and A a

polynomial-time adversary. There exists a negligible function ε(·), such that

∣∣∣Pr[A(N, g, ga, gb, gab) = 1]− Pr[A(N, g, ga, gb, gc) = 1]
∣∣∣ ≤ ε(κ)

where the randomness is taken over the random choices of N, g, a, b and c. In this paper, we will
use a slight variation of this assumption, where instead of being a random element in Z

∗
N , g is a

random quadratic residue in Z
∗
N . We call the new assumption CDDH-QR. Notice that CDDH-QR

easily reduces to CDDH. To see this, given a random tuple (N, g, x, y, z) from the CDDH assumption,
(N, g2, x2, y2, z2) is (statistically close to) a random tuple in the CDDH-QR assumption.

3 The Fair Multi-Party Computation Framework

We define the new framework used in our paper, which we call the fair multi-party computation
(FMPC) framework. It is similar to the universal composability (UC) framework [16]. In particular,
there are n parties, P1, P2, ..., Pn, a real-world adversary A, an ideal adversary S, an ideal functionality
F , and an environment Z. However, FMPC contains some modifications so that fairness becomes
possible. We stress that the FMPC framework still inherits the strong security of the UC, as we shall
prove a composition theorem in the FMPC framework similar to UC.

Instead of describing the FMPC framework from scratch, we only discuss its differences from the
UC framework. We present a brief overview of the UC framework in Appendix A; refer to [16] for a
detailed presentation. The places the FMPC framework differs from the UC framework are:

1. Interactive circuits/PRAMs. Instead of interactive Turing machines, we assume the compu-
tation models in the FMPC framework are non-uniform interactive PRAMs (IPRAMs). This is a
non-trivial distinction, since we will work with exact time bounds in our security definition, and
the “equivalence” between various computation models does not carry over there. For technical
reasons, we will use machines that allow for simulation and subroutine access with no overhead.
Thus, if we have two protocols, and one calls the other as a black-box, then the total running
time of the two protocols together will be simply the sum of their running times. Obviously,
Turing machines are not suitable here.

2. Direct-output functionalities. This is the most important difference between the two frame-
works. Recall that in the UC framework, messages from the ideal functionality F are forwarded
to the uncorrupted parties by the ideal adversary S, who may block these messages and never
actually deliver them. The ability of S to block messages from F makes the UC framework
completely unfair. In the FMPC framework, however, messages from F are directly sent to the
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uncorrupted parties, and S cannot delay these messages. We call this feature “direct-output
functionalities.”8

3. Synchronous broadcast communication with rounds. In the UC framework, the communi-
cation is asynchronous, and controlled by the adversary. Again, this makes fair MPC impossible,
since the adversary may, e.g., choose not to deliver the final protocol message to an uncorrupted
party Pi. To prevent this from happening, communication in the FMPC framework takes the
form of synchronous, authenticated broadcast and has rounds in both the real world and the
ideal process. More precisely, we assume that in the real world, all parties know which round
they are in, and in each round, all honest parties are activated (in any order), the adversary is
then activated and may read their outgoing communication memories, and write on the outgoing
communication tapes of corrupted parties. (This is commonly referred to as a rushing adversary.)
Then all messages in the outgoing communication memories of all parties are transferred to the
incoming communication memories of all parties, each one tagged with the identity of the sending
party. In the ideal process, the only active parties are the ideal functionality F and the ideal
adversary S. So, by having rounds in the ideal process, we simply mean that F is defined in
terms of rounds (in general, these rounds would match the rounds in the protocol π realizing it),
and that S knows which round it is in. With this round structure, the honest parties will be able
to know when the adversary aborts the protocol and take appropriate actions.9

With these modifications, it is now possible to discuss fair functionalities. As an important ex-
ample, we present the secure function evaluation functionality Ff below (parameterized by round
parameter s). Note that it is similar to the homonymous functionality in the UC framework [16],
except for (1) the added round structure, (2) the fact that there is no reference to the number of cor-
rupted parties, as in our case it may be arbitrary, and (3) the output is a single public value, instead
of private outputs to each party.10 However, since we are in the FMPC framework, the functionality
Ff is fair in the ideal process.

Functionality Fs
f

Fs
f proceeds as follows, running with security parameter κ, parties P1, . . . , Pn, an adversary S

and a “round” parameter s, which is a (fixed) polynomial of κ:

In the first (s−1) rounds, upon receiving a value (input, sid, v) from Pi, set xi← v. As soon
as inputs have been received from all parties, compute y← f(x1, . . . , xn) and immediately
send message (output, sid, y) to S.

In the sth round, broadcast message (output, sid, y).

Figure 1: The SFE functionality for evaluating an n party function f with round parameter s.

We note that S receives the output y if and only if the honest parties receive y, although S may
receive y earlier (recall that S cannot block the messages from Ff to the parties). This models the
situation in the real world — the corrupted parties may gain some advantage of getting the result

8We note that this is different from the “non-blocking ideal adversary” in [16]. We require that a message from the
ideal functionality is immediately delivered to the parties, while the non-blocking ideal adversary is only required to
“eventually deliver” messages. It is not clear if the two ideal processes are equivalent, but the direct-output functionality
appears to be more convenient to use and more intuitive for constructing fair protocols.

9We comment that the requirement for the round structure can be somewhat weakened, so long as the honest parties
can discover premature abort. For example, it is possible to have a framework where the “global” rounds do not
necessarily match the rounds in a protocol, and different protocols can be interleaved. As a particular example, the
environment may start a protocol π, and in the middle of it, start a new protocol ρ, finish ρ, and come back to π. This
would not affect the fairness of the protocol so long as there is an upper bound for the number of “global” rounds between
any two consecutive rounds in a protocol. See [4] for more related discussions on the round structure and synchronous
communication that ensure fairness.

10We note that an analogous “private-output” functionality can be easily realized by Ff , as discussed in Section 1.
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earlier by premature abort, but the honest parties will get the output eventually, even if later.

3.1 Timed protocols and security definitions

As discussed in the introduction, we formulate the security in the FMPC framework using the simu-
lation paradigm. To avoid the impossibility result, we add an explicit bound t to the running time of
both the real-world adversary A and the environment Z. We always assume that t is a polynomial of
the security parameter κ. We do not explicitly write t as t(κ) for simplicity.

Definition 3.1 We say an IPRAM is t-bounded if it runs for a total of at most t steps.

We can view a t-bounded IPRAM as a “normal” IPRAM with an explicit “clock” attached to it
that terminates the execution after a total number of t cumulative steps (notice that an IPRAM is
reactive).

Definition 3.2 (Timed Protocols) We say a protocol π is timed if it has an additional parameter
T . We write this as π[T ] and call T the timing parameter.

One can think of a timed protocol as a collection of “normal” protocols {π[t]}, each parameterized
by a particular time function t (T is simply a placeholder). In the sequel, with slight abuse of notations,
we will use π[t] to denote a specific instance of the timed protocol π[T ] where the parameter T is fixed
to be t. We can view a normal protocol π as a specific type of timed protocol π[T ] where π[t] is the
same protocol π for all t.
We are now ready to define security in the FMPC framework. As discussed in Section 1, the “full
security definition” in standard MPC framework cannot be satisfied with a faulty majority. Therefore,
we resort to a weaker definition of security, which we call bounded-adversary security.

Definition 3.3 (Bounded-Adversary Security) Let π[T ] be timed protocol and let F be an ideal
functionality. We say π[T ] securely realizes F if there exists a polynomial-time black-box ideal ad-
versary S, such that for all t, for any t-bounded real-world adversary A and t-bounded environment
Z,

REALπ[t],A,Z ≈ IDEALF ,SA(t),Z . (1)

We note that the time parameter T is only the parameter of a protocol, not a parameter of a
functionality. For example, the round parameter s in the secure function evaluation functionality Fs

f

in Figure 1 does not depend on T as all.

Remarks We insist on a “universal” black box simulator (ideal adversary) that works against all
adversaries and environments of any time bound. This only makes our security definition stronger. We
comment, however, that all known constructions of simulators in the UC framework are universal black-
box. Notice that the running time of S is a fixed polynomial, independent of the timing parameter t.11

This is possible since we only count the “net” time S takes on its own, and we count an invocation of
the real-world adversary A as one step for S. Naturally, the total time S takes to do the simulation
(which includes both S and A) can be much larger than the net time. Also notice that S takes t as
its input, since S will need to know the running time of A and Z in order to perform the simulation.
In the rest of this paper, we often omit this input t for simplicity.

We now define the “fairness” of a protocol, as the ratio of the worst-case running time of uncor-
rupted parties to the running time of the adversaries.

Definition 3.4 (Fair Protocols) We say a timed protocol π[T ] is λ-fair if there exists a polynomial
p(·) such that for all t, each uncorrupted party’s running time in protocol π[t] is at most λ · t + p. If
λ = O(n), where n is the number of parties, we say π[T ] is fair. If λ = 0, we say π[T ] is strongly fair.

