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ABSTRACT

STRUCTURED TOPIC MODELS: JOINTLY MODELING
WORDS AND THEIR ACCOMPANYING MODALITIES

MAY 2009

XUERUI WANG

B.E., TSINGHUA UNIVERSITY

M.E., TSINGHUA UNIVERSITY

M.S., CARNEGIE MELLON UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

The abundance of data in the information age poses an immense challenge for

us: how to perform large-scale inference to understand and utilize this overwhelming

amount of information. Such techniques are of tremendous intellectual significance

and practical impact. As part of this grand challenge, the goal of my Ph.D. thesis is

to develop effective and efficient statistical topic models for massive text collections

by incorporating extra information from other modalities in addition to the text itself.

Text documents are not just text, and different kinds of additional information

are naturally interleaved with text. Most previous work, however, pays attention to

only one modality at a time, and ignore the others. In my thesis, I will present a

series of probabilistic topic models to show how we can bridge multiple modalities of

information, in a united fashion, for various tasks. Interestingly, joint inference over

vi



multiple modalities leads to many findings that can not be discovered from just one

modality alone, as briefly illustrated below:

Email is pervasive nowadays. Much previous work in natural language process-

ing modeled text using latent topics ignoring the social networks. On the other

hand, social network research mainly dealt with the existence of links between enti-

ties without taking into consideration the language content or topics on those links.

The author-recipient-topic (ART) model, by contrast, steers the discovery of topics

according to the relationships between people, and learns topic distributions based

on the direction-sensitive messages sent between entities.

However, the ART model does not explicitly identify groups formed by entities in

the network. Previous work in social network analysis ignores the fact that different

groupings arise for different topics. The group-topic (GT) model, a probabilistic gen-

erative model of entity relationships and textual attributes, simultaneously discovers

groups among the entities and topics among the corresponding text.

Many of the large datasets do not have static latent structures; they are instead

dynamic. The topics over time (TOT) model explicitly models time as an observed

continuous variable. This allows TOT to see long-range dependencies in time and also

helps avoid a Markov model’s risk of inappropriately dividing a topic in two when

there is a brief gap in its appearance. By treating time as a continuous variable, we

also avoid the difficulties of discretization.

Most topic models, including all of the above, rely on the bag of words assumption.

However, word order and phrases are often critical to capturing the meaning of text.

The topical n-grams (TNG) model discovers topics as well as meaningful, topical

phrases simultaneously.

In summary, we believe that these models are clear evidence that we can bet-

ter understand and utilize massive text collections when additional modalities are

considered and modeled jointly with text.
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CHAPTER 1

AN INTRODUCTION TO STATISTICAL TOPIC MODELS

The main idea behind statistical topic models is the assumption that documents

are mixtures of topics, where a topic is a probability distribution over words. The

discovery of topics is driven by the word co-occurrence patterns in a text collection.

The majority of topic models are statistical generative models in which documents

arise from a generative process. A primary goal of topic models is to invert the

generative process through various standard statistical techniques and to infer the

latent topics from which a collection of text documents were generated. Once the

latent topics are discovered, it becomes much easier to understand these massive text

collections, and they can be used as a succinct representation of documents for various

tasks.

Research in statistical models of co-occurrence has led to the development of a va-

riety of useful mechanisms for discovering low-dimensional, multi-faceted summaries

of documents. In this chapter we review the most recently popular topic model, latent

Dirichlet allocation (LDA) in detail [8, 20]. The topic models in subsequent chapters,

all motivated by incorporating accompanying modalities of text, can be explained as

extensions of LDA, and will be presented in similar ways.

1.1 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) and many other topic models share fundamen-

tally the same idea: each document is a mixture of topics and each topic in turn is a
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Figure 1.1. The graphical model representation of latent Dirichlet allocation (plate
notation).

mixture of words. In LDA, this mixture behavior is captured through the following

generative process:

1. draw discrete distributions φz from a Dirichlet prior β for each topic z;

2. for each document d, draw a discrete distribution θd from a Dirichlet prior α;

then for each word w in document d:

(a) draw z from discrete θd; and

(b) draw w from discrete φz.

The generative process described here does not make any assumptions about the

order of words as they appear in documents. This is known as the bag-of-words

assumption that is very common in many language processing tasks.

Machine learning researchers usually convert this kind of generative process into a

graphical model representation, to convey the idea more succinctly . The correspond-

ing graphical model representation is shown in Figure 1.1. The repeated choices

of topics and words can be conveniently illustrated using plate notation that repre-
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SYMBOL DESCRIPTION
T number of topics
D number of documents
V number of unique words (vocabulary size)
Nd number of word tokens in document d

Table 1.1. Notation used in this manuscript

sent replicates with the number in the lower right corner referring to the number of

samples. Shaded and unshaded variables indicate observed and latent (i.e., hidden,

or unobserved) variables, respectively. Arrows indicate conditional dependencies be-

tween variables that provide great convenience for inferring the latent variables. Some

common notation used throughout this thesis is presented in Table 1.1.

When fitting a LDA model, the goal is to find the best set of latent variables

that can explain the observed words in documents, assuming that the model actually

generated the text collection. This involves inferring the probability distribution over

words φ associated with each topic, the distribution over topics θ for each document,

and the topic responsible for generating each word. The hyperparameters α and β

are used as a prior to smooth the distribution over topics θ and the distribution over

words φ, respectively. These hyperparameters can be inferred from the observed data,

but that is often not necessary in practice, as demonstrated by the sensitivity analysis

of the models presented in this thesis.

Posterior inference can be conducted via standard statistical techniques such

as Gibbs sampling [4], variational methods [27] and expectation-propagation [42].

Throughout this thesis, we focus on Gibbs sampling since it is easy to understand

and to implement. Note that direct Gibbs sampling would sample all latent random

variables including θ and φ as well and not surprisingly the chain would converge

(mix) very slowly. Instead, we use collapsed Gibbs sampling by integrating out θ and
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φ mathematically, which converges much faster due to simpler and smaller sample

space.

The posterior distribution of φ can help understand the underlying semantic topics

discussed in the text collection by looking at the top probable words, and the posterior

distribution of θ provides a semantically meaningful low-dimensional representation

of documents, which can be subsequently used for various tasks such as document

classification and information retrieval.

1.2 Motivation

LDA captures the semantic topics by only looking at the co-occurrence of words

in text documents. However, text documents are not just text. Intuitively, if we can

use additional information, we might be able to discover more useful topics in many

different applications. Given a task, with multiple modality information, how shall

we incorporate everything together to discover topics?

Assume that we have w and v, random variables standing for two observed modali-

ties (for example, words and timestamps), and a latent, low-dimensional topic random

variable z. The abstract representation of all possible directed topic models of two

conditional dependencies1 are shown in Figure 1.2. For simplicity, w and v are treated

symmetrically, and they are just two different modalities, that is, we do not distin-

guish w −→ v and v −→ w. Otherwise, more variations can be formed by switching

w and v.

First of all, the goal of topic models is to discover a low-dimensional latent rep-

resentation, thus in Figure 1.2, (D), (E), and (F) are not good choices conceptually,

in which topics are generated from, for example, words. In (D), (E) and (G), the

1Three or more dependencies are possible and meaningful for certain applications, but in general
with complexity more difficult to manage. Discussion in this regard is beyond the scope of this
thesis.
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dependency between w and v has no influence on the latent topic z, thus we can

exclude them as well.

Among the three remaining configurations (A), (B) and (C), the choice of config-

uration could depend on the application. Given a problem, we consider three major

factors in deciding the best configuration:

• Domain Knowledge. Background information or accumulated knowledge

about the relationship between modality could be used as a basis to design

topic models for multiple-modality data. For instance, an author decides what

he/she wants to write (topics).

• Parameterization Difficulty. Based on the intrinsic properties of the modal-

ities (such as continuity vs discreteness), it is very common that one direction

of dependency is much easier to parameterize than the other direction, which

more often results in close-form mathematical derivations.

• Inference Efficiency. The goal of the topic models is to discover interpretable

representations of textual data in lower dimensional space, and we do not want

to map some modality into a sparser representation, which usually leads to huge

inference burden. Thus in topic models, we want words to be generated from

topics but not vice versa.

For example, a large email archive not only contains the text message, but also

represents a complex social network of senders and recipients. The social network is

not independent from the body messages: e.g., a professor may talk about different

things to his students than to his secretary, and thus use different languages. Ignoring

the social network, a plain LDA will not capture these kinds of subtle difference.

On the other hand, two secretaries may never communicate with each other, but

perform almost identical roles, and we would expect their messages contain requests

for photocopying, travel bookings, and meeting room arrangements (i.e., they use

5



z

(A)

w v

z

(B)

w v

z

(D)

w v

z

(E)

w v

z

(G)

w v

z

(C)

w v

z

(F)

w v

Figure 1.2. The abstract representation of all possible directed topic models of two
conditional dependencies, with two observed modalities. In all figures, z is a latent
topic, and w and v are observed information from two modalities. For simplicity, w
and v are treated symmetrically, and they are just two different modalities, that is,
we do not distinguish w −→ v and v −→ w.

similar languages). Studying the social network alone would not help us identify

such roles. We need a new model that can discover topics that is influenced by the

accompanying modality—the social structure in which messages are sent and received.

In this case, (A) in Figure 1.2 is more preferable since when a person writes to another,

by common sense, the content of the message (topics and words) is decided by the

author-recipient pair. With this configuration, the role discovery in an email network

is feasible by conditioning topics on the social links as shown in Chapter 2.

We give another example showing that heeding only one modality is less desir-

able. Consider a legislative body and imagine its members forging alliances (forming

groups), and voting accordingly. However, different alliances arise depending on the

topic of the resolution up for a vote. For example, one grouping of the legislators may

arise on the issue of taxation, while a quite different grouping may occur for votes on
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foreign trade. Similar patterns of topic-based affiliations would arise in other types

of entities as well, e.g., research paper co-authorship relations between people and

citation relations between papers. Without the text, all these different groupings

would look like the same. Correspondingly, grouping patterns can help distinguish

topics described in very similar languages, such as “nuclear arsenal” and “nuclear

arms race”. The topic-specific grouping needs a model like (B) in Figure 1.2 since

the topics would be the cause why a particular grouping arises.

Another modality that is often ignored, but exists everywhere, is time. Many of

the large datasets to which topic models are applied do not have static co-occurrence

patterns; they are instead dynamic. The data are often collected over time, and gen-

erally patterns present in the early part of the collection are not in effect later. Topics

rise and fall in prominence; they split apart; they merge to form new topics; words

change their correlations. Not modeling time can confound co-occurrence patterns

and result in unclear, sub-optimal topic discovery. For example, in topic analysis of

U.S. Presidential State-of-the-Union addresses, LDA confounds Mexican-American

War (1846-1848) with some aspects of World War I (1914-1918), because LDA is

unaware of the 70-year separation between the two events. A continuous modality

(such as timestamp) is easier to generate from a discrete modality in a relatively

small dimensionality (such as topics). From timestamps to topics, it would obviously

need much more effort to describe. That is, the time sensitive topics would be best

captured by a model like (B) in Figure 1.2 .