11Here, by running time, we mean the running time of S per activation, similar to the UC framework [16].
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Note that the fairness definition is only about the worst-case running time of an honest party, and
this worst-case time is generally incurred only if an adversary aborts or deviates from the protocol. If
the protocol proceeds normally, the running time of an honest party is typically fixed and much smaller
than the worst-case time. We can make this more precise by introducing a few more definitions. First,
we define a benign environment Z̃ to be one that initiates a single instance of the protocol, activates
all parties in each round and does not corrupt any party during the entire execution. Obviously, Z̃
(in conjunction with a protocol π) models a “normal,” failure-free execution of π. Therefore, we call
the time it takes to finish the execution of π with a benign environment Z̃ the normal running time
of π.

Definition 3.5 (Reasonable Protocols) We say a timed protocol π[T ] is reasonable if the normal
running time of π[t] is a fixed polynomial independent from t.

All timed protocols constructed in this paper are reasonable protocols.

Remarks on the definitions.

1. In the fairness definition, honest parties in a fair protocol may run longer than a corrupted
one. This might appear unnatural, since in cryptography one typically gives the adversary more
resources (usually running time) than an honest party. However, it is common practice in the
gradual release approach to allow an honest party to have more time than the adversary, although
this is sometimes not explicitly stated. In fact, this seems to be unavoidable in light of the
impossibility result [20, 37]. Intuitively, this is because when a corrupted party aborts, it may
have more information than the honest parties, and thus have an unfair advantage. Therefore,
the honest parties need to invest more time in order to “catch up.” Furthermore, for reasonable
timed protocols, the honest parties need to spend more time only in the worst case.

2. Our security definition is less “robust” than “normal” definitions in that the security of a protocol
hinges on t, the running time of the adversary. As an illustration, for a timed protocol π[T ], the
definition says nothing about security of protocol π[t] for a (t+1)-bounded adversary. However, we
note that the time parameter T serves as an upper bound. Therefore a secure protocol π[t] would
be secure for a t′-bounded adversary whenever t′ ≤ t.12 Thus, our definition is still “reasonably
robust” in that the protocol does not need to know the exact running time t of the adversary
— rather, an upper bound suffices. This is particularly useful for reasonable protocols, whose
normal running time does not depend on t. So picking a large enough t does no harm in normal
executions.

3. The intuition behind the choice of λ = O(n) for fair protocols is as follows. As discussed before,
since corrupted parties can abort and gain unfair advantage, an honest party needs more time to
catch up. In the worst case, there can be (n−1) corrupted parties against one honest party. Since
the honest party may need to invest a certain amount of work against every corrupted party, we
expect that the honest party would run about (n − 1) times as long as the adversary. Thus,
we believe that O(nt) is the “necessary” amount of time an honest party needs for a t-bounded
adversary. On the other hand, as we show in the sequel, there exist O(n)-fair protocols in the
FMPC framework, and thus λ = O(n) is also sufficient. Furthermore, if a normal protocol π
(i.e., π[t] = π for any t) is secure in the FMPC framework, then it is strongly fair, since the
honest parties’ running time does not depend on the timing parameter. One such example is
the one-to-many UCZK protocols in [18, 24, 35]. It is easy to verify that these protocols remain
secure in the FMPC framework. (Basically this is because as soon as the prover broadcasts its
response, every party can verify on its own the validity of the proof.)

12Pedantically, we mean that if t′(κ)/t(κ) → 0 as κ → ∞, then protocol π[t] is secure for a t′-bounded adversary. We
use t′ ≤ t for the sake of simplicity.
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We now turn to the composition of protocols in the FMPC framework. Before stating a composition
theorem, we need some additional notation. Suppose we want to compose timed protocols π[T ] and
ρ[T ], where π calls ρ as a subroutine. Since both protocols are timed, we need to specify precisely
which instances of π[T ] and ρ[T ] are used. Let f(·) and g(·) be two polynomials. We use π[f(T )]ρ[g(T )]

to denote a timed-protocol, say σ(T ), where σ(t) is made up of protocol π[f(t)] composed with protocol
ρ[g(t)]. We call functions f(·) and g(·) the security amplification functions.

The following composition theorem and its corollary are similar to the respective counterparts in
the UC framework. However, since we use timed protocols and keep track of the exact running time,
the statements are more complicated.

Theorem 3.6 (Bounded Adversary Composition) Let F be an ideal functionality. Let π[T ] be
an n-party timed protocol in the F-hybrid model. Let `(t) be an upper bound on the number of times
π[t] calls F . Assume the running time of the honest parties in protocol π[t] is bounded by λ · t+ p. Let
ρ[T ] be an n-party timed protocol that securely realizes F . Let q be a polynomial that dominates the
running times of F and the ideal adversary for ρ. Then there exists a black-box hybrid-mode adversary
H, such that for any t-bounded real-world adversary A and t-bounded environment Z, we have

REALπ[f(t)]ρ[g(t)],A,Z ≈ HYBF
π[f(t)],HA(t),Z , (2)

with security amplification functions f(t) = t + r, where r upper-bounds the running time of H, and
g(t) = (2 + λn)t + (np + `(t) · q + (1 + λn)r).

Proof: The idea of the proof is very similar to the proof of the composition theorem in the UC
framework, except that we need to keep track of the explicit running time of the adversaries and the
environment.

Our construction of the hybrid-mode adversary H is similar to the construction in [16], but we have
an arbitrary real adversary instead of a dummy adversary.13 This does not add much complexity: H
runs a copy of A as a black box, and simulates the messages in the protocol ρ[g(t)] using (as black
boxes) the simulator S for ρ[g(t)] and the ideal functionality F . If an environment Z can distinguish
the real world experiment from the hybrid experiment with an adversary A, then we can construct a
new environment Z ′ that can distinguish the real-world experiment for protocol ρ[g(t)] with a dummy
adversary A from the ideal process with S and F .

We analyze the running time of Z ′ and A so that we are sure that when Z breaks protocol π[f(t)]ρ[g(t)],
Z ′ breaks the security of protocol ρ[g(t)]. Basically, the new environment Z ′ is a combination of Z,
H, and the protocol π[f(t)]; the new adversary A simply copies data and thus we do not consider its
time. Notice that H calls A, and also calls the ideal functionality F and the ideal adversary S for
ρ[g(t)] at most `(f(t)) times. Thus, the total time of H (not including the time of A) is dominated
by `(f(t)) · q + r, since the time of F plus the time of S is dominated by q. The time to run protocol
π[f(t)] is at most λn · (t + r) + n · p. So if the running time of Z and A are bounded by t, then the
running time of Z ′ is bounded by g(t) = (2 + λn)t + (np + `(f(t)) · q + (1 + λn)r).

We now define the security of a timed protocol in the “hybrid” model of computation. The
definition is almost the same as Definition 3.3.

Definition 3.7 (Bounded-Adversary Hybrid Security) Let π[T ] be a timed protocol and let F
and G be functionalities. We say π[T ] securely realizes G in the F-hybrid model if there exists a
polynomial-time black-box ideal adversary S, such that for all t, for any t-bounded hybrid adversary
H and t-bounded environment Z,

HYBF
π[t],H,Z ≈ IDEALG,SH(t),Z . (3)

13A dummy adversary follows instructions from the environment to either send a message, retrieve all messages, or
corrupt a party. Thus it simply acts like a vessel for the environment to act on the real system.
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Corollary 3.8 Let F , G be ideal functionalities. Let π[T ] be an n-party timed protocol that securely
realizes G in the F-hybrid model. Let `(t) be an upper bound on the number of times π[t] calls F .
Assume that the running time of the honest parties in protocol π[t] is bounded by λ · t + p. Let ρ[T ] be
an n-party timed protocol that securely realizes F and is λ′-fair. Let q be a polynomial that dominates
the running times of F and the ideal adversary for ρ. Let f(t) = t + r, where r is an upper bound on
the running time of the hybrid adversary H in Theorem 3.6, and g(t) = (2 + λn)t + (np + `(f(t)) ·
q + (1 + λn)r). Then timed protocol π[f(T )]ρ[g(T )] securely realizes G. Furthermore, if `(t) is constant
(i.e., it does not depend on t), then π[f(T )]ρ[g(T )] is (λλ′`n + λ + 2λ′`)-fair.

Proof: Theorem 3.6 guarantees that there exists an adversary H in the F-hybrid model such that

REALπ[f(t)]ρ[g(t)],A,Z ≈ HYBF
π[f(t)],HA,Z

for any t-bounded Z and t-bounded A. That π[f(T )] securely realizes G in the F-hybrid model guar-
antees that there exists an ideal process adversary S such that HYBF

π[f(t)],HA,Z
≈ IDEAL

G,SHA
,Z

, since

both HA and Z are f(t)-bounded (and actually, Z is t-bounded). Hence, we have REALπ[f(t)]ρ[g(t)],A,Z

≈ IDEAL
G,SHA

,Z
, for any t-bounded adversary A and environment Z. The security of π[f(T )]ρ[g(T )]

thus follows.

For the fairness, assuming `(t) does not depend on t, the running time for each uncorrupted party
in protocol π[f(t)] is bounded by λ · t + (λr + p) for some polynomial p, while the running time in
protocol ρ[g(t)] is bounded by λ′ · g(t) + s for some polynomial s. Thus, the running time for protocol
π[f(t)]ρ[g(t)] is bounded by

λ · t + (λr + p) + ` · (λ′ · g(t) + s) = (λλ′`n + λ + 2λ′`)t + (λr + p + `λ′(np + `q + (1 + λn)r) + `s).

Thus, protocol π[f(T )]ρ[g(T )] is (λλ′`n + λ + 2λ′`)-fair.

In the sequel, when we perform composition of timed protocols, we refrain from giving the explicit
security amplification functions f(·) and g(·) for the sake of clarity.

Remarks

1. Notice that the composition becomes much simpler when one of the two protocols is strongly
fair. If protocol ρ is strongly fair (meaning that λ′ = 0) then π[f(T )]ρ is a timed protocol that
is λ-fair. On the other hand, if π is strongly fair (meaning that λ = 0), then πρ[2T+np+`q+r] is a
timed protocol that is 2λ′`-fair.

2. The number of times π[f(t)] calls F (or ρ[g(t)]) can be naturally bounded by f(t), i.e., `(f(t)) ≤
t + r. Thus, we can state both the composition theorem and its corollary without the knowledge
of `. This in particular means that if we use the “right” security amplification functions, the
protocol can be made secure with respect to unbounded composition. However, the resulting
composed protocol would not be very fair since the honest parties need to run for much longer.

The CRS model and the PKI model Later in this paper we work in the FCRS-hybrid model,
implying that there is a common reference string (CRS) generated from a prescribed distribution
accessible to all parties at the beginning of the protocol. The FCRS functionality simply returns
the CRS. The public key infrastructure (PKI) model is stronger. Upon initial activation, a PKI
functionality FPKI generates a public string as well as a private string for each party.
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4 “Yet More General” BBS Assumptions and Time-Lines

Let N be a Blum integer. Consider a sequence G of elements in ZN , (g, g2, g22
, g23

, ..., g2T
), where each

element is the square of the previous one [10]. Assuming a unit cost to perform a modular squaring,
one can move “forward” in the sequence in one step; in ` steps, one can move ` positions forward. If
one knows the factorization of N , however, one can compute any element in the sequence efficiently,
and therefore “jump” both forward and backward. On the other hand, without the knowledge the
factorization of N , it appears (with our current understanding) one can only move forward one step
at a time. Building on this intuition, Boneh and Naor in [12] postulate the assumption that points
that are “far away” are not only unknown, but also pseudorandom. They call this assumption the
generalized BBS assumption (G-BBS) Appendix B).

In this section, we introduce a further generalization to the G-BBS assumption. Then we introduce
a variant of “time-lines” [33], with a proof of security that relies on the new assumption. First, we
introduce some additional notation that will be used in the remainder of the paper.

We use QRN to denote the quadratic residues modulo N . In other words, QRN = {x2 | x ∈ Z
∗
N}.

For a vector ~a, we use a[i] to denote the ith element in A. A vector ~a of dimension d consists of a[1],
a[2], ..., a[d]. The distance between a number x and a vector ~a is the minimal absolute difference
between x and elements in ~a; we denote this as Dist(x,~a). More formally, assuming that d is the
dimension of ~a, we have Dist(x,~a) = mind

i=1{|x − a[i]|}. Finally, we define the “repeated squaring”
function as RepSqN,g(x) = g2x

mod N .

4.1 The YMG-BBS assumption

In G-BBS the collection of points on the “time-line” (definition below) that the adversary A sees
(Eq. (6)) is fixed to a specific pattern. In our generalization, which we call the yet-more-general
BBS assumption (YMG-BBS), we relax this condition. Additionally, the assumption allows the
point assumed to be pseudorandom to lie at a “far-away” distance in any direction from the given
points, rather that only “to the right” of all of them.

More formally, let κ be a security parameter. Let N = p1p2 be a safe Blum integer with |p1| =
|p2| = κ, and let k be an integer bounded from below by κc for some positive c. Let ~a be an arbitrary
`-dimensional vector where 0 = a[1] < a[2] < · · · < a[`] < 2k, and x be an integer between 0 and
2k such that Dist(x,~a) = S.14 Let g be a random element in Z

∗
N , and ~u be an `-dimensional vector

such that u[i] = RepSqN,g(a[i]), for i = 1, ..., `. Let A be a PRAM algorithm whose running time is
bounded by δ ·S for some constant δ. Let R be a random element in Z

∗
N . The YMG-BBS assumption

states that there exists a negligible function ε(κ) such that for any A (with running time bounded by
δ ·D), ∣∣Pr[A(N, g,~a, ~u, x,RepSqN,g(x)) = 1]− Pr[A(N, g,~a, ~u, x,R2) = 1]

∣∣ ≤ ε(κ). (4)

Intuitively, the assumption states that for any adversary A whose running time is bounded by δ · S,
and who sees a collection of ` points on the time-line — with an arbitrary distribution, a point at
distance S away from this collection is still not only unknown, but appears pseudorandom.

Note that in YMG-BBS, the running time of the adversary is no longer necessarily (proportional)
to a power of two, as in G-BBS. Additionally, the split of parameters in the YMG-BBS — κ and
k — is needed since, as stated, the G-BBS would allow an adversary to run in time 2Ω(κ). Using
this much time, however, the adversary can factor N and easily distinguish points on the time-line
from a random point — there exist factoring algorithms of running time 2O(κ1/3(log κ)2/3) (see, e.g., [54]
for details). The YMG-BBS fixes this problem by setting an upper bound function of k so that the
adversary’s running time would not be sufficient to factor N .

14Notice that in particular, we have x ≥ S, since a[1] = 0.
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The proof of security of the time-lines presented in the next subsection relies on the YMG-BBS
assumption. We remark that this assumption is also needed by some of the existing two-party fair
exchange constructions [36, 48]. These constructions only assume G-BBS, but proceed by gradually
revealing points in a time-line whose distance from the previous point keeps decreasing, thereby
deviating from the fixed distribution of points given by Eq. (6).

4.2 Decreasing time-lines

We now present a variant of time-lines [33] that will play an essential role in constructing fair multi-
party computation protocols. We first present a definition suitable for our purposes, followed by an
efficient way to generate a time-line (according to this definition), the security of which relies on
YMG-BBS and CDDH-QR.

Definition 4.1 Let κ be a security parameter. A decreasing time-line is a tuple L = 〈N, g, ~u〉, where
N = p1p2 is a safe Blum integer where both p1 and p2 are κ-bit safe primes, g is an element in Z

∗
N ,

and ~u is a κ-dimensional vector defined as u[i] = RepSqN,g(2
κ − 2κ−i) for i = 1, 2, ..., κ. We call N

the time-line modulus, g the seed, the elements of ~u the points in L, and u[κ] the end point in L.

In the rest of the paper, we will sometimes simply call a decreasing time-line a “time-line.”
To randomly generate a time-line, one picks a random safe Blum integer N along with g

R
← Z

∗
N as

the seed, and then produces the points. Naturally, one can compute the points by repeated squaring:
By squaring the seed g 2κ−1 times, we get u[1], and from then on, we can compute u[i] by squaring
u[i− 1]; it is not hard to verify that u[i] = RepSqN,u[i−1](2

κ−i), for i = 2, ..., κ. Obviously, using this
method to compute all the points would take exponential time. However, if one knows the factorization
of N , the time-line can be efficiently computed [12].

Alternatively, and assuming one time-line is already known, Garay and Jakobsson [33] suggested
the following way to efficiently generate additional time-lines. Given a time-line L, one can easily
derive a new time-line from L, by raising the seed and every point in L to a fixed power α. Clearly,
the result is a time-line with the same modulus.

Definition 4.2 Let L = 〈N, g, ~u〉 and L′ = 〈N,h,~v〉 be two lines of identical modulus. We say
that time-line L′ is derived from L with shifting factor α if there exists an α ∈ Z[1, N−1

2
] such that

h = gα mod N . We call L the master time-line.

Note that the cost of derivation is just one exponentiation per point, and there is no need to know
the factorization of N .

Given a master time-line L = 〈N, g, ~u〉, there are two methods for computing the “next point” in the
derived time-line L′. First, if one knows the shifting factor α, one can simply raise the corresponding
point in L to the α-th power — we call this the “deriving method.” If α is not known, since L′ is a
time-line, one can still compute v[i] by repeated squaring v[i − 1] for 2κ−i times — we call this the
“squaring method.” We illustrate this in Figure 2. Clearly, the deriving method is more efficient than
the squaring method, especially at the beginning of the time-line, where the squaring method would
take exponential time.

Master time-line L: seed g; points: u[1] =⇒ u[2] =⇒ · · · =⇒ u[κ]

? ? ? ?