The bag-of-words assumption is prevalent in topic models as shown above, but

word order, which we consider as an accompanying modality of text as well, is not

only important for syntax, but also important for lexical meaning. For example,

the phrase “white house” carries a special meaning beyond the appearance of its

individual words, whereas “yellow house” does not. Note, however, that whether

or not a phrase is a collocation may depend on the topic context. In the context
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of a document about real estate, “white house” may not be a collocation. Phrases

often have specialized meaning, but not always. For instance, “neural networks”

is considered a phrase because of its frequent use as a fixed expression. However,

it specifies two distinct concepts: biological neural networks in neuroscience and

artificial neural networks in modern usage. Without consulting the context in which

the term is located, it is hard to determine its actual meaning. Adding phrases

increases the model’s complexity, but it could be useful in certain contexts. The

generation of an observed word is conditioned on the topic and another word, which

is a perfect match for (C) in Figure 1.2 where the generation of words depends on

both global context (topics) and local context (preceding word).

1.3 Related Work

Statistical topic models haven been actively studied in recent years, and many

of them are dealing with multi-modality information as well and could be roughly

mapped to one of the above configurations:

• Configuration (A): Author Model and Author-Topic Model of words and their

authors [38, 50, 53], Topic Models with Meta Features of words and their arbi-

trary meta features [41], etc.

• Configuration (B): Citation-Topic Model [15] of words and research paper cita-

tions, Supervised LDA Model [7] of words and their class label, etc.

• Configuration (C): Syntax Topic Models [21], Bigram Topic Model [59], LDA-

Collocation Model [22] of word sequences with Markov dependencies, etc.

Most of the above models will be discussed in detail with comparison to our own

models in the following chapters.
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1.4 Evaluating Topic Models

There are not yet gold standard metrics for evaluating topic models commonly

accepted by the topic models community. In general, like clustering, the probability

of a new document given by a vector of word indices are in terms of latent variables

(the topic assignments of the words in the document), with intractable integration. In

models of Configuration (A), since the topics are generated from an observed modality,

such probability could be relatively easily calculated, and also termed as perplexity

after some transformation. The use of perplexity originated from text compression,

and in my opinion, it is not a good metric for evaluating topic model, because in most

cases, we are more interested in the interpretability of text instead of compressibility.

When perplexity is not easy to calculate such as in LDA, Configuration (B) and

(C), one can also use Chib’s method [12] to approximately estimate marginal likeli-

hood from samples of the topic assignments to words for the new document with the

harmonic mean approximation. However, Chibs method is known to be very unstable

(high to infinite variance).

As an alternative, instead of evaluating the topic models directly, many researchers

evaluate the use of topic models is improving some supervised tasks such as text

classification and information retrieval.

I do not have a strong preference on any of the above metrics. In this thesis,

depending on the application, different metrics are explored.

1.5 Outline

The remainder of this thesis is laid out as follows:

In Chapter 2, I present the Author-Recipient-Topic (ART) model, a directed

graphical model of words in a message generated given their author and a set of

recipients. The model is similar to the Author-Topic (AT) model [50, 53], but with

the crucial enhancement that it conditions the per-message topic distribution jointly
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on both the author and individual recipients, rather than on individual authors. Thus

the discovery of topics in the ART model is influenced by the social structure in which

messages are sent and received. Each topic consists of a multinomial distribution over

words. Each author-recipient pair has a multinomial distribution over topics. We can

also easily calculate marginal distributions over topics conditioned solely on an au-

thor, or solely on a recipient, in order to find the topics on which each person is

most likely to send or receive. Most importantly, we can also effectively use these

person-conditioned topic distributions to measure similarity between people, and thus

discover people’s roles by clustering using this similarity.

In Chapter 3, the Group-Topic (GT) model is presented to consider not only

the relations between objects but also the attributes of the relations (for example,

the text associated with the relations) when assigning group membership. The GT

model can be viewed as an extension of the stochastic blockstructures model [28, 46]

with the key addition that group membership is conditioned on a latent variable

associated with the attributes of the relation. Thus the discovery of groups is guided

by the emerging topics, and the discovery of topics is guided by emerging groups.

Resolutions that would have been assigned the same topic in a model using words

alone may be assigned to different topics if they exhibit distinct voting patterns.

Distinct word-based topics may be merged if the entities vote very similarly on them.

In Chapter 4, I present Topics over Time (TOT), a topic model that explicitly

models time jointly with word co-occurrence patterns. Significantly, and unlike some

recent work with similar goals, our model does not discretize time, and does not make

Markov assumptions over state transitions in time. Rather, TOT parameterizes a con-

tinuous distribution over time associated with each topic, and topics are responsible

for generating both observed timestamps as well as words. Parameter estimation is

thus driven to discover topics that simultaneously capture word co-occurrences and

locality of those patterns in time. When a strong word co-occurrence pattern appears
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for a brief moment in time then disappears, TOT will create a topic with a narrow

time distribution. (Given enough evidence, arbitrarily small spans can be represented,

unlike schemes based on discretizing time.) When a pattern of word co-occurrence

remains consistent across a long time span, TOT will create a topic with a broad time

distribution.

In Chapter 5, we propose a new topical n-gram (TNG) model that automatically

determines unigram words and phrases based on context and assign mixture of topics

to both individual words and n-gram phrases. The ability to form phrases only where

appropriate is unique to our model, distinguishing it from the traditional collocation

discovery methods, where a discovered phrase is always treated as a collocation regard-

less of the context (which would possibly make us incorrectly conclude that “white

house” remains a phrase in a document about real estate). Thus, TNG is not only a

topic model that uses phrases, but also help linguists discover meaningful phrases in

right context, in a completely probabilistic manner.

In Chapter 6, we summarize the ideas of the thesis and point to directions of

future work.
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CHAPTER 2

TOPIC AND ROLE DISCOVERY IN SOCIAL
NETWORKS

Social network analysis (SNA) is the study of mathematical models for interactions

among people, organizations and groups. With the recent availability of large datasets

of human interactions [51, 71], the popularity of services like Facebook and LinkedIn,

and the salience of the connections among the 9/11 hijackers, there has been growing

interest in social network analysis.

Historically, research in the field has been led by social scientists and physicists [3,

33, 65, 66], and previous work has emphasized binary interaction data, with directed

and/or weighted edges. There has not, however, previously been significant work by

researchers with backgrounds in statistical natural language processing, nor analysis

that captures the richness of the language contents of the interactions—the words,

the topics, and other high-dimensional specifics of the interactions between people.

Using pure network connectivity properties, SNA often aims to discover various

categories of nodes in a network. For example, in addition to determining that a node-

degree distribution is heavy-tailed, we can also find those particular nodes with an

inordinately high number of connections, or with connections to a particularly well-

connected subset (group or block) of the network [1, 29, 28, 30, 32, 46]. Furthermore,

using these properties we can assign “roles” to certain nodes [33, 69]. However, it

is clear that network properties are not enough to discover all the roles in a social

network. Consider email messages in a corporate setting, and imagine a situation

in which a tightly knit group of users trade email messages with each other in a
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roughly symmetric fashion. Thus, at the network level they appear to fulfill the same

role. But perhaps, one of the users is in fact a manager for the whole group—a role

that becomes obvious only when one accounts for the language content of the email

messages.

Outside of the social network analysis literature, similarly, statistical topic models

are also developed to discover the low-dimensional latent structures that are respon-

sible to form documents in a corpus. For example, Probabilistic Latent Semantic

Indexing [25] and Latent Dirichlet Allocation [8] robustly discover multinomial word

distributions of these topics. Hierarchical Dirichlet Processes [57] can determine an

appropriate number of topics for a corpus. The Author-Topic Model [53] learns topics

conditioned on the mixture of authors that composed a document. However, none

of these models are appropriate for SNA, in which we aim to capture the directed

interactions and relationships between people.

This chapter presents the Author-Recipient-Topic (ART) model [40], a directed

graphical model of words in a message generated given their author and a set of

recipients. The model is similar to the Author-Topic (AT) model, but with the

crucial enhancement that it conditions the per-message topic distribution jointly on

both the author and individual recipients, rather than on individual authors. Thus the

discovery of topics in the ART model is influenced by the social structure in which

messages are sent and received. Each topic consists of a multinomial distribution

over words. Each author-recipient pair has a multinomial distribution over topics.

We can also easily calculate marginal distributions over topics conditioned solely on

an author, or solely on a recipient, in order to find the topics on which each person

is most likely to send or receive.

Most importantly, we can also effectively use these person-conditioned topic dis-

tributions to measure similarity between people, and thus discover people’s roles by
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clustering using this similarity.1 For example, people who receive messages containing

requests for photocopying, travel bookings, and meeting room arrangements can all

be said to have the role “administrative assistant,” and can be discovered as such

because in the ART model they will all have these topics with high probability in

their receiving distribution. Note that we can discover that two people have similar

roles even if in the graph they are connected to very different sets of people.

We demonstrate this model on the Enron email corpus comprising 147 people and

23k messages, and also on about 9 months of incoming and outgoing mail of Andrew

McCallum, comprising 825 people and 14k messages. We show not only that ART

discovers extremely salient topics, but also gives evidence that ART predicts people’s

roles better than AT and SNA. Also, we show that the similarity matrix produced by

ART is different from both the SNA matrix and the AT matrix in several appropriate

ways. Furthermore, we find that the ART model gives a significantly lower perplexity

on previously unseen messages than AT, which shows that ART is a better topic

model for email messages.

We also describe an extension of the ART model that explicitly captures roles of

people, by generating role associations for the author and recipient(s) of a message,

and conditioning the topic distributions on the role assignments. The model, which we

term Role-Author-Recipient-Topic (RART), naturally represents that one person can

have more than one role. We describe several possible RART variants, and describe

experiments with one of these variants.
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Figure 2.1. Three related models, and the ART model. In all models, each observed
word, w, is generated from a multinomial word distribution, φz, specific to a partic-
ular topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which in
turn is sampled from a Dirichlet over topics. In the Author Model, there is one topic
associated with each author (or category), and authors are sampled uniformly. In the
Author-Topic model, the topic is sampled from a per-author multinomial distribution,
θ, and authors are sampled uniformly from the observed list of the document’s au-
thors. In the Author-Recipient-Topic model, there is a separate topic-distribution for
each author-recipient pair, and the selection of topic-distribution is determined from
the observed author, and by uniformly sampling a recipient from the set of recipients
for the document.

2.1 Author-Recipient-Topic Models

Before describing the ART model, we first describe two related models both of

which are tightly related to the Latent Dirichlet Allocation model we described in

Chapter 1. The graphical model representations for all models are shown in Figure

2.1 in which we list the LDA model as well for comparison. In addition to the notation

in Table 1.1, here A represents the number of email accounts (senders and recipients).

The Author model, also termed a Multi-label Mixture Model [38], is a Bayesian

network that simultaneously models document content and its authors’ interests with

1The clustering may be either external to the model by simple greedy-agglomerative clustering,
or internal to the model by introducing latent variables for the sender’s and recipient’s roles, as
described in the Role-Author-Recipient-Topic (RART) model toward the end of this chapter.
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a 1-1 correspondence between topics and authors. For each document d, a set of

authors ad is observed. To generate each word, an author, z, is sampled uniformly

from the set, and then a word, w, is generated by sampling from an author-specific

multinomial distribution φz. The Author-Topic (AT) model is a similar Bayesian

network, in which each author’s interests are modeled with a mixture of topics [53].