Derived time-line L′: seed gα; points: (u[1])α =⇒ (u[2])α =⇒ · · · =⇒ (u[κ])α

−→ derivation

=⇒ squaring

Figure 2: Computing the next point on a derived time-line.
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In fact, without knowing the master time-line L, if an adversary A of running time δ · 2` sees only
the seed and the last (` + 1) points of a derived time-line L′, the previous point (which is at distance
2` away) appears pseudorandom to A, assuming that the YMG-BBS assumption holds. Obviously,
this pseudorandomness is no longer true if A also knows the entire master time-line L and the shifting
factor α, since it can then use the deriving method to find the previous point (in fact, any point) on
L′ efficiently. Nevertheless, as we show in the following lemma, assuming CDDH and YMG-BBS, this
pseudorandomness remains true if A knows L, but not the shifting factor α. We call this property the
strong pseudorandomness of time-lines.15

Lemma 4.3 (Strong Pseudorandomness) Let L = 〈N, g, ~u〉 be a randomly-generated decreasing
time-line and L′ = 〈N,h,~v〉 be a time-line derived from L with random shifting factor α. Let κ and δ
be as in the YMG-BBS assumption. Let ~w be the vector containing the last (`+ 1) elements in ~v, i.e.,
~w = (v[κ − `], v[κ − ` + 1], ..., v[κ]). Let A be a PRAM algorithm whose running time is bounded by
δ · 2` for some constant δ. Let R be a random element in Z

∗
N . Then, assuming CDDH and YMG-BBS

hold, there exists a negligible function ε(·) such that, for any A,

∣∣Pr[A(N, g, ~u, h, ~w, v[κ − `− 1]) = 1]− Pr[A(N, g, ~u, h, ~w,R2) = 1]
∣∣ ≤ ε(κ). (5)

Proof: We consider four different distributions and prove that they are all computationally indistin-
guishable to each other, which shall imply our lemma.

At a high level, all four distributions consists of a master time-line L and part of a derived time-line
L′. However, in two of the distributions, the master time-line is real, while in the other two the master
time-line is “faked.” Similarly, in two of the distributions, the derived time-line is “faithful,” while in
the other two the derived time-line is “unfaithful.” We now describe these four distributions in more
detail.

DistR,F: Real master time-line, faithful derived time-line. Let L = 〈N, g, ~u〉 be a master

time-line, α
R
← Z[1, N−1

2
], and h = gα mod N . Let ~w be the last (` + 1) elements of the time-line

derived from L with shifting factor α; i.e., ~w = 〈(u[κ − `])α, (u[κ − ` + 1])α, ...(u[κ])α〉. Let
X = (u[κ − `− 1])α. DistR,F = 〈N, g, ~u, h, ~w,X〉.

DistR,U: Real master time-line, unfaithful derived time-line. Same as in DistR,F, except that
X = R2 is a random quadratic residue in ZN , instead of (u[κ− `− 1])α.

DistF,F: Fake master time-line, faithful derived time-line. Same as in DistR,F, except that the
first (κ− `−1) points in the master time-line are fake. More precisely, let L∗ = 〈N, g, ~u∗〉, where
u∗[i] = RepSqN,g(2

κ− 2κ−i) for i = κ− `, ..., κ, and u∗[κ− i] = S2
i is a random quadratic residue

in ZN , for i = 1, ..., κ− `− 1. The derived time-line is constructed in the same way as in DistR,F.
DistF,F = 〈N, g, ~u∗, h, ~w,X〉.

DistF,U: Fake master time-line, unfaithful derived time-line. Same as in DistF,F, except that
X = Q2 is a random quadratic residue in ZN , instead of (u[κ− `− 1])α.

Note that DistR,F and DistR,U are the two distributions that A tries to distinguish in the lemma. So if
we can prove that all the four distributions are indistinguishable, the lemma is proved. We do this in
three steps, as follows:

DistR,F (YMG-BBS)

≈ DistF,F (CDDH)

≈ DistF,U (YMG-BBS)

≈ DistR,U

15For convenience, we state the lemma for the specific case of decreasing time-lines. But it is easy to see that it holds
for other distributions of points.
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DistR,F and DistF,F are indistinguishable to an A of running time δ · 2`: The difference between
DistR,F and DistF,F is in the “early” points of the master time-line, namely, points u[1], ...., u[κ−`−1].
Notice that each of these points are at distance at least 2` away from each other, and from the rest
of the points in the time-line. A standard hybrid-argument reduces the indistinguishability between
DistR,F and DistF,F to the YMG-BBS assumption.

DistF,F and DistF,U are indistinguishable to any polynomial-time A: The only difference between
DistF,F and DistF,U is the element X. In DistF,F, X = (u∗[κ−`−1])α = S2α

κ−`−1, while in DistF,U X = Q2

is a random quadratic residue. Notice that Sκ−t and Q are both independent from the rest of the
elements in their distributions, thus, one can reduce the indistinguishability between DistF,F and DistF,U

to the indistinguishability between the tuples (g, h, S2
κ−`−1, S

2α
κ−`−1) from DistF,F and (g, h, S2

κ−`−1, Q)

from DistF,U, which in turn reduces to the CDDH-QR assumption.16

DistF,U and DistR,U are indistinguishable to an A of running time δ · 2`: Same as in the first
step, the indistinguishability is reduced to YMG-BBS via a hybrid argument.

5 The Commit-Prove-Fair-Open Functionality

In this section we present the “commit-prove-fair-open” functionality FCPFO. Then, we show how to
construct a timed protocol, GradRel, that securely realizes the FCPFO functionality using the time-lines
from the previous section.

Functionality FCPFO is described below. Notice that the ideal adversary S receives the output
(the openings) if and only if all parties receive it, although S may receive it earlier.

Functionality FR,s
CPFO

FR,s
CPFO is parameterized by a polynomial-time computable binary relation R and a round pa-

rameter s. It proceeds as follows, running with parties P1, P2, ..., Pn and an adversary S.

Round 1 (commit phase): Receive message (commit, sid, xi) from every party Pi and broad-
cast (RECEIPT, sid, Pi) to all parties and S.

Round 2 (prove phase): Receive message (prove, sid, yi) from every party Pi, and if
R(yi, xi) = 1, broadcast (PROOF, sid, Pi, yi) to all parties and S.

Rounds 3, ..., s (open phase): Wait to receive message (open, sid) from party Pi, 1 ≤ i ≤ n.
As soon as all n open messages are received, send (DATA, sid, x1, x2, ..., xn) to S immedi-
ately, and broadcast (DATA, sid, x1, x2, ..., xn) to all parties in round s.

Figure 3: The commit-prove-fair-open functionality FCPFO with relation R and s rounds.

Functionality FCPFO is similar to the “commit-and-prove” functionality FCP in [18] in that both
functionalities allow parties to commit to a value v and prove relations about v. Note that although
FCP does not provide an explicit “opening” phase, the opening of v can be achieved by proving an
“equality” relation. However, FCPFO is designed to enforce fairness in the opening, while FCP is not
concerned with fairness at all. Later in the paper, we shall see that, by replacing some invocations to
the FCP functionality by invocations to FCPFO, we can convert the MPC protocol by Canetti et al.
(which is completely unfair) into a completely fair protocol.

Now we construct a timed protocol, GradRel, that securely realizes the FCPFO functionality in the
(FCRS, F̂ZK)-hybrid model.17 We use the multi-session version of the “one-to-many” F̂ZK functionality
from [18], presented in Figure 4. In particular, we need the F̂ZK functionality for the following relations.

16We assume that Q and S2
κ−`−1 are powers of g, which is the case except with negligible probability.

17We should actually use GradRel[T ]R to denote the protocol since it is a timed protocol, parameterized by the relation
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Functionality F̂R
ZK

F̂R
ZK proceeds as follows, running parties P1, . . . , Pn, and an adversary S:

• Upon receiving (zk-prove, sid, ssid, x,w) from Pi: If R(x,w) then broadcast (ZK-PROOF,
sid, ssid, Pi, x). Otherwise, ignore.

Figure 4: The (multi-session) zero-knowledge functionality for relation R.

Discrete log: DL = {((M,g, h), α) | h = gα mod M}

Diffie-Hellman quadruple: DH = {((M,g, h, x, y), α) | h = gα mod M ∧ y = xα mod M}

Blinded relation: Given a binary relation R(y, x), we define a “blinded” relation R̂ as follows

R̂((M,g, h,w, z, y), α) = (h = gα mod M) ∧ R(y, z/wα mod M)

Intuitively, R̂ “blinds” the witness x using the Diffie-Hellman tuple (g, h,w, z/x). Obviously R̂ is an
NP relation if R is.

First we describe GradRel informally. The CRS in GradRel consists of a master time-line L =
〈N, g, ~u〉. To commit to a value xi, party Pi derives a new time-line Li = 〈N, gi, ~vi〉, and uses the
end point in Li to “blind” xi. More precisely, Pi sends zi = vi[κ] · xi as a “timeline-commitment” to
xi together with a zero-knowledge proof of knowledge (through F̂DL

ZK) that it knows the Li’s shifting
factor, and thus, xi [12, 33]. Note that any party can force-open the commitment by performing
repeated squaring from points in the time-line. However, forced opening can take a long time, and
in particular, since vi[κ] is (2κ − 1) steps away from the seed gi, it appears pseudorandom to the
adversary.

The prove phase is directly handled by the F̂ R̂
ZK functionality. The opening phase consists of of

κ rounds. In the i-th round, all parties reveal the ith point in their derived time-lines, followed by a
zero-knowledge proof that this point is valid (through F̂DH

ZK ), for i = 1, 2, ...κ. If at any time in the
gradual opening stage, a corrupted party aborts (this can be detected since the protocol proceeds in
rounds) or submits an invalid proof, all the uncorrupted parties enter a panic mode. When in this
mode, the uncorrupted parties check how “far away” they are from the end of the time-lines. If the
distance is too large so that no party can force-open the timeline-commitments (in fact, the adversary
would not even be able to distinguish the end points from random values), the parties simply abort;
if, on the other hand, the distance is not too large so that it is possible for the corrupted parties to
force-open the timeline-commitments, the uncorrupted parties perform the force-opening as well. In
this way, the protocol makes sure that either all parties receive all the openings, or nobody does.

The detailed description of the protocol is given in Figure 5. The δ in the protocol is the constant δ
from the YMG-BBS assumption. As a technical note, GradRel assumes that all the committed values
are quadratic residues in Z

∗
N . Later in the paper we discuss how this assumption can be removed.

Clearly, protocol GradRel uses O(κ2n) bits of communication. In the panic mode, each party Pi

will perform at most 2κ−`+1 − 1 ≤ 4t/δ squarings for each Pj , j 6= i. So the total time spent in the
panic mode is at most 4nt/δ. The time in other phases does not depend on t. Therefore, GradRel is
(4n/δ)-fair. Note that GradRel does have the property that if nobody enters the panic mode (i.e., the
protocol proceeds normally), then the actual running time is much smaller.

Theorem 5.1 Assume that YMG-BBS and CDDH hold. Then timed protocol GradRel securely re-

alizes the ideal functionality F
R,(κ+2)
CPFO in the (FCRS, F̂DL

ZK, F̂DH
ZK , F̂ R̂

ZK)-hybrid model, assuming static
corruptions. Furthermore, GradRel is fair.

R. For simplicity, we write it as GradRel
R, or even GradRel, and we use GradRel[t] to denote the particular instance of

GradRel with the timing parameter being fixed to t.
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Protocol GradRelR

Set-up: The protocol has a timing parameter t. The CRS consists of a master time-line L = 〈N, g, ~u〉.

Round 1 (commit phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input (commit, sid, xi), do:

1. Pick αi
R

← [1, N−1
2 ], set gi← gαi mod N , and compute from L a derived time-line Li =

〈N, gi, ~vi〉.

2. Set zi← vi[κ] · xi = (u[κ])αi · xi mod N and broadcast message (commit, sid, Pi, gi, zi).

3. Send message (zk-prove, sid, 0, (N, g, gi), αi) to the F̂DL
ZK functionality.

All parties output (RECEIPT, sid, Pi) after receiving (ZK-PROOF, sid, 0, Pi, (N, g, gi)) from F̂DL
ZK.

Round 2 (prove phase) For each party Pi, 1 ≤ i ≤ n, upon receiving input (prove, sid, yi), do:

1. Send message (zk-prove, sid, 0, (N, g, gi, u[κ], zi, yi), α) to the F̂ R̂
ZK functionality.

2. After receiving messages (ZK-PROOF, sid, 0, Pi, (N, g, gi, u[κ], zi, yi)) from F̂ R̂
ZK, all parties

output (PROOF, sid, Pi, yi).

Round r = 3, ..., (κ + 2) (open phase) Let ` = r − 2. For each party Pi, 1 ≤ i ≤ n, do:

1. Broadcast (release, sid, vi[`]) and send message (zk-prove, sid, r, (N, g, gi, u[`], vi[`]), αi) to
ideal functionality F̂DH

ZK .

2. After receiving all n release and ZK-PROOF messages, proceed to the next round. Oth-
erwise, if any of the broadcast messages is missing, go to panic mode.

At the end of round (κ+2), compute xj = zj ·(vj [κ])−1 mod N , for 1 ≤ j ≤ n, output (DATA, sid,
x1, x2, ..., xn) and terminate.

Panic mode: For each party Pi, 1 ≤ i ≤ n, do:

– If t < δ · 2κ−`−1, then output ⊥ in round (κ + 2) and terminate.

– Otherwise, for j = 1, 2, ..., n, and use vj [` − 1] from the previous round to directly compute

xj committed by Pj as xj = zj ·
(
RepSqN,vj [`−1](2

κ−`+1 − 1)
)
−1

mod N . Then output

(DATA, sid, x1, x2, ..., xn) in round (κ + 2) and terminate.

Figure 5: Protocol GradRel, running in the CRS model in (κ + 2) rounds.

Proof: Let A be a t-bounded adversary that operates against protocol GradRel. We construct an ideal
adversary S so that no t-bounded environment can distinguish the hybrid model with A and protocol
GradRel[t] from the ideal process with S and FCPFO.

At the beginning of the protocol, S simulates the FCRS functionality by generating a master time-line
L = 〈N, g, ~u〉 just as in the real protocol. Note that since S generates N , it knows the factorization of
N . Assume that N = p1p2; S sets Λ = (p1 − 1)(p2 − 1)/4. Then, during the ideal process, S runs a
simulated copy of A. Messages received from Z are forwarded to the simulated A, and messages sent
by the simulated A to its environment are forwarded to Z. Furthermore, S also plays the roles of the
various ideal ZK functionalities.

We describe the behavior of S as responses to other parties’ actions.

Commitment by an uncorrupted party: When S sees a broadcast message (RECEIPT, sid, Pi)
from FCPFO, it means that an uncorrupted party Pi has committed to a value. S then generates
random elements gi

R
← Z

∗
N , zi

R
← QRN and simulates the two broadcast messages in the real world:

(commit, sid, Pi, gi, zi) from Pi, and (ZK-PROOF, sid, 0, Pi, (N, g, gi)) from F̂DL
ZK. Effectively, S

“fakes” a derived time-line with gi being the seed and zi being the fake timeline-committed value
for Pi.
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Commitment by a corrupted party: When S sees a broadcast message (commit, sid, Pi, gi, zi)
from a corrupted party Pi (controlled by A), it means that Pi is committing to a value. Then
S acts as the F̂DL

ZK functionality and expects the message (zk-prove, sid, 0, (N, g, gi), αi) from Pi.
Assuming that gi = gαi mod N (otherwise S ignores this message), S can then find out the value
Pi commits to by xi← zi · (u[κ])−αi mod N . S then sends message (commit, sid, xi) to FCPFO

on behalf of Pi.

Proof by an uncorrupted party: When S sees a broadcast message (PROOF, sid, Pi, yi) from FCPFO,
it means that an uncorrupted party Pi has succeeded in a proof to FCPFO. S then simulates

this by faking a broadcast message (ZK-PROOF, sid, 0, Pi, (N, g, gi, u[κ], zi, yi)) from the F̂ R̂
ZK

functionality.

Proof by a corrupted party: When S sees a message (zk-prove, sid, 0, (N, g, gi , u[κ], zi, yi), α) from

a corrupted party Pi (controlled by A) to F̂ R̂
ZK, it means that Pi is attempting a proof. S then

verifies the witness, and if the verification succeeds, it sends message (prove, sid, yi) to FCPFO

on behalf of Pi.

Simulating the open phase: In the open phase, S simulates the gradual opening of the uncorrupted
parties. Naturally, the simulation proceeds in rounds. Let m = κ − blog2

(
t
δ

)
c − 1. S behaves

differently in the first m − 1 rounds of the Open phase from the last κ − m + 1 rounds; the
difference lies in the release value used in simulating the uncorrupted parties (i.e., the value x
in the message (release, sid, Pi, x) sent by the uncorrupted parties).

In the first m− 1 rounds of the open phase, S simply uses a random value each time for the
value being released. That is, in round `, 1 ≤ ` ≤ (m − 1), for each uncorrupted party Pi,

S randomly generates vi,`
R
← QRN and fakes two broadcast messages: (release, sid, Pi, vi,`)

from Pi and (ZK-PROOF, sid, `, Pi, (N, g, gi, u[`], vi,`)) from F̂DH
ZK .

Then, S waits to receive the release messages from all the corrupted parties, as well
as their zk-prove messages to the F̂DH

ZK functionality. S proceeds to the next round if all the
anticipated messages are received and verified. If any of the messages is missing, or any of
the proofs are incorrect, S aborts.