In its generative process for each document d, a set of authors, ad, is observed. To

generate each word, an author x is chosen uniformly from this set, then a topic z is

selected from a topic distribution θx that is specific to the author, and then a word w

is generated from a topic-specific multinomial distribution φz. However, as described

previously, none of these models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We

could treat both the sender and the recipients as “authors” of the message, and then

employ the AT model, but this does not distinguish the author and the recipients of

the message, which is undesirable in many real-world situations. A manager may send

email to a secretary and vice versa, but the nature of the requests and language used

may be quite different. Even more dramatically, consider the large quantity of junk

email that we receive; modeling the topics of these messages as undistinguished from

the topics we write about as authors would be extremely confounding and undesirable

since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient in-

formation of email and treating each email document as if it only has one author.

However, in this case (which is similar to the LDA model) we are losing all infor-

mation about the recipients, and the connections between people implied by the

sender-recipient relationships.

Thus, we propose an Author-Recipient-Topic (ART) model for email messages.

The ART model captures topics and the directed social network of senders and re-

cipients by conditioning the multinomial distribution over topics distinctly on both
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the author and one recipient of a message. Unlike AT, the ART model takes into

consideration both author and recipients, in addition to modeling the email content

as a mixture of topics.

The ART model is a Bayesian network that simultaneously models message con-

tent, as well as the directed social network in which the messages are sent. In its

generative process, for each message d, an author, ad, and a set of recipients, rd, are

observed. To generate each word, a recipient, x, is chosen uniformly from rd, and then

a topic z is chosen from a multinomial topic distribution θadx, where the distribution

is specific to the author-recipient pair (ad, x). This distribution over topics could also

be smoothed against a distribution conditioned on the author only, although we did

not find that to be necessary in our experiments. Finally, the word w is generated

by sampling from a topic-specific multinomial distribution φz. The result is that the

discovery of topics is guided by the social network in which the collection of message

text was generated.

In the ART model, given the hyperparameters α and β, an author ad, and a set of

recipients rd for each message d, the joint distribution of the topic mixture θij for each

author-recipient pair (i, j), the word mixture φt for each topic t, a set of recipients x,

a set of topics z and a set of words w in the corpus is given by:

P (Θ,Φ,x, z,w|α, β,a, r) =
A∏
i=1

A∏
j=1

p(θij |α)
T∏
t=1

p(φt|β)
D∏
d=1

Nd∏
i=1

(P (xdi|rd)P (zdi|θadxdi)P (wdi|φzdi))

Integrating over Θ and Φ, and summing over x and z, we get the marginal distribution

of a corpus:

P (w|α, β,a, r)

=
∫∫ A∏

i=1

A∏
j=1

p(θij |α)
T∏
t=1

p(φt|β)
D∏
d=1

Nd∏
i=1

A∑
xdi=1

(P (xdi|rd)
T∑

zdi=1

(P (zdi|θadxdi)P (wdi|φzdi)))dΦdΘ
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2.1.1 Inference by Collapsed Gibbs Sampling

Inference on models in the LDA family cannot be performed exactly. Three stan-

dard approximate inference methods have been used to obtain practical results: varia-

tional methods [8], Gibbs sampling [20, 50, 53], and expectation propagation [20, 42].

We choose collapsed Gibbs sampling for its ease of implementation. Note that we

adopt conjugate priors (Dirichlet) for the multinomial distributions, and thus we can

easily integrate out θ and φ, analytically capturing the uncertainty associated with

them. In this way we facilitate the sampling—that is, we need not sample θ and φ at

all. One could estimate the values of the hyperparameters of the ART model, α and

β, from data using a Gibbs EM algorithm [4]. In the particular applications discussed

in this chapter, after trying out many different hyperparameter settings, we find that

the sensitivity to hyperparameters is not very strong, as shown in Figure 2.2. Thus,

again for simplicity, we use fixed symmetric Dirichlet distributions (α = 50/T and

β = 0.1) in all our experiments.

We need to derive P (xdi, zdi|x−di, z−di,w, α, β, a, r), the conditional distribution

of a topic and recipient for the word wdi given all other words’ topic and recipient

assignments, x−di and z−di, to carry out the collapsed Gibbs sampling procedure for

ART. We begin with the joint probability of the whole dataset, and by the chain rule,

the above conditional probability can be obtained with ease:

P (xdi, zdi|x−di, z−di,w, α, β, a, r) ∝ αzdi + n′adxdizdi∑T
t=1(αt + n′adxdit)

βwdi +m′zdiwdi∑V
v=1(βv +m′zdiv)

where n′ijt is the number of tokens (excluding wdi) assigned to topic t and the author-

recipient pair (i, j), and m′tv represent the number of tokens (excluding wdi) of word

v assigned to topic t (nijt and mtv are the corresponding counts including wdi used

below).

The posterior estimates of θ and φ given the training set can be calculated by
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(a) Perplexity vs. α (β = 0.1 and T = 50) (b) Perplexity vs. β (α = 1 and T = 50)

Figure 2.2. Perplexity on McCallum dataset for different values of the hyperparam-
eters α and β. Perplexity and the corresponding experimental setting are discussed in
detail in Section 2.2.3. From the perplexity plot, the ART model is not very sensitive
to the hyperparameter values.

θ̂ijz =
αz + nijz∑T
t=1(αt + nijt)

, φ̂tw =
βw +mtw∑V
v=1(βv +mtv)

(2.1)

Detailed derivation of collapsed Gibbs sampling for ART is provided in Appendix

A. An overview of the collapsed Gibbs sampling procedure we use is shown in Algo-

rithm 1.

2.2 Experimental Results

We present results with the Enron email corpus and the personal email of a re-

searcher (Andrew McCallum). The Enron email corpus, is a large body of email

messages subpoenaed as part of the investigation by the Federal Energy Regulatory

Commission (FERC), and then placed in the public record. The original dataset con-
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Algorithm 1 Inference and Parameter Estimation in ART

1: initialize the author and topic assignments randomly for all tokens
2: repeat
3: for d = 1 to D do
4: for i = 1 to Nd do
5: draw xdi and zdi from P (xdi, zdi|x−di, z−di,w, α, β, a, r)
6: update nadxdizdi and mzdiwdi (or equivalently, n′adxdizdi and m′zdiwdi)
7: end for
8: end for
9: until the Markov chain reaches its equilibrium

10: compute the posterior estimates of θ and φ

tains 517,431 messages, however MD5 hashes on contents, authors and dates show

only 250,484 of these to be unique.

Although the Enron email dataset contains the email folders of 150 people, two

people appear twice with different usernames, and we remove one person who only

sent automated calendar reminders, resulting in 147 people for our experiments. We

hand-corrected variants of the email addresses for these 147 users to capture the

connectivity of as much of these users’ emails as possible. The total number of email

messages traded among these users is 23,488. We did not model email messages that

were not received by at least one of the 147 users.

In order to capture only the new text entered by the author of a message, it is

necessary to remove “quoted original messages” in replies. We eliminate this extra-

neous text by a simple heuristic: all text in a message below a “forwarded message”

line or timestamp is removed. This heuristic certainly incorrectly loses words that are

interspersed with quoted email text. Only words formed as sequences of alphabetic

characters are kept, which results in a vocabulary of 22,901 unique words. To remove

sensitivity to capitalization, all text is downcased.

Our second dataset consists of the personal email sent and received by McCallum

between January and September 2004. It consists of 13,633 unique messages written

by 825 authors. In a typical power-law behavior, most of these authors wrote only
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a few messages, while 128 wrote ten or more emails. After applying the same text

normalization filter (lowercasing, removal of quoted email text, etc.) that was used

for the Enron dataset, we obtained a text corpus containing 457,057 word tokens, and

a vocabulary of 22,901 unique words.

(a) Enron authors (b) Enron author-recipient pairs

(c) McCallum authors (d) McCallum author-recipient pairs

Figure 2.3. Power-law relationship between the frequency of occurrence of of an
author (or an author-recipient pair) and the rank determined by the above frequency
of occurrence. In the author plots, we treat both the sender and the recipients as
authors.

By conditioning topic distributions on author-recipient pairs instead of authors,

the data we have may look sparser considering that we have substantially more author-

recipient pairs than authors. However, as shown in Figure 2.3, we can find that the

number of emails of an author-recipient pair and its rank determined by the count

still follow a power-law behavior, as for authors. For example, in the McCallum

dataset, 500 of possible 680,625 author-recipient pairs are responsible for 70% of the

email exchange. That is, even though the data are sparser for the ART model, the
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power-law behavior makes it still possible to obtain a good estimate of the topic

distributions for prominent author-recipient pairs.

We initialize the Gibbs chains on both datasets randomly, and find that the results

are very robust to different initializations. By checking the perplexity, we find that

usually the Gibbs chain converges after a few hundred iterations, and we run 10,000

iterations anyway to make sure it converges.

2.2.1 Topics and Prominent Relations from ART

Table 2.2 shows the highest probability words from eight topics in an ART model

trained on the 147 Enron users with 50 topics. The quoted titles are our own in-

terpretation of a summary for the topics. The clarity and specificity of these topics

are typical of the topics discovered by the model. For example, Topic 17 (Document

Review) comes from the messages discussing review and comments on documents;

Topic 27 (Time Scheduling) comes from the messages negotiating meeting times.

Beneath the word distribution for each topic are the three author-recipient pairs

with highest probability of discussing that topic—each pair separated by a horizontal

line, with the author above the recipient. For example, Hain, the top author of mes-

sages in the “Legal Contracts” topic, was an in-house lawyer at Enron. By inspection

of messages related to “Sports Pool”, Eric Bass seems to have been the coordinator

for a fantasy football league among Enron employees. In the “Operations” topic,

it is satisfying to see Beck, who was the Chief Operating Officer at Enron; Kitchen

was President of Enron Online; and Lavorato was CEO of Enron America. In the

“Government Relations” topic, we see Dasovich, who was a Government Relation Ex-

ecutive, Shapiro, who was Vice President of Regulatory Affairs, Steffes, who was Vice

President of Government Affairs, and Sanders, who was Vice President of WholeSale

Services. In “Wireless” we see that Hayslett, who was Chief Financial Officer and
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Topic 5 Topic 17 Topic 27 Topic 45
“Legal Contracts” “Document Review” “Time Scheduling” “Sports Pool”
section 0.0299 attached 0.0742 day 0.0419 game 0.0170
party 0.0265 agreement 0.0493 friday 0.0418 draft 0.0156
language 0.0226 review 0.0340 morning 0.0369 week 0.0135
contract 0.0203 questions 0.0257 monday 0.0282 team 0.0135
date 0.0155 draft 0.0245 office 0.0282 eric 0.0130
enron 0.0151 letter 0.0239 wednesday 0.0267 make 0.0125
parties 0.0149 comments 0.0207 tuesday 0.0261 free 0.0107
notice 0.0126 copy 0.0165 time 0.0218 year 0.0106
days 0.0112 revised 0.0161 good 0.0214 pick 0.0097
include 0.0111 document 0.0156 thursday 0.0191 phillip 0.0095
M.Hain 0.0549 G.Nemec 0.0737 J.Dasovich 0.0340 E.Bass 0.3050
J.Steffes B.Tycholiz R.Shapiro M.Lenhart
J.Dasovich 0.0377 G.Nemec 0.0551 J.Dasovich 0.0289 E.Bass 0.0780
R.Shapiro M.Whitt J.Steffes P.Love
D.Hyvl 0.0362 B.Tycholiz 0.0325 C.Clair 0.0175 M.Motley 0.0522
K.Ward G.Nemec M.Taylor M.Grigsby