At round m of the open phase, S switches its strategy. Notice that from this round on, the
uncorrupted parties will force-open the commitments even if A aborts. So S will find the
openings in this round. First, S sends the messages (open, sid) to FCPFO on behalf of every
corrupted party Pj , and then immediately receives the opening of all the committed values
in the message (DATA, sid, x1, x2, ..., xn) from FCPFO.

Once S knows the committed value xi from uncorrupted Pi, S can now generated a
“real” derived time-line for Pi that is consistent with xi. This is done by producing the
time-line backward: We know that the end point of the time-line must be zi/xi, and thus the
other points should be the roots of zi/xi. More precisely, for each uncorrupted party Pi, S

computes wi = (zi/xi)
(21−2κ−m

) mod Λ mod N , which is the 22κ−m−1th root of (zi/xi). Then S
fakes broadcast messages (release, sid, Pi, wi) from Pi and (ZK-PROOF, sid,m,Pi, (N, g, gi,
u[i], wi)) from F̂DH

ZK .
Then, S waits to receive the open messages from all the corrupted parties, as well as

their zk-prove messages. As in the previous rounds, it proceeds to the next round if all the
messages are received and verified. Otherwise S aborts the gradual opening.

From round m on, S simulates the gradual opening using the time-line generated in round m.
More precisely, in the `th round, S sends the message (release, sid, Pi,RepSqN,wi

(2κ−m −

2κ−`)) from Pi and fakes the corresponding messages from F̂DH
ZK .
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Then, as in the previous case, S waits to receive the broadcast messages and the messages
to the F̂DH

ZK functionality from all the corrupted parties, and aborts if these messages are not
received or incorrect.

Finally, S outputs what the simulated A outputs.

This finishes the description of the ideal adversary S. Now we prove that no t-bounded environment
Z can distinguish the hybrid experiment with a t-bounded A and GradRel from the ideal process with
S and FCPFO, or equivalently,

HYBFCRS,F̂ZK

GradRel[t],A,Z
(κ, z) ≈ IDEALFCPFO,SA,Z(κ, z)

To do so, we construct a new experiment that we call Mix, which, intuitively, is a “mixture” of the
hybrid experiment with the ideal process.

We describe the Mix experiment more precisely. It is like the ideal experiment in that there is an
environment, a simulator S ′ and a set of dummy parties. S ′ behaves like S in that it runsA (forwarding
messages between Z and A) and simulates uncorrupted parties and the ideal ZK functionalities for A.
However, it does not simulate the CRS functionality (i.e., it does not generate the master time-line,
and thus does not know the factorization of N), but instead has access to a CRS functionality along
with the FCPFO functionality. (S ′ forwards any messages between the CRS functionality and A.)
Also, its behavior is different from S in the commit and open phases as follows.

When a corrupted party Pj commits to a value xj , S
′ is used to extract xj (by acting as F̂DL

ZK)
and send the message (commit, sid, xj) to FCPFO. When an uncorrupted party Pi sends a message
(commit, sid, xi) on to FCPFO, S ′ simulates the GradRel protocol for Pi, i.e., it derives a new time-line
Li with a derivation factor αi, broadcasts the blinded xi, and sends a zk-prove message to F̂DL

ZK. In
addition to this, the commit message is forwarded to FCPFO.

When a corrupted Pj attempts a proof, again S ′ is used to extract the witness by acting as F̂ R̂
ZK and

send the appropriate prove message from Pj to FCPFO. Also, when an uncorrupted party Pi sends
a prove message to FCPFO, S ′ simulates the prove phase of the protocol for Pi, and also forward the
message to FCPFO.

S ′ simulates the open phase for uncorrupted parties as in the real-world experiment. It can do this
since it knows the shifting factors of their time-lines. However, it interacts with corrupted party in
the open phase as S does in the ideal process, namely, it acts as F̂DH

ZK , receives zk-prove messages from
these corrupted parties, and verifies them.

The distribution of the output of Z at the end of the experiment is denoted as MIXA,S′,Z(κ, z).

Next, we show that Mix is indistinguishable from both the hybrid experiment and the ideal process.
This will finish the proof.

First, we show that HYBFCRS,F̂ZK

GradRel[t],A,Z
(κ, z) ≈ MIXA,S′,Z(κ, z). Note that the only difference between

the two experiments is that in the real world, A is interacting with the true F̂DL
ZK and F̂ R̂

ZK functional-
ities, while in Mix, A is interacting with S ′, which simulates the two functionalities. It is easy to see
that the simulation is perfect. In the Open phase, S ′ behaves exactly as in the real world. Therefore,
the two distributions are in fact identical.

Next, we show that MIXA,S′,Z(κ, z) ≈ IDEALFCPFO,SA,Z(κ, z). The difference between the Mix exper-
iment and the ideal process is that the commitment and the opening by the uncorrupted parties are
real in Mix, but faked in the ideal process. More precisely, in the Mix experiment, for each uncorrupted
party Pi, the adversary A (and therefore Z) sees a consistent time-line Li — or a prefix of it (in the
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case of premature abort). In the ideal process, however, the first (m− 1) points of each uncorrupted
party’s time-line are replaced by random quadratic residues. Nevertheless, the last (κ−m + 1) points
of each time-line are real and consistent with the committed value of each uncorrupted party. So the
difference lies in the prefixes of the time-lines of the uncorrupted parties. The indistinguishability
between the two experiments reduces to the strong pseudorandomness of time-lines (Lemma 4.3) via
a standard hybrid argument.

For the following corollary, we simply plug the UCZK protocol from [18] (which relies on the
existence of enhanced trapdoor permutations) into protocol GradRel, and observe the the UCZK
protocol is strongly fair.

Corollary 5.2 Assume YMG-BBS and CDDH hold, and that enhanced trapdoor permutations exist.

Then there exists a fair timed protocol that securely realizes the ideal functionality F
R,(κ+2)
CPFO in the

FCRS-hybrid model, assuming static corruptions.

5.1 Extending GradRel to the general case

The GradRel protocol only works if all committed values are quadratic residues. To fake the commit-
ment to a value x, S needs to fake a timeline-commitment z before knowing x. Then, after seeing x,
S needs to generate a time-line in the “reverse” direction. In particular, S needs to find the 22t−1th
roots of z/x for various values of t. So z/x needs to be a quadratic residue. In the simulation, z is
chosen to be a quadratic residue, and thus x needs to be a quadratic residue as well.

We can modify our protocol in the following way to allow a timeline-commitment to any x.
Observe that −1 has Jacobi symbol +1, but is not a quadratic residue modulo N . Let V be an
arbitrary element in Z

∗
N with Jacobi symbol −1. Then for any x ∈ Z

∗
N , exactly one of the four

elements {x,−x, xV,−xV } is a quadratic residue. Consider a modified version of protocol GradRel

that additionally contains V in the common reference string. When a party commits to a value x, it
makes five timeline-commitments to x1, x2, x3, x4, y, where {x1, x2, x3, x4} is a random permutation
of {x,−x, xV,−xV } and y ∈ {1, 4, 9, 16} indicates which xi is the x (y = i2 means that xi = x).
Naturally, the party also needs to provide zero-knowledge proofs that these commitments are con-
sistent. In the open phase, all five values are opened. Obviously, in the case of premature abort,
the uncorrupted parties can still force-open all five commitments and recover x. Furthermore, S can
simulate the commitments and the opening for any x. For the commitments to {x1, x2, x3, x4}, S gen-
erates random {z1, z2, z3, z4} whose quadratic residuosity modulo p1 and p2 are a random permutation
of {(+1,+1), (+1,−1), (−1,+1), (−1,−1)}. Then S generates a random quadratic residue w as the
timeline-commitment for y, since y is always a quadratic residue. When receiving the actual value x,
S can find out its quadratic residuosity modulo p1 and p2, and thus can find the correct permutation
and fake the openings of {z1, z2, z3, z4} to {x,−x, xV,−xV }, as well as the fake opening of w to one
of the values in {1, 4, 9, 16}.

The modified GradRel protocol works for any inputs in Z
∗
N , and its communication complexity is

only a constant times that of GradRel. The proof of security is straightforward.

6 Completely Fair Multi-Party Computation

In this section we show how to construct fair protocols that securely realize the SFE functionality in the
FMPC framework. At a high level, our strategy is very simple. Typical secure multi-party protocols
(e.g., [21, 18, 24]) contain an “output” phase, in which every party reveals a secret value, and once all
secret values are revealed, every party computes the output of the function. We modify the output
phase to have the parties invoke the FCPFO functionality. A bit more concretely, assuming each party
Pi holds a secret value vi to reveal, each Pi first commits to vi and then proves its correctness. Finally
FCPFO opens all the commitments simultaneously.
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In particular, we present two constructions that convert the MPC protocols of Canetti et al. [18]
and Cramer et al. [21] into fair MPC protocols.

6.1 Fair MPC in the CRS model

Theorem 6.1 Assuming the existence of enhanced trapdoor permutations, for any polynomial-time
computable function f , there exists a polynomial-time (strongly fair) protocol that securely realizes Ff

in the FCRS,FCPFO-hybrid model in the FMPC framework, assuming static corruptions.

Proof: Consider the MPC protocol secure against malicious adversaries by Canetti et al. [18]. We
denote it by πf . Recall that πf is “compiled” from another protocol π̂f that is only secure against
“honest-but-curious” adversaries. In the compilation process, Pi commits to its initial values using a
commit-and-prove functionality called FCP, and then for every message m that Pi sends in protocol
π̂f , the compiler makes Pi send a zk-prove message to the FCP ideal functionality in protocol πf to
prove that message m was computed correctly. The protocol π̂f itself consists of three stages — the
input preparation stage, the circuit evaluation stage, and the output stage. In particular, the output
stage of π̂f consists of each party Pi broadcasting its share mi of the output. After the compilation,
the output stage in πf consists of each party Pi broadcasting a mi along with a proof that mi is valid.

We modify protocol πf to make it secure in the FMPC framework. Notice that πf assumes a broadcast
channel, which is built into the FMPC framework, and it is rather straightforward to fit πf into the
round structure of FMPC — we omit these technical details. The non-trivial modification comes at
the output stage, where instead of broadcasting mi, each party Pi commits to mi by sending message
(commit, sid,mi) to FCPFO. In the next round, each party Pi then sends message (prove, sid, yi) to
FCPFO to prove the correctness of mi. Here yi is the appropriate string so that the proof to FCPFO is
equivalent to the proof to FCP. Finally, all parties send (open, sid) to FCPFO, which opens all messages
mi simultaneously to all parties. We denote this modified protocol by π̃f .

Next, we describe an ideal adversary S̃ for the adversary in protocol π̃f . Naturally, S̃ is adapted from
the ideal adversary S for protocol πf . In fact, S̃ behaves exactly as S until the output stage. In this
stage, S̃, acting as the FCPFO functionality, waits to receiving the commit and prove messages from
all the corrupted parties and simulates all the RECEIPT and PROOF messages from all parties, both
corrupted and uncorrupted. Next, S̃ waits to receive the open message from all corrupted parties.
After all corrupted parties have sent their open messages, S̃ then sends message (input, sid, xi) to
Ff on behalf of all corrupted Pi, where xi is the private input to Pi (extracted by S̃ from the initial
commitment). After receiving the output from Ff , S̃ then simulates the messages mj from uncorrupted
parties Pj in the output stage, just as S does, and uses these messages to simulate the opening of
FCPFO.

To prove that S̃ is a valid ideal adversary, it suffices to notice that with S̃, parties in the ideal
process receive the output from Ff (triggered by S̃), if and only if parties receive the opening of the
commitments from FCPFO (simulated by S̃).

Corollary 6.2 Assuming YMG-BBS, CDDH, and the existence of enhanced trapdoor permutations,
for any polynomial-time computable function f , there exists a fair timed protocol that securely realizes
Ff in the FCRS-hybrid model in the FMPC framework, assuming static corruptions.

Proof: It directly follows from Theorem 3.6, Corollary 5.2, and Theorem 6.1.

6.2 Efficient fair MPC in the PKI model

Using a protocol by Cramer et al. [21] as the starting point, we can construct more efficient MPC
protocols in the PKI model, which is a slightly stronger model than the CRS model. Cramer et al.
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prove that for any polynomial-time computable function f (represented as an arithmetic circuit C),
there exists a protocol CDNf that securely realizes Ff in the PKI model, assuming DCRA and DDH.
Furthermore, their protocol uses O(κn|C|) bits of communication and proceeds in O(d) rounds, where
κ is the security parameter, |C| is the number of gates in C, and d the depth of C.18 We note that the
protocol is only secure against fewer than n/2 corruptions. A crucial ingredient in their construction
is a threshold homomorphic cryptosystem (e.g., the threshold version of the Paillier cryptosystem).
Values on the wires of C are encrypted, and the parties share the decryption key using an (n, t)-
threshold system, so that any (t+1) parties can jointly decrypt, but any t parties cannot. By avoiding
the sharing of values (but only sharing the decryption key instead) their construction is very efficient
in terms of communication complexity.

Protocol CDNf in [21] is proven secure in a “modular composition” framework [15], which is
somewhat weaker than the UC framework and our FMPC framework. In particular, CDNf does
not remain secure when composed. The problem is that they use a standard trapdoor commitment
(TC) to construct zero-knowledge protocols (or more precisely, to convert Σ-protocols into “normal”
zero-knowledge protocols), and this commitment scheme may be malleable. However, this problem
can be solved by replacing the TC scheme by a simulation-sound trapdoor commitment (SSTC)
scheme [34, 44]. MacKenzie and Yang [44] proved that this change will make a zero-knowledge protocol
universally composable if the underlying protocol has a non-rewinding knowledge extractor. The
zero-knowledge protocols from [21] can be easily modified to accommodate a non-rewinding extractor,
using techniques from, for example, [34]. Notice that there also exist very efficient constructions of
SSTC schemes, assuming strong RSA [34, 44]. After the zero-knowledge protocols are strengthened
to be universally composable, it is not hard to verify that protocol CDNf becomes secure in the UC
framework.19

Next, we modify the joint decryption phase by having all parties invoke the FCPFO to release their
secret information simultaneously. In [21], two homomorphic cryptosystems are proposed: a thresh-
old version of the Paillier cryptosystem and a system based on the quadratic residuosity assumption
and DDH. Both systems admit efficient zero-knowledge proofs and joint decryption protocols. Fur-
thermore, in both systems, the joint decryption phase consists of each party Pi broadcasting a single
value vi along with a zero-knowledge proof that vi is “correct.” After all parties broadcast the correct
values, every party can then perform the decryption on its own. To make the protocol fair, we fix the
cryptosystem to be (n, n − 1)-threshold, so that only when all parties participate can they decrypt
an encrypted message. Then we only need to change the joint decryption phase so that each party
Pi commits to its value vi, proves the correctness of vi, and then has the FCPFO functionality open
all the values simultaneously. After all these modifications, the resulting protocol is secure in the
(FPKI,FCPFO)-hybrid model in the FMPC framework.

Finally, plugging in protocol GradRel, which realizes the FCPFO functionality in the (FCRS, F̂ZK)-
hybrid model and efficient UCZK protocols (e.g. constructions based on SSTC [34, 35], or construc-
tions based on UCC [24]), we obtain the following result (assuming that the homomorphic threshold
encryption is Paillier):

Theorem 6.3 Assuming YMG-BBS, CDDH, DCRA, and strong RSA, for any polynomial-time com-
putable function f , there exists a fair timed protocol that securely realizes Ff in the FPKI-hybrid model

18The theorem in [21] is more general. We just state a special case of their result, using a threshold version of the
Paillier encryption scheme [23, 31] and Pedersen commitment [46] as the trapdoor commitment scheme.

19An alternative approach is to use universally composable commitment (UCC) schemes, instead of SSTC schemes to
replace the standard TC scheme. This is the approach Damg̊ard and Nielsen [24] use. In fact, they manage to prove
that their protocol is secure against adaptive corruptions in the non-erasing model, while the constructions in [34] and
subsequently in [44] using SSTCs only achieve security against adaptive corruptions in the erasing model. On the other
hand, SSTC admits simpler, more efficient constructions than UCC, and thus allows more efficient constructions. Since
this paper is only concerned with static corruption, the difference between erasing and non-erasing models does not
matter.
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in the FMPC framework, assuming static corruptions. Furthermore, this protocol has communication
complexity O(κn|C|+ κ2n) bits and consists of O(d + κ) rounds.

The proof is very similar to that of Theorem 6.1.
As an illustration of our results, we now give a fair and efficient solution for a specific multi-party

problem.

7 Efficient and Fair Solutions to the Socialist Millionaires’ Problem

In the socialist millionaires’ problem (SMP) [29, 41], two parties each holding a private values, want to
know if these two values are equal. The problem is a natural variant to Yao’s millionaires’ problem [56,
57], where the parties want to find out whose value is greater, without revealing anything else.

SMP can be naturally extended to the multi-party case, where now each party holds a private
value, and they want to know if all the values are equal. We call this extended problem MSMP.

Several solutions to SMP have been proposed. Salomaa [52] and Schneier [53] describe solutions for
the original millionaires’ problem, which can be easily adapted to solve SMP. However, the complexity
of these constructions is exponential in the size of the private values, and therefore the protocols are
only efficient for very small inputs. Fagin, Naor and Winkler [29] pose the problem, and give a variety
of specialized protocols. Jakobsson and Yung [41] give an efficient cryptographic solution for SMP
for the case of actively malicious players, but their solution is not fair. Boudot et al. [13] construct a
protocol for SMP that is fair and also very efficient, requiring O(κ) exponentiations and O(κ) rounds.
We note, however, that the fairness and the security definition that is implicit in [13] does not seem to
fit into the standard simulation paradigm, nor does it guarantee a bounded advantage to the players.
Furthermore, none of the above protocols remain secure when concurrently composed.