Topic 34 Topic 37 Topic 41 Topic 42
“Operations” “Power Market” “Gov. Relations” “Wireless”

operations 0.0321 market 0.0567 state 0.0404 blackberry 0.0726
team 0.0234 power 0.0563 california 0.0367 net 0.0557
office 0.0173 price 0.0280 power 0.0337 www 0.0409
list 0.0144 system 0.0206 energy 0.0239 website 0.0375
bob 0.0129 prices 0.0182 electricity 0.0203 report 0.0373
open 0.0126 high 0.0124 davis 0.0183 wireless 0.0364
meeting 0.0107 based 0.0120 utilities 0.0158 handheld 0.0362
gas 0.0107 buy 0.0117 commission 0.0136 stan 0.0282
business 0.0106 customers 0.0110 governor 0.0132 fyi 0.0271
houston 0.0099 costs 0.0106 prices 0.0089 named 0.0260
S.Beck 0.2158 J.Dasovich 0.1231 J.Dasovich 0.3338 R.Hayslett 0.1432
L.Kitchen J.Steffes R.Shapiro T.Geaccone
S.Beck 0.0826 J.Dasovich 0.1133 J.Dasovich 0.2440 T.Geaccone 0.0737
J.Lavorato R.Shapiro J.Steffes R.Hayslett
S.Beck 0.0530 M.Taylor 0.0218 J.Dasovich 0.1394 R.Hayslett 0.0420
S.White E.Sager R.Sanders D.Fossum

Table 2.1. An illustration of several topics from a 50-topic run for the Enron email
dataset. Each topic is shown with the top 10 words and their corresponding condi-
tional probabilities. The quoted titles are our own summary for the topics. Below
are prominent author-recipient pairs for each topic. For example, Mary Hain was an
in-house lawyer at Enron; Eric Bass was the coordinator of a fantasy football league
within Enron. See all 50 topics in Appendix E.

Treasurer, was an avid user of the Blackberry brand wireless, portable email system.

Results on the McCallum email dataset are reported in Table 2.2.
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Topic 5 Topic 31 Topic 38 Topic 41
“Grant Proposals” “Meeting Setup” “ML Models” “Friendly Discourse”
proposal 0.0397 today 0.0512 model 0.0479 great 0.0516
data 0.0310 tomorrow 0.0454 models 0.0444 good 0.0393
budget 0.0289 time 0.0413 inference 0.0191 don 0.0223
work 0.0245 ll 0.0391 conditional 0.0181 sounds 0.0219
year 0.0238 meeting 0.0339 methods 0.0144 work 0.0196
glenn 0.0225 week 0.0255 number 0.0136 wishes 0.0182
nsf 0.0209 talk 0.0246 sequence 0.0126 talk 0.0175
project 0.0188 meet 0.0233 learning 0.0126 interesting 0.0168
sets 0.0157 morning 0.0228 graphical 0.0121 time 0.0162
support 0.0156 monday 0.0208 random 0.0121 hear 0.0132
smyth 0.1290 ronb 0.0339 casutton 0.0498 mccallum 0.0558
mccallum mccallum mccallum culotta
mccallum 0.0746 wellner 0.0314 icml04-web 0.0366 mccallum 0.0530
stowell mccallum icml04-chairs casutton
mccallum 0.0739 casutton 0.0217 mccallum 0.0343 mccallum 0.0274
lafferty mccallum casutton ronb
mccallum 0.0532 mccallum 0.0200 nips04work 0.0322 mccallum 0.0255
smyth casutton mccallum saunders
pereira 0.0339 mccallum 0.0200 weinman 0.0250 mccallum 0.0181
lafferty wellner mccallum pereira

Table 2.2. The four topics most prominent in McCallum’s email exchange with
Padhraic Smyth, from a 50-topic run of ART on 9 months of McCallum’s email. The
topics provide an extremely salient summary of McCallum and Smyth’s relationship
during this time period: they wrote a grant proposal together; they set up many
meetings; they discussed machine learning models; they were friendly with each other.
Each topic is shown with the 10 highest-probability words and their corresponding
conditional probabilities. The quoted titles are our own summary for the topics.
Below are prominent author-recipient pairs for each topic. The people other than
smyth also appear in very sensible associations: stowell is McCallum’s proposal budget
administrator; McCallum also wrote a proposal with John Lafferty and Fernando
Pereira; McCallum also sets up meetings, discusses machine learning and has friendly
discourse with his graduate student advisees: ronb, wellner, casutton, and culotta; he
does not, however, discuss the details of proposal-writing with them.

2.2.2 Stochastic Blockstructures and Roles

The stochastic equivalence hypothesis from SNA states that nodes in a network

that behave stochastically equivalently must have similar roles. In the case of an

email network consisting of message counts, a natural way to measure equivalence is

to examine the probability that a node communicated with other nodes. If two nodes

have similar probability distribution over their communication partners, we should
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consider them role-equivalent. Lacking a true distance measure between probability

distributions, we can use some symmetric measure, such as the Jensen-Shannon (JS)

divergence, to obtain a symmetric matrix relating the nodes in the network. Since

we want to consider nodes/users that have a small JS divergence as equivalent, we

can use the inverse of the divergence to construct a symmetric matrix in which larger

numbers indicate higher similarity between users.

Standard recursive graph-cutting algorithms on this matrix can be used to cluster

users, rearranging the rows/columns to form approximately block-diagonal structures.

This is the familiar process of ‘blockstructuring’ used in SNA. We perform such an

analysis on two datasets: a small subset of the Enron users consisting mostly of people

associated with the Transwestern Pipeline Division within Enron, and the entirety of

McCallum’s email.

We begin with the Enron TransWestern Pipeline Division. Our analysis here em-

ployed a “closed-universe” assumption—only those messages traded among considered

authors in the dataset were used.

The traditional SNA similarity measure (in this case JS divergence of distributions

on recipients from each person) is shown in the left matrix in Figure 2.4. Darker shad-

ing indicates that two users are considered more similar. A related matrix resulting

from our ART model (JS divergence of recipient-marginalized topic distributions for

each email author) appears in the middle of Figure 2.4. Finally, the results of the

same analysis using topics from the AT model rather than our ART model can be

seen on the right. The three matrices are similar, but have interesting differences.

Consider Enron employee Geaccone (user 9 in all the matrices in Figure 2.4).

According to the traditional SNA role measurement, Geaccone and McCarty (user 8)

have very similar roles, however, both the AT and ART models indicate no special

similarity. Inspection of the email messages for both users reveals that Geaconne

was an Executive Assistant, while McCarty was a Vice-President—rather different
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Figure 2.4. Left: SNA Inverse JS Network. Middle: ART Inverse JS Network.
Right: AT Inverse JS Network. Darker shades indicate higher similarity.

roles—and, thus the output of ART and AT is more appropriate. We can interpret

these results as follows: SNA analysis shows that they wrote email to similar sets of

people, but the ART analysis illustrates that they used very different language when

they wrote to these people.

Comparing ART against AT, both models provide similar role distance for Geac-

cone versus McCarty, but ART and AT show their differences elsewhere. For example,

AT indicates a very strong role similarity between Geaconne and Hayslett (user 6),

who was her boss (and CFO & Vice President in the Division); on the other hand,

ART more correctly designates a low role similarity for this pair—in fact, ART assigns

low similarity between Geaconne and all others in the matrix, which is appropriate

because she is the only executive assistant in this small sample of Enron employees.

Another interesting pair of people is Blair (user 4) and Watson (user 14). ART

predicts them to be role-similar, while the SNA and AT models do not. ART’s

prediction seems more appropriate since Blair worked on “gas pipeline logistics” and

Watson worked on “pipeline facility planning”, two very similar jobs.

McCarty, a Vice-President and CTO in the Division, also highlights differences

between the models. The ART model puts him closest to Horton (user 5), who was

President of the Division. AT predicts that he is closest to Rapp (user 12), who was
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merely a lawyer that reviewed business agreements, and also close to Harris (user 15),

who was only a mid-level manager.

Using ART in this way emphasizes role similarity, but not group membership.

This can be seen by considering Thomas (user 3, an energy futures trader), and his

relation to both Rapp (user 12, the lawyer mentioned above), and Lokey (user 16, a

regulatory affairs manager). These three people work in related areas, and both ART

and AT fittingly indicate a role similarity between them, (ART marginally more so

than AT). On the other hand, traditional SNA results (Figure 2.4 left) emphasizes

group memberships rather than role similarity by placing users 1 through 3 in a rather

distinct blockstructure; they are the only three people in this matrix who were not

members of the Enron Transwestern Division group, and these three exchanged more

email with each other than with the people of the Transwestern Division.

Based on the above examples, and other similar examples, we posit that the ART

model is more appropriate than SNA and AT in predicting role similarity. We thus

would claim that the ART model yields more appropriate results than the SNA model

in predicting role-equivalence between users, and somewhat better than the AT model

in this capacity.

We also carried out this analysis with the personal email for McCallum to fur-

ther validate the difference between the ART and SNA predictions. There are 825

users in this email corpus, while only 128 wrote ten or more emails. We perform

the blockstructure analysis with these 128 users, shown in Figure 2.5. The blocks

discovered are quite meaningful, e.g., the block from 0 to 30 are people in and related

to McCallum’s research group at UMass, and the block from 30 to 50 includes other

researchers around the world.

Table 2.3 shows the closest pairs in terms of JS divergence, as calculated by the

ART model and the SNA model. The difference in quality between the ART and

SNA halves of the table is striking.
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Figure 2.5. SNA Inverse JS Network for a 10 topic run on McCallum Email Data.
Darker shades indicate higher similarity. Graph partitioning was calculated with the
128 authors that had ten or more emails in McCallum’s Email Data. The block from
0 to 30 are people in and related to McCallum’s research group at UMass. The block
from 30 to 50 includes other researchers around the world.

Almost all the pairs predicted by the ART model look reasonable while many

of those predicted by SNA are the opposite. For example, ART matches editor and

reviews, two email addresses that send messages managing journal reviews. User mike

and mikem are actually two different email addresses for the same person. Most other

coreferent email addresses were pre-collapsed by hand during preprocessing; here ART

has pointed out a mistaken omission, indicating the potential for ART to be used as

a helpful component of an automated coreference system. Users aepshtey and smucker

were students in a class taught by McCallum. Users coe, laurie and kate are all UMass

CS Department administrative assistants; they rarely send email to each other, but

they write about similar things. User ang is Andrew Ng from Stanford; joshuago is
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Pairs considered most alike by ART
User Pair Description
editor reviews Both journal review management
mike mikem Same person! (manual coreference error)
aepshtey smucker Both students in McCallum’s class
coe laurie Both UMass admin assistants
mcollins tom.mitchell Both ML researchers on SRI project
mcollins gervasio Both ML researchers on SRI project
davitz freeman Both ML researchers on SRI project
mahadeva pal Both ML researchers, discussing hiring
kate laurie Both UMass admin assistants
ang joshuago Both on organizing committee for a conference

Pairs considered most alike by SNA
User Pair Description
aepshtey rasmith Both students in McCallum’s class
donna editor Spouse is unrelated to journal editor
donna krishna Spouse is unrelated to conference organizer
donna ramshaw Spouse is unrelated to researcher at BBN
donna reviews Spouse is unrelated to journal editor
donna stromsten Spouse is unrelated to visiting researcher
donna yugu Spouse is unrelated to grad student
aepshtey smucker Both students in McCallum’s class
rasmith smucker Both students in McCallum’s class
editor elm Journal editor and its Production Editor

Table 2.3. Pairs considered most alike by ART and SNA on McCallum email. All
pairs produced by the ART model are accurately quite similar. This is not so for
the top SNA pairs. Many users are considered similar by SNA merely because they
appear in the corpus mostly sending email only to McCallum. However, this causes
people with very different roles to be incorrectly declared similar—such as McCallum’s
spouse and the JMLR editor.

Joshua Goodman of Microsoft Research; they are both on the organizing committee

of a new conference along with McCallum.

On the other hand, the pairs declared most similar by the SNA model are mostly

extremely poor. Most of the pairs include donna, and indicate pairs of people who

are similar only because in this corpus they appeared mostly sending email only to

McCallum, and not others. User donna is McCallum’s spouse. Other pairs are more

sensible. For example, aepshtey, smucker and rasmith were all students in McCallum’s
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User Pair Description
editor reviews Both journal editors
jordan mccallum Both ML researchers
mccallum vanessa A grad student working in IR
croft mccallum Both UMass faculty, working in IR
mccallum stromsten Both ML researchers
koller mccallum Both ML researchers
dkulp mccallum Both UMass faculty
blei mccallum Both ML researchers
mccallum pereira Both ML researchers
davitz mccallum Both working on an SRI project

Table 2.4. Pairs with the highest rank difference between ART and SNA on Mc-
Callum email. The traditional SNA metric indicates that these pairs of people are
different, while ART indicates that they are similar. There are strong relations be-
tween all pairs.

class. User elm is Erik Learned-Miller who is correctly indicated as similar to editor

since he was the Production Editor for the Journal of Machine Learning Research.

To highlight the difference between the SNA and ART predictions, we present

Table 2.4, which was obtained by using both ART and SNA to rank the pairs of people

by similarity, and then listing the pairs with the highest rank differences between the

two models. These are pairs that SNA indicated were different, but ART indicated

were similar. In every case, there are role similarities between the pairs.

2.2.3 Perplexity Comparison between AT and ART

Models for natural languages are often evaluated by perplexity as a measure of

the goodness of fit of models. The lower perplexity a language model has, the better

it predicts the unseen words given the words we previously saw.

The perplexity of a previously unseen message d consisting of words wd can be

defined as follows, when the author ad and the recipient(s) rd are given:

Perplexity(wd) = exp

(
− log(p(wd|ad, rd))

Nd

)
,
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(a) Enron dataset (b) McCallum dataset

Figure 2.6. Perplexity comparison of AT and ART on two datasets. We plot the
information rate (logarithm of perplexity) here. The difference between AT and ART
is significant under one-tailed t-test (Enron dataset: p-value < 0.01 except for 10
topics with p-value = 0.018; McCallum dataset: p-value < 1e− 5).

where (θ̂ and φ̂ defined in Equation 2.1)

p(wd|ad, rd) =

Nd∏
i=1

(
1

|rd|
∑
r∈rd

T∑
t=1

θ̂adrtψ̂twdi

)
.

We randomly split our datasets into a training set (9/10) and a test set (the

remaining 1/10). In the test sets, 92.37% (Enron) and 84.51% (McCallum) of the

author-recipient pairs also appear in the training sets. Ten Markov chains are run

with different initializations, and the samples at the 2000th iteration are used to

estimate θ̂ and φ̂ by Equation 2.1. We report the average information rate (logarithm

of perplexity) with different number of topics on two datasets in Figure 2.6.

As clearly shown in the figure, ART has significantly better predictive power than

AT over a large number of randomly selected test documents on both datasets under

one-tailed t-test. Particularly on the Enron dataset, ART uses much fewer number

of topics to achieve the best predictive performance. We can also find that the lowest

perplexity obtained by ART is not achievable by AT with any parameter setting on

both datasets. Both these results provide evidence that ART discovers meaningful
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topics in the context of a social network and is indeed more appropriate to message

data than AT.

Here we do not compare perplexity between ART and LDA, however AT (which

ART dominates in perplexity) has already been shown to have better perplexity than

LDA [49]. Due to the much simpler model structure, the author model [38] has much

worse perplexity. Measured on both data sets, the information rates (log perplexity)

are larger than 10, whereas ART’s information rates are mostly between 8 and 9.

2.3 Role-Author-Recipient-Topic Models

To better explore the roles of authors, an additional level of latent variables can be

introduced to explicitly model roles. Of particular interest is capturing the notion that

a person can have multiple roles simultaneously—for example, a person can be both

a professor and a mountain climber. Each role is associated with a set of topics, and

these topics may overlap. For example, professors’ topics may prominently feature

research, meeting times, grant proposals, and friendly relations; climbers’ topics may

prominently feature mountains, climbing equipment, and also meeting times and

friendly relations.

We incorporate into the ART model a new set of variables that take on values

indicating role, and we term this augmented model the Role-Author-Recipient-Topic

(RART) model. In RART, authors, roles and message-contents are modeled simul-

taneously. Each author has a multinomial distribution over roles. Authors and re-

cipients are mapped to some role assignments, and a topic is selected based on these

roles. Thus we have a clustering model, in which appearances of topics are the under-

lying data, and sets of correlated topics gather together clusters that indicate roles.

Each sender-role and recipient-role pair has a multinomial distribution over topics,

and each topic has a multinomial distribution over words.
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Figure 2.7. Three possible variants for the Role-Author-Recipient-Topic (RART)
model.

As shown in Figure 2.7, different strategies can be employed to incorporate the

“role” latent variables. First in RART1, role assignments can be made separately for

each word in a document. This model represents that a person can change role during

the course of the email message. In RART2, on the other hand, a person chooses one

role for the duration of the message. Here each recipient of the message selects a role

assignment, and then for each word, a recipient (with corresponding role) is selected

on which to condition the selection of topic. In RART3, the recipients together result

in the selection of a common, shared role, which is used to condition the selection of

every word in the message. This last model may help capture the fact that a person’s

role may depend on the other recipients of the message, but also restricts all recipients

to a single role.

We describe the generative process of RART1 in this chapter in detail, and leave

the other two for exploration elsewhere. In its generative process for each message,

an author, ad, and a set of recipients, rd, are observed. To generate each word, a

recipient, x, is chosen at uniform from rd, and then a role g for the author, and a
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role h for the recipient x are chosen from two multinomial role distributions ψad and

ψx, respectively. Next, a topic z is chosen from a multinomial topic distribution θgh,

where the distribution is specific to the author-role recipient-role pair (g, h). Finally,

the word w is generated by sampling from a topic-specific multinomial distribution

φz.

In the RART1 model, given the hyperparameters α, β and γ, an author ad, and

a set of recipients rd for each message d, the joint distribution of the topic mixture

θij for each author-role recipient-role pair (i, j), the role mixture ψk for each author

k, the word mixture φt for each topic t, a set of recipients x, a set of sender roles g,

a set of recipient roles h, a set of topics z and a set of words w is given by (we define

R as the number of roles):

P (Θ,Φ,Ψ,x,g,h, z,w|α, β, γ,a, r)

=
R∏

i=1

R∏
j=1

p(θij |α)
T∏

t=1

p(φt|β)
A∏

k=1

p(ψk|γ)
D∏

d=1

Nd∏
i=1

P (xdi|rd)P (gdi|ad)P (hdi|xdi)P (zdi|θgdihdi
)P (wdi|φzdi

)

Integrating over Ψ, Θ and Φ, and summing over x, g, h and z, we get the marginal

distribution of a corpus, similar to what we showed for ART.

To perform inference on RART models, the collapsed Gibbs sampling formulae

can be derived in a similar way as in Appendix A, but in a more complex form.

Extensive experiments have been conducted with the RART1 model. Because

we introduce two sets of additional latent variables (author role and recipient role),

the sampling procedure at each iteration is significantly more complex. To make

inference more efficient, we can instead perform it in two distinct parts. One strategy

we have found useful is to first train an ART model, and use a sample to obtain

topic assignments and recipient assignments for each word token. Then, in the next

stage, we treat topics and recipients as observed (locked). Although such a strategy

may not be recommended for arbitrary graphical models, we feel this is reasonable

here because we find that a single sample from collapsed Gibbs sampling on the ART

34



Role 3 Role 4
“IT Support at UMass CS” “Working on the SRI CALO Project”

olc (lead Linux sysadmin) 0.2730 pereira (prof. at UPenn) 0.1876
gauthier (sysadmin for CIIR group) 0.1132 claire (UMass CS business manager) 0.1622
irsystem (mailing list CIIR sysadmins) 0.0916 israel (lead system integrator at SRI) 0.1140
system (mailing list for dept. sysadmins) 0.0584 moll (prof. at UMass) 0.0431
allan (prof., chair of computing committee) 0.0515 mgervasio (computer scientist at SRI) 0.0407
valerie (second Linux sysadmin) 0.0385 melinda.gervasio (same person as above) 0.0324
tech (mailing list for dept. hardware) 0.0360 majordomo (SRI CALO mailing list) 0.0210
steve (head of dept. of IT support) 0.0342 collin.evans (computer scientist at SRI) 0.0205

Table 2.5. An illustration of two roles from a 50-topic, 15-role run for the McCallum
email dataset. Each role is shown with the most prominent users (their short descrip-
tions in parenthesis) and the corresponding conditional probabilities. The quoted
titles are our own summary for the roles. For example, in Role 3, the users are all
employees (or mailing lists) of the IT support staff at UMass CS, except for allan,
who, however, was the professor chairing the department’s computing committee.

model yields good assignments. The following results are based on a 15-role, 50-topic

run of RART1 on McCallum email dataset.

Our results show that the RART model does indeed automatically discover mean-

ingful person-role information by its explicit inclusion of a role variable. We show the

most prominent users in two roles in Table 2.5. For instance, the users most promi-

nent in Role 3 are all employees (or mailing lists) of the IT support staff at UMass

CS, except for allan, who, however, was the professor chairing the department’s com-

puting committee. Role 4 seems to represent “working on the SRI CALO project.”

Most of its top prominent members are researchers working on CALO project, many

of them at SRI. The sender majordomo sends messages from an SRI CALO mailing

list. Users claire and moll were, however, unrelated with the project, and we do not

know the reason they appear in this role. The users mgervasio and melinda.gervasio

are actually the same person; satisfyingly RART found that they have very similar

role distributions.
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allan (James Allan) pereira (Fernando Pereira)
Role 10 (grant issues) 0.4538 Role 2 (natural language researcher) 0.5749
Role 13 (UMass CIIR group) 0.2813 Role 4 (working on SRI CALO Project) 0.1519
Role 2 (natural language researcher) 0.0768 Role 6 (proposal writing) 0.0649
Role 3 (IT Support at UMass CS) 0.0326 Role 10 (grant issues) 0.0444
Role 4 (working on SRI CALO Project) 0.0306 Role 8 (guests at McCallum’s house) 0.0408

Table 2.6. An illustration of the role distribution of two users from a 50-topic,
15-role run for the McCallum email dataset. Each user is shown with his most promi-
nent roles (their short descriptions in parenthesis) and the corresponding conditional
probabilities. For example, considering user pereira (Fernando Pereira), his top five
role assignments are all appropriate, as viewed through McCallum’s email.

2.4 Experimental Results with RART

One objective of the RART model is to capture the multiple roles that a person

has. The role distribution of two users are shown in Table 2.6. For example, user

allan (James Allan) mentioned above has a role in “IT support,” but also has a role as

a “member of the Center for Intelligent Information Retrieval,” as a “grant proposal

writer,” and as a “natural language researcher.” Although not a member of the “SRI

CALO Project,” allan’s research is related to CALO, and perhaps this is the reason

that CALO appears (weakly) among his roles. Consider also user pereira (Fernando

Pereira); his top five role assignments are all exactly appropriate, as viewed through

McCallum’s email.

As expected, one can observe interesting differences in the sender versus recipient

topic distributions associated with each role. For instance, in Role 4 “SRI CALO,”

the top three topics for a sender role are Topic 27 “CALO information,” Topic 11

“mail accounts,” and Topic 36 “program meetings,” but for its recipient roles, most

prominent are Topic 48 “task assignments,” Topic 46 “a CALO-related research pa-

per,” and Topic 40 “java code”.

36



2.5 Summary

We have presented the Author-Recipient-Topic model, a Bayesian network for

social network analysis that discovers discussion topics conditioned on the sender-

recipient relationships in a corpus of messages. To the best of our knowledge, this

model combines for the first time the directionalized connectivity graph from social

network analysis with the clustering of words to form topics from probabilistic lan-

guage modeling.

The model can be applied to discovering topics conditioned on message sending

relationships, clustering to find social roles, and summarizing and analyzing large

bodies of message data. The model would form a useful component in systems for

routing requests, expert-finding, message recommendation and prioritization, and

understanding the interactions in an organization in order to make recommendations

about improving organizational efficiency.
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CHAPTER 3

JOINT GROUP AND TOPIC DISCOVERY FROM
RELATIONS AND TEXT

Research in the field of social network analysis (SNA) has led to the development

of mathematical models that discover patterns in interaction between entities [65].

Besides role discovery we discussed in the previous chapter, another of the objectives

of SNA is to detect salient groups of entities. Group discovery has many applications,

such as understanding the social structure of organizations [11] or native tribes [70],

uncovering criminal organizations [52], and modeling large-scale social networks in

Internet services such as Friendster.com or LinkedIn.com.

Social scientists have conducted extensive research on group detection, especially

in fields such as anthropology [70] and political science [14, 24]. Recently, statisticians

and computer scientists have begun to develop models that specifically discover group

memberships [6, 28, 30, 46]. One such model is the stochastic blockstructures model

[46], which discovers the latent structure, groups or classes based on pair-wise rela-

tion data. A particular relation holds between a pair of entities (people, countries,

organizations, etc.) with some probability that depends only on the class (group)

assignments of the entities. The relations between all the entities can be represented

with a directed or undirected graph. The class assignments can be inferred from a

graph of observed relations or link data using Gibbs sampling [46]. This model is

extended in [28] to automatically select an arbitrary number of groups by using a

Chinese Restaurant Process prior.

The aforementioned models discover latent groups only by examining whether one

or more relations exist between a pair of entities. The Group-Topic (GT) model pre-
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sented in this chapter [63], on the other hand, considers not only the relations between

objects but also the attributes of the relations (for example, the text associated with

the relations) when assigning group membership.

The GT model can be viewed as an extension of the stochastic blockstructures

model [28, 46] with the key addition that group membership is conditioned on a latent

variable associated with the attributes of the relation. In our experiments, the at-

tributes of relations are words, and the latent variable represents the topic responsible

for generating those words. Unlike previous methods, our model captures the (lan-

guage) attributes associated with interactions between entities, and uses distinctions

based on these attributes to better assign group memberships.

Consider a legislative body and imagine its members forging alliances (forming

groups), and voting accordingly. However, different alliances arise depending on the

topic of the resolution up for a vote. For example, one grouping of the legislators may

arise on the issue of taxation, while a quite different grouping may occur for votes on

foreign trade. Similar patterns of topic-based affiliations would arise in other types

of entities as well, e.g., research paper co-authorship relations between people and

citation relations between papers, with words as attributes on these relations.

In the GT model, the discovery of groups is guided by the emerging topics, and

the discovery of topics is guided by emerging groups. Both modalities are driven by

the common goal of increasing data likelihood. Consider the voting example again;

resolutions that would have been assigned the same topic in a model using words alone

may be assigned to different topics if they exhibit distinct voting patterns. Distinct

word-based topics may be merged if the entities vote very similarly on them. Likewise,

multiple different divisions of entities into groups are made possible by conditioning

them on the topics.

The GT model simultaneously clusters entities to groups and clusters words into

topics, unlike models that generate topics solely based on word distributions such as
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Latent Dirichlet Allocation [8]. In this way the GT model discovers salient topics

relevant to relationships between entities in the social network—topics which the

models that only examine words are unable to detect. Erosheva et al. [15] provide a

general formulation for mixed membership, of which LDA is a special case, and they

apply it to soft clustering of papers by topics using words from the text and references.

In work parallel to ours but different from GT, Airoldi et al. [2] extend the general

mixed membership model to also incorporate stochastic blockstructures models of

the form arising in the network literature. Their application is to protein-protein

interactions.

Exploring the notion that entities in the same group have the same behavior and

that the behavior of an entity can be explained by its (hidden) group membership,

Jakulin and Buntine [26] develop a discrete PCA model for discovering groups in

the 108 US Senate. In the model each entity can belong to each of the k groups

with a certain probability, and each group has its own specific pattern of behaviors.

Therefore, an entity’s behavior depends on the probability of belonging to a group

and the probability that the group has that behavior. They apply this model to

voting data in the 108th US Senate where the behavior of an entity is its vote on a

resolution. A similar model is developed in [47] that examines group cohesion and

voting similarity in the Finnish Parliament. We apply our GT model also to voting

data. However, unlike [26, 47], our model considers the relation between a pair of

voting entities and does not try to predict the actual vote of an entity on a resolution.

Since our goal is to cluster entities based on the similarity of their voting patterns,

we are only interested in whether a pair of entities voted the same or differently,

not their actual yes/no votes. The complete negation of a resolution might share

the same topic (e.g., increasing vs. decreasing budget) with the original resolution,

and not surprisingly, the actual votes on them would be opposite; however, pairs of

entities would tend to vote same on both resolutions. To capture this, we model
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Figure 3.1. The Group-Topic model

relations as agreement between entities, not the yes/no vote itself. This kind of

“content-ignorant” feature is similarly found in some work on web log clustering [5].

We demonstrate the capabilities of the GT model by applying it to two large sets of

voting data: one from US Senate and the other from the General Assembly of the UN.

The model clusters voting entities into coalitions and simultaneously discovers topics

for word attributes describing the relations (bills or resolutions) between entities. We

find that the groups obtained from the GT model are significantly more cohesive

(p-value < .01) than those obtained from the blockstructures model. The GT model

also discovers new and more salient topics in both the Senate and UN datasets—in

comparison with topics discovered by only examining the words of the resolutions,

the GT topics are either split or joined together as influenced by the voters’ patterns

of behavior.

3.1 Group-Topic Model

The Group-Topic Model is a directed graphical model that clusters entities with

relations between them, as well as attributes of those relations. The relations may be
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SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)
ij entity i and j’s groups behaved same (1)

or differently (2) on the event b
S number of entities
G number of groups
B number of events
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 3.1. Additional notation (to Table 1.1) used in this chapter

either directed or undirected and have multiple attributes. In this chapter, we focus

on undirected relations and have words as the attributes on relations.

In the generative process for each event (an interaction between entities), the

model first picks the topic t of the event and then generates all the words describing

the event where each word is generated independently according to a multinomial

(discrete) distribution φt, specific to the topic t. To generate the relational structure

of the network, first the group assignment, gst for each entity s is chosen conditionally

from a particular multinomial (discrete) distribution θt over groups for each topic t.

Given the group assignments on an event b, the matrix V (b) is generated where each

cell V
(b)
ij represents if the groups of two entities (i and j) behaved the same or not

during the event b, (e.g., voted the same or not on a bill). Each element of V is

sampled from a binomial (Bernoulli) distribution γ
(b)
gigj . In addition to the notation

in Table 1.1, the TG specific notation is summarized in Table 3.1, and the graphical

model representation of the model is shown in Figure 3.1.

Without considering the topic of an event, or by treating all events in a corpus

as reflecting a single topic, the simplified model (only the right part of Figure 3.1)

becomes equivalent to the stochastic blockstructures model [46]. To match the block-
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structures model, each event defines a relationship, e.g., whether in the event two

entities’ groups behave the same or not. On the other hand, in our model a relation

may have multiple attributes (which in our experiments are the words describing the

event, generated by a per-topic multinomial (discrete) distribution).

When we consider the complete model, the dataset is dynamically divided into

T sub-blocks each of which corresponds to a topic. The complete GT model is as

follows:

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)
ij |γ(b)

gigj
∼ Binomial(γ(b)

gigj
)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes and relations to obtain

topic-wise group memberships. Since inference can not be done exactly on such com-

plicated probabilistic graphical models, we employ collapsed Gibbs sampling to con-

duct inference. Note that we adopt conjugate priors in our setting, and thus we can

easily integrate out θ, φ and γ to decrease the uncertainty associated with them. This

simplifies the sampling since we do not need to sample θ, φ and γ at all, unlike in [46].

In our case we need to compute the conditional distribution P (gst|w,V,g−st, t, α, β, η)

and P (tb|w,V,g, t−b, α, β, η), where g−st denotes the group assignments for all enti-

ties except entity s in topic t, and t−b represents the topic assignments for all events

except event b. Beginning with the joint probability of a dataset, and using the chain

rule, we can obtain the conditional probabilities conveniently. In our setting, the

43



relationship we are investigating is always symmetric, so we do not distinguish Rij

and Rji in our derivations (only Rij(i ≤ j) remain). Thus

P (gst|V,g−st,w, t, α, β, η)

∝ αgst + ntgst − 1∑G
g=1(αg + ntg)− 1

B∏
b=1

(
I(tb = t)

G∏
h=1

∏2
k=1

∏d
(b)
gsthk

x=1

(
βk +m

(b)
gsthk
− x
)

∏P2
k=1 d

(b)
gsthk

x=1

(
(
∑2

k=1(βk +m
(b)
gsthk

)− x
)
)
,

where ntg represents how many entities are assigned into group g in topic t, ctv

represents how many tokens of word v are assigned to topic t, m
(b)
ghk represents how

many times group g and h vote same (k = 1) and differently (k = 2) on event b,

I(tb = t) is an indicator function, and d
(b)
gsthk

is the increase in m
(b)
gsthk

if entity s were

assigned to group gst than without considering s at all (if I(tb = t) = 0, we ignore

the increase in event b). Furthermore,

P (tb|V,g,w, t−b, α, β, η)

∝

 ∏V
v=1

∏e
(b)
v

x=1(ηv + ctbv − x)∏PV
v=1 e

(b)
v

x=1

(∑V
v=1(ηv + ctbv)− x

)

λ

G∏
g=1

G∏
h=g

∏2
k=1 Γ(βk +m

(b)
ghk)

Γ(
∑2

k=1(βk +m
(b)
ghk))

,

where e
(b)
v is the number of tokens of word v in event b. Note that m

(b)
ghk is not a con-

stant and changes with the assignment of tb since it influences the group assignments

of all entities that vote on event b. We use a weighting parameter λ to rescale the

likelihoods from different modalities, as is also common in speech recognition when

the acoustic and language models are combined. The GT model uses information

from two different modalities. In general, the likelihood of the two modalities is not

directly comparable, since the number of occurrences of each type may vary greatly

(e.g., there may be far more pairs of voting entities than word occurrences).
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3.2 Experimental Results

We present experiments applying the GT model to the voting records of members

of two legislative bodies: the US Senate and the UN General Assembly. To make sure

of convergence, we run the Markov chains for 10,000 iterations, (which by inspection

are stable after a few hundred iterations), and use the topic and group assignments

in the last Gibbs sample. According to some analysis similar to Figure 2.2 (but we

use the Agreement Index defined below instead of perplexity), the GT model is not

sensitive to the value of hyperparameters1. For simplicity, we set α = 1, β = 5, and

η = 1 in all experiments.

For comparison, we present the results of a baseline method that first uses a mix-

ture of unigrams to discover topics and associate a topic with each resolution, and

then runs the blockstructures model [46] separately on the resolutions assigned to each

topic. This baseline approach is similar to the GT model in that it discovers both

groups and topics, and has different group assignments on different topics. However,

whereas the GT model performs joint inference simultaneously, the baseline performs

inference serially. Note that our baseline is still more powerful than the blockstruc-

tures models, since it models the topic associated with each event, and allows the

creation of distinct groupings dependent on different topics.

In this chapter, we are interested in the quality of both the groups and the topics.

In the political science literature, group cohesion is quantified by the Agreement Index

(AI) [26, 47], which measures the similarity of votes cast by members of a group during

a particular roll call. The AI for a particular group on a given roll call i is based on

the number of group members that vote Yea(yi), Nay(ni) or Abstain(ai) in the roll

call i. Higher AI index means better cohesion.

1λ is relatively more sensitive, and we set it by trial and error for each dataset
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Datasets Avg. AI for GT Avg. AI for Baseline p-value Blockstructures
Senate 0.8294 0.8198 < .01 0.7850

UN 0.8664 0.8548 < .01 0.7934

Table 3.2. Average AI for different models for both Senate and UN datasets. The
group cohesion in (joint) GT is significantly better than in (serial) baseline, as well
as the blockstructures model that does not use text at all.

AIi =
max{yi, ni, ai} − yi+ni+ai−max{yi,ni,ai}

2

yi + ni + ai

The blockstructures model assumes that members of a legislative body have the

same group affiliations irrespective of the topic of the resolution on vote. However,

it is likely that members form their groups based on the topic of the resolution being

voted on. We quantify the extent to which a member s switches groups with a Group

Switch Index (GSI).

GSIs =
T∑
i,j

abs(~si − ~sj)

|G(s, i)| − 1 + |G(s, j)| − 1

where ~si and ~sj are bit vectors of the length of the size of the legislative body. The

kth bit of ~si is set if k is in the same group as s on topic i and similarly ~sj corresponds

to topic j. G(s, i) is the group of s on topic i which has a size of |G(s, i)| and G(s, j)

is the group of s on topic j. We present entities that frequently change their group

alliance according to the topics of resolutions.

Group cohesion from the GT model is found to be significantly greater than the

baseline group cohesion under a pairwise t-test, as shown in Table 3.2, which indicates

that the GT’s joint inference is better able to discover cohesive groups. We find that

nearly every document has a higher Agreement Index across groups using the GT

model as compared to the baseline. As expected, stochastic blockstructures without

text [46] is even worse than our baseline.
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Economic Education Military Energy
Misc.

federal education government energy
labor school military power

insurance aid foreign water
aid children tax nuclear
tax drug congress gas

business students aid petrol
employee elementary law research

care prevention policy pollution

Table 3.3. Top words for topics generated with the mixture of unigrams model on
the Senate dataset. The headers are our own summary of the topics.

3.2.1 The US Senate Dataset

Our Senate dataset consists of the voting records of Senators in the 101st-109th

US Senate (1989-2005) obtained from the Library of Congress THOMAS database.

During a roll call for a particular bill, a Senator may respond Yea or Nay to the

question that has been put to vote, else the vote will be recorded as Not Voting. We

do not consider Not Voting as a unique vote since most of the time it is a result of

a Senator being absent from the session of the US Senate. The text associated with

each resolution is composed of its index terms provided in the database. There are

3423 resolutions in our experiments (we excluded roll calls that were not associated

with resolutions). Each bill may come up for vote many times in the U.S. Senate,

each time with an attached amendment, and thus many relations may have the same

attributes (index terms). Since there are far fewer words than pairs of votes, we

adjust the text likelihood to the 5th power (weighting factor 5) in the experiments

with this dataset so as to balance its influence during inference.

We cluster the data into 4 topics and 4 groups (cluster sizes are suggested by a

political science professor) and compare the results of GT with the baseline. The

most likely words for each topic from the traditional mixture of unigrams model is

shown in Table 3.3, whereas the topics obtained using GT are shown in Table 3.4.
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Economic Education Foreign Social Security
+ Domestic + Medicare

labor education foreign social
insurance school trade security

tax federal chemicals insurance
congress aid tariff medical
income government congress care

minimum tax drugs medicare
wage energy communicable disability

business research diseases assistance

Table 3.4. Top words for topics generated with the GT model on the Senate dataset.
The topics are influenced by both the words and votes on the bills.

The GT model collapses the topics Education and Energy together into Education and

Domestic, since the voting patterns on those topics are quite similar. The new topic

Social Security + Medicare did not have strong enough word coherence to appear in

the baseline model, but it has a very distinct voting pattern, and thus is clearly found

by the GT model. Thus GT discovers topics that are salient in that they correlate

with people’s behavior and relations, not simply word co-occurrences.

Examining the group distribution across topics in the GT model, we find that on

the topic Economic the Republicans form a single group whereas the Democrats split

into 3 groups indicating that Democrats have been somewhat divided on this topic.

With regard to Education + Domestic and Social Security + Medicare, Democrats are

more unified whereas the Republicans split into 3 groups. The group membership of

Senators on Education + Domestic issues is shown in Table 3.5. We see that the first

group of Republicans include a Democratic Senator from Texas, a state that usually

votes Republican. Group 2 (majority Democrats) includes Sen. Chafee who is known

to be pro-environment and is involved in initiatives to improve education, as well

as Sen. Jeffords who left the Republican Party to become an Independent and has

championed legislation to strengthen education and environmental protection.
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Group 1 Group 3 Group 4
73 Republicans Cohen(R-ME) Armstrong(R-CO)
Krueger(D-TX) Danforth(R-MO) Garn(R-UT)

Group 2 Durenberger(R-MN) Humphrey(R-NH)
90 Democrats Hatfield(R-OR) McCain(R-AZ)
Chafee(R-RI) Heinz(R-PA) McClure(R-ID)
Jeffords(I-VT) Kassebaum(R-KS) Roth(R-DE)

Packwood(R-OR) Symms(R-ID)
Specter(R-PA) Wallop(R-WY)
Snowe(R-ME) Brown(R-CO)
Collins(R-ME) DeWine(R-OH)

Thompson(R-TN)
Fitzgerald(R-IL)
Voinovich(R-OH)

Miller(D-GA)
Coleman(R-MN)

Table 3.5. Senators in the four groups corresponding to Topic Education + Domestic
in Table 3.4.

Nearly all the Senators in Group 4 (in Table 3.5) are advocates for education and

many of them have been awarded for their efforts (e.g., Sen. Fitzgerald has been

honored by the NACCP for his active role in Early Care and Education, and Sen.

McCain has been added to the ASEE list as a True Hero in American Education).

Sen. Armstrong was a member of the Education committee; Sen. Voinovich and

Sen. Symms are strong supporters of early education and vocational education, re-

spectively; and Sen. Roth has constantly voted for tax deductions for education. It

is also interesting to see that Sen. Miller (D-GA) appears in a Republican group;

although he is in favor of educational reforms, he is a conservative Democrat and

frequently criticizes his own party—even backing Republican George W. Bush over

Democrat John Kerry in the 2004 Presidential election.

Many of the Senators in Group 3 have also focused on education and other domes-

tic issues such as energy, however, they often have a more liberal stance than those

in Group 4, and come from states that are historically less conservative. Senators
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Senator Group Switch Index
Shelby(D-AL) 0.6182
Heflin(D-AL) 0.6049

Voinovich(R-OH) 0.6012
Johnston(D-LA) 0.5878

Armstrong(R-CO) 0.5747

Table 3.6. Senators that switch groups the most across topics for the 101st-109th
Senates

Hatfield, Heinz, Snowe, Collins, Cohen and others have constantly promoted pro-

environment energy options with a focus on renewable energy, while Sen. Danforth

has presented bills for a more fair distribution of energy resources. Sen. Kassebaum

is known to be uncomfortable with many Republican views on domestic issues such

as education, and has voted against voluntary prayer in school. Thus, both Groups

3 and 4 differ from the Republican core (Group 2) on domestic issues, and also differ

from each other.

The Senators that switch groups the most across topics in the GT model are shown

in Table 3.6 based on their GSIs. Sen. Shelby(D-AL) votes with the Republicans on

Economic, with the Democrats on Education + Domestic and with a small group of

maverick Republicans on Foreign and Social Security + Medicare. Both Sen. Shelby

and Sen. Heflin are Democrats from a fairly conservative state (Alabama) and are

found to side with the Republicans on many issues.

3.2.2 The United Nations Dataset

The second dataset involves the voting record of the UN General Assembly [58].

We focus first on the resolutions discussed from 1990-2003, which contain votes of

192 countries on 931 resolutions. If a country is present during the roll call, it may

choose to vote Yes, No or Abstain. Unlike the Senate dataset, a country’s vote can

have one of three possible values instead of two. Because we parameterize agreement
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Everything Nuclear Human Rights Security
in Middle East

nuclear rights occupied
weapons human israel

use palestine syria
implementation situation security

countries israel calls

Table 3.7. Top words for topics generated from mixture of unigrams model with
the UN dataset (1990-2003). Only text information is utilized to form the topics, as
opposed to Table 3.8 where our GT model takes advantage of both text and voting
information.

and not the votes themselves, this 3-value setting does not require any change to

our model. In experiments with this dataset, we use a weighting factor 500 for text

(adjusting the likelihood of text by a power of 500 so as to make it comparable with

the likelihood of pairs of votes for each resolution). We cluster this dataset into 3

topics and 5 groups (again, numbers are suggested by a political science professor).

The most probable words in each topic from the mixture of unigrams model is

shown in Table 3.7. For example, Everything Nuclear constitutes all resolutions that

have anything to do with the use of nuclear technology, including nuclear weapons.

Comparing these with topics generated from the GT model shown in Table 3.8, we see

that the GT model splits the discussion about nuclear technology into two separate

topics, Nuclear Arsenal which is generally about countries obtaining nuclear weapons

and management of nuclear waste, and Nuclear Arms Race which focuses on the arms

race between Russia and the US and preventing a nuclear arms race in outer space.

These two issues had drastically different voting patterns in the U.N., as can be seen

in the contrasting group structure for those topics in Table 3.8. The countries in Table
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G Nuclear Arsenal Human Rights Nuclear Arms Race
R nuclear rights nuclear
O states human arms
U united palestine prevention
P weapons occupied race
↓ nations israel space

Brazil Brazil UK
Columbia Mexico France

1 Chile Columbia Spain
Peru Chile Monaco

Venezuela Peru East-Timor
USA Nicaragua India

Japan Papua Russia
2 Germany Rwanda Micronesia

UK... Swaziland
Russia Fiji
China USA Japan
India Japan Germany

3 Mexico Germany Italy...
Iran UK... Poland

Pakistan Russia Hungary
Kazakhstan China China

Belarus India Brazil
4 Yugoslavia Indonesia Mexico

Azerbaijan Thailand Indonesia
Cyprus Philippines Iran

Thailand Belarus USA
Philippines Turkmenistan Israel

5 Malaysia Azerbaijan Palau
Nigeria Uruguay
Tunisia Kyrgyzstan

Table 3.8. Top words for topics generated from the GT model with the UN dataset
(1990-2003) as well as the corresponding groups for each topic (column). The
countries listed for each group are ordered by their 2005 GDP (PPP) and only the
top 5 countries are shown in groups that have more than 5 members.

3.8 are ranked by their GDP in 2005.2 Thus, again the GT model is able to discover

2http://en.wikipedia.org/wiki/List of countries by GDP %28PPP%29. In Table 3.8, we omit
some countries (represented by ...) in order to incorporate other interesting but relatively low
ranked countries (for example, Russia) in the GDP list.

52



salient topics—topics that reflect the voting patterns and coalitions, not simply word

co-occurrence alone.

As seen in Table 3.8, groups formed in Nuclear Arms Race are unlike the groups

formed in the remaining topics. These groups map well to the global political situation

of that time when, despite the end of the Cold War, there was mutual distrust between

Russia and the US with regard to the continued manufacture of nuclear weapons. For

missions to outer space and nuclear arms, India was a staunch ally of Russia, while

Israel was an ally of the US.

3.2.2.1 Overlapping Time Intervals

In order to understand changes and trends in topics and groups over time, we run

the GT model on resolutions that were discussed during overlapping time windows

of 15 years, from 1960-2000, each shifted by a period of 5 years. We consider 3823

unique resolutions in this way. The topics as well as the group distribution for the

most dominant topic during each time period are shown in Table 3.9.

Over the years there is a shift in the topics discussed in the UN, which corresponds

well to the events and issues in history. During 1960-1975 the resolutions focused on

countries having the right to self-determination, especially countries in Africa which

started to gain their freedom during this time. Although this topic continued to be

discussed in the subsequent time period, the focus of the resolutions shifted to the role

of the UN in controlling nuclear weapons as the Cold War conflict gained momentum

in the late 70s. While there were few resolutions condemning the racist regime in

South Africa between 1965-1980, this was the topic of many resolutions during 1970-

1985—culminating in the UN censure of South Africa for its discriminatory practices.

Other topics discussed during the 70s and early 80s were Israel’s occupation of

neighboring countries and nuclear issues. The reduction of arms was primarily dis-

cussed during 1975-1990, the time period during which the US and Soviet Union had
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Time Group distributions for Topic 3
Period Topic 1 Topic 2 Topic 3 Group 1 Group2 Group3 Group4 Group5

Nuclear Procedure Africa Indep. India USA Argentina USSR Turkey
operative committee calling Indonesia Japan Colombia Poland

60-75 general amendment right Iran UK Chile Hungary
nuclear assembly africa Thailand France Venezuela Bulgaria
power deciding self Philippines Italy Dominican Belarus

Independence Finance Weapons Cuba India Algeria USSR USA
territories budget nuclear Albania Indonesia Iraq Poland Japan

65-80 independence appropriation UN Pakistan Syria Hungary UK
self contribution international Saudi Libya Bulgaria France

colonial income weapons Egypt Afghanistan Belarus Italy
N. Weapons Israel Rights Mexico China USA Brazil India

nuclear israel africa Indonesia Japan Turkey USSR
70-85 international measures territories Iran UK Argentina Poland

UN hebron south Thailand France Colombia Vietnam
human expelling right Philippines Italy Chile Hungary
Rights Israel/Pal. Disarmament Mexico USA Algeria China India
south israel UN Indonesia Japan Vietnam Brazil

75-90 africa arab international Iran UK Iraq Argentina
israel occupied nuclear Thailand France Syria Colombia
rights palestine disarmament Philippines USSR Libya Chile

Disarmament Conflict Pal. Rights USA China Japan Guatemala Malawi
nuclear need rights Israel India UK St Vincent

80-95 US israel palestine Russia France Dominican
disarmament palestine israel Spain Italy
international secretary occupied Hungary Canada

Weapons Rights Israel/Pal. Poland China USA Russia Cameroon
nuclear rights israeli Czech R. India Japan Argentina Congo

85-00 weapons human palestine Hungary Brazil UK Ukraine Ivory C.
use fundamental occupied Bulgaria Mexico France Belarus Liberia

international freedoms disarmament Albania Indonesia Italy Malta

Table 3.9. Results for 15-year-span slices of the UN dataset (1960-2000). The top
probable words are listed for all topics, but only the groups corresponding the most
dominant topic are shown (Topic 3). We list the countries for each group ordered
by their 2005 GDP (PPP)and only show the top 5 countries in groups that have
more than 5 members. We do not repeat the results in Table 3.8 for the most recent
window (1990-2003).

talks about disarmament. During 1980-1995 the central topic of discussion was the

Israeli-Palestinian conflict; this time period includes the beginning of the Intifada re-

volt in Palestine and the Gulf War. This topic continued to be important in the next

time period (1985-2000), but in the most recent slice (1990-2003, Table 3.8) it has

become a part of a broader topic on human rights by combining other human rights

related resolutions that appear as a separate topic during 1985-2000. The human

rights issue continues to be the primary topic of discussion during 1990-2003.

Throughout the history of the UN, the US is usually in the same group as Europe

and Japan. However, as we can see in Table 3.9 during 1985-2000, when the Israeli-

Palestinian conflict was the most dominant topic, US and Israel form a group of their

own separating themselves from Europe. In other topics discussed during 1985-2000,

US and Israel are found to be in the same group as Europe and Japan.
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Another interesting result of considering the groups formed over the years is that,

except for the last time period (1990-2003), countries in eastern Europe such as

Poland, Hungary, Bulgaria, etc., form a group along with USSR (Russia). However,

in the last time window on most topics they become a part of the group that consists

of the western Europe, Japan and the US. This shift corresponds to the end of the

communist regimes in these countries that were supported by the Soviet Union. It

is also worth mentioning that before 1990, our model assigned East Germany to the

same group as other eastern European countries and USSR (Russia), while it assigned

West Germany to the same group as western European countries.3

3.3 Summary

We present the Group-Topic model that jointly discovers latent groups in a net-

work as well as clusters of attributes (or topics) of events that influence the interaction

between entities in the network. The model extends prior work on latent group dis-

covery by capturing not only pair-wise relations between entities but also multiple

attributes of the relations (in particular, the model considers words describing the

relations). In this way the GT model obtains more cohesive groups as well as fresh

topics that influence the interaction between groups. The model could be applied to

variables of other data types in addition to voting data. We are now using the model

to analyze the citations in academic papers to capture the topics of research papers

and discover research groups. It would also apply to a much larger network of entities

(people, organizations, etc.) that frequently appear in newswire articles.

The model can be altered suitably to consider other attributes characterizing

relations between entities in a network. In ongoing work we are extending the Group-

3This is not shown in Table 3.9 because they are missing from the 2005 GDP data.
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Topic model to capture a richer notion of topic, where the attributes describing the

relations between entities are represented by a mixture of topics.
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CHAPTER 4

TOPICS OVER TIME: A NON-MARKOV
CONTINUOUS-TIME MODEL OF TOPICAL TRENDS

Many of the large datasets to which topic models are applied do not have static

co-occurrence patterns; they are instead dynamic. The data are often collected over

time, and generally patterns present in the early part of the collection are not in effect

later. Topics rise and fall in prominence; they split apart; they merge to form new

topics; words change their correlations. For example, across 17 years of the Neural

Information Processing Systems (NIPS) conference, activity in “analog circuit design”

has fallen off somewhat, while research in “support vector machines” has recently risen

dramatically. The topic “dynamic systems” used to co-occur with “neural networks,”

but now co-occurs with “graphical models.”

However most of the topic models are unaware of these dependencies on doc-

ument timestamps. Not modeling time can confound co-occurrence patterns and

result in unclear, sub-optimal topic discovery. For example, in topic analysis of U.S.

Presidential State-of-the-Union addresses, LDA confounds Mexican-American War

(1846-1848) with some aspects of World War I (1914-1918), because LDA is unaware

of the 70-year separation between the two events. Some previous work has performed

some post-hoc analysis—discovering topics without the use of timestamps and then

projecting their occurrence counts into discretized time [20]—but this misses the op-

portunity for time to improve topic discovery.

This chapter presents Topics over Time (TOT) [60], a topic model that explic-

itly models time jointly with word co-occurrence patterns. Significantly, and unlike
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some recent work with similar goals, our model does not discretize time, and does not

make Markov assumptions over state transitions in time. Rather, TOT parameterizes

a continuous distribution over time associated with each topic, and topics are respon-

sible for generating both observed timestamps as well as words. Parameter estimation

is thus driven to discover topics that simultaneously capture word co-occurrences and

locality of those patterns in time.

When a strong word co-occurrence pattern appears for a brief moment in time

then disappears, TOT will create a topic with a narrow time distribution. (Given

enough evidence, arbitrarily small spans can be represented, unlike schemes based on

discretizing time.) When a pattern of word co-occurrence remains consistent across

a long time span, TOT will create a topic with a broad time distribution. In current

experiments, we use a Beta distribution over a (normalized) time span covering all

the data, and thus we can also flexibly represent various skewed shapes of rising and

falling topic prominence.

The model’s generative storyline can be understood in two different ways. We

fit the model parameters according to a generative model in which a per-document

multinomial distribution over topics is sampled from a Dirichlet, then for each word

occurrence we sample a topic; next a per-topic multinomial generates the word, and a

per-topic Beta distribution generates the document’s timestamp. Here the timestamp

(which in practice is always observed and constant across the document) is associated

with each word in the document. We can also imagine an alternative, corresponding

generative model in which the timestamp is generated once per document, conditioned

directly on the per-document mixture over topics. In both cases, the likelihood con-

tribution from the words and the contribution