We now present a very simple protocol to solve SMP that is completely fair and secure in the FMPC
framework, and thus remains secure when arbitrarily composed with any protocol. Our protocol only
uses O(κ) exponentiations and O(κ) rounds, and therefore asymptotically matches the most efficient
protocols known.20

The idea behind our construction is very simple. Consider MSMP (which has SMP as a special
case) cast as a secure function evaluation functionality with function

f(x1, x2, ..., xn) =

{
0 if x1 = x2 = · · · = xn;

1 otherwise.

We could directly apply Theorem 6.1 or Theorem 6.3 to compute f . However, this function f does not
appear to admit very efficient circuits, and the resulting protocol would not be very efficient. Instead,
we use a well-known technique to construct an efficient function that “approximates” f .

We first look at the case of n = 2, where MSMP is simply SMP. Assuming that all the players’
values are in ZN , where N is a safe Blum integer, we consider the function g(x1, x2) = (x1 − x2) · r,
where r is a random element in Z

∗
N and all the operations are in ZN (the field modulo N). Notice

that if x1 = x2, then g(x1, x2) = 0; and if x1 6= x2 and GCD(x1 − x2,N) = 1, then g(x1, x2) is a
random element in Z

∗
N . Therefore, assuming that (x1 − x2) does not contain a non-trivial factor of

N , the value of g(x1, x2) carries enough information to compute f(x1, x2) — in fact, this is the only
information g(x1, x2) carries, as one can easily simulate g(x1, x2) given f(x1, x2). Thus, we can use
function g(x1, x2) to “approximate” f(x1, x2).

20If the fairness requirement is dropped, then the protocol in [13] only needs O(1) exponentiations and O(1) rounds.
This is true for our construction as well.
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Of course, the above argument is true only when GCD(x1−x2,N) = 1 or x1 = x2. However, notice
that N is part of the public parameters and is chosen by a trusted party. Assuming that factoring N
is hard, we know that the probability that x1 − x2 contains a factor of N is negligibly small.21

To compute function g using the protocol CDNg in [21], one only needs three gates. Since g is
randomized, the two parties need to compute a joint coin-tossing as well. Effectively, they compute
g via a “modified” function g′ = ((x1, r1), (x2, r2)) = (x1 − x2) · (r1 + r2), where both r1 and r2 are
private random elements.

Therefore, by instantiating Theorem 6.3 with function g(x1, x2), we have the following corollary.

Corollary 7.1 Assuming YMG-BBS, CDDH, DCRA and strong RSA, there exists a fair timed two-
party protocol that solves SMP in the FPKI-hybrid model in the FMPC framework, assuming static
corruptions. Furthermore, the protocol involves O(κ) exponentiations and consists of O(κ) rounds.

For MSMP, simply observe that the function g(x1, x2, ..., xn) = (x1 − xn) · r1 + (x2 − xn) · r2 + · · · +
(xn−1 − xn) · rn−1, where r1, r2, ..., rn−1 are random elements in Z

∗
N , approximates f(x1, x2, ..., xn) by

the same reasoning as above. The function requires O(n2) gate operations (since the parties need to
perform (n − 1) joint coin-tossings) and can be computed in constant rounds (since in the protocol
CDNg only multiplications need interaction).

Corollary 7.2 Assuming YMG-BBS, CDDH, DCRA and strong RSA, there exists a fair timed n-
party protocol that solves MSMP in the FPKI-hybrid model in the FMPC framework, assuming static
corruptions. Furthermore, the protocol involves O(n2 + κn) exponentiations and consists of O(κ)
rounds.

We can in fact do even better by using threshold ElGamal encryption modulo a safe Blum integer
(assuming Composite DDH [11]) instead of threshold Paillier. A similar technique (although not over
a composite) was used in MacKenzie et al. [43].

21Note that the private inputs x1 and x2 are adversarially chosen by the environment Z, which does not know the
factorization of N . So any Z that produces x1 and x2 such that GCD(x1 − x2, N) 6= 1 with non-negligible probability
can be converted into an algorithm that factors N .
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A The Universal Composability Framework

We describe the universal composability (UC) framework briefly.
The execution in the real-life model and the ideal process proceeds basically as follows. The

environment Z drives the execution. It can provide input to a party Pi or to the adversary, A or S.
If Pi is given an input, Pi is activated. In the ideal process Pi simply forwards the input directly to
F , which is then activated, possibly writing messages on its outgoing communication tape, and then
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handing activation back to Pi.
22 In the real-life model, Pi follows its protocol, either writing messages

on its outgoing communication tape or giving an output to Z. Once Pi is finished, Z is activated
again. If the adversary is activated, it follows its protocol, possibly giving output to Z, and also either
corrupting a party, or performing one of the following activities. If the adversary is A in the real-life
model, it may deliver a message from the output communication tape of one honest party to another,
or send a message on behalf of a corrupted party. If the adversary is S in the ideal process, it may
deliver a message from F to a party, or send a message to F . If a party or F receives a message, it is
activated, and once it finishes, Z is activated

At the beginning of the execution, all participating entities are given the security parameter k ∈ N

and random bits. The environment is also given an auxiliary input z ∈ {0, 1}∗. At the end of the
execution, the environment outputs a single bit. Let REALπ,A,Z denote the distribution ensemble of
random variables describing Z’s output when interacting in the real-life model with adversary A and
players running protocol π, with input z, security parameter k, and uniformly-chosen random tapes
for all participating entities. Let IDEALF ,S,Z denote the distribution ensemble of random variables
describing Z’s output after interacting with adversary S and ideal functionality F , with input z,
security parameter k, and uniformly-chosen random tapes for all participating entities.

A protocol π securely realizes an ideal functionality F if for any real-life adversary A there exists
an ideal-process adversary S such that no environment Z, on any auxiliary input, can tell with non-
negligible advantage whether it is interacting with A and players running π in the real-life model,
or with S and F in the ideal-process. More precisely, REALπ,A,Z IDEALF ,S,Z , where denotes
computational indistinguishability. (In particular, this means that for any d ∈ N there exists k0 ∈ N

such that for all k > k0 and for all inputs z, |Pr[ REALπ,A,Z(k, z) ]− Pr[ IDEALF ,S,Z(k, z) ]| < k−d).
To formulate the composition theorem, one must introduce a hybrid model, a real-life model with

access to an ideal functionality F . In particular, this F-hybrid model functions like the real-life model,
but where the parties may also exchange messages with an unbounded number of copies of F , each
copy identified via a unique session identifier (sid). The communication between the parties and each
one of these copies mimics the ideal process, and in particular the hybrid adversary does not have
access to the contents of the messages. Let HYBF

π,A,Z denote the distribution ensemble of random
variables describing the output of Z, after interacting in the F-hybrid model with protocol π. Let π be
a protocol in the F-hybrid model, and ρ a protocol that secures realizes F . The composed protocol πρ

is now constructed by replacing the first message to F in π by an invocation of a new copy of ρ, with
fresh random input, the same sid, and with the contents of that message as input; each subsequent
message to that copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message as new input to ρ.

Canetti [16] proves the following composition theorem.

Theorem A.1 [[16]] Let F , G be ideal functionalities. Let π be an n-party protocol that securely
realizes G in the F-hybrid model, and let ρ be an n-party protocol that securely realizes F . Then
protocol πρ securely realizes G.

B The Generalized BBS Assumption

We present the generalized BBS (GBBS) assumption from [12]. Let n be a positive integer repre-
senting a certain security parameter. Let N be a Blum integer, i.e., N = p1p2, with p1 and p2 as
above, |p1| = |p2| = n. Recall the notion of a Blum-Blum-Shub (BBS) sequence x0, x1, · · · , xm, with
x0 = g2 (mod N) for a random g ∈ ZN , and xi = xi−1

2 (mod N), 1 ≤ i ≤ m. It was shown in [10]

22In [18], the behavior is modified. The inputs are forwarded to the functionality by the ideal adversary, which sees
the public header of the inputs and may choose not to forward them. See [18] for more detailed discussions. We choose
to use the old formulation since it is slightly simpler and the distinction does not make a difference when one only deals
with static corruption.
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that the sequence defined by taking the least significant bit of the elements above is polynomial-time
unpredictable, provided the quadratic residuosity assumption (QRA) holds. Recall also that these
sequences are periodic (although not always purely periodic).

In [12], Boneh and Naor postulate the following generalization of unpredictability of BBS-type
sequences. For g and N as above, and a positive integer k > n′, let

~wg,k = < g2, g4, g16, . . . , g22i

, . . . , g22k−1

, g22k

> (modN). (6)

The (n′, n, δ, ε) generalized BBS assumption (G-BBS) states that for any integer n′ < k < n and
any PRAM algorithm A whose running time is less than δ · 2k,

∣∣∣∣Pr[A(N, g, k, ~wg,k , g22k+1

) = 1]− Pr[A(N, g, k, ~wg,k, R2) = 1]

∣∣∣∣ < ε (7)

where the probability is taken over the random choice of an n-bit Blum integer as above, an element
g

R
← ZN and R

R
← ZN .
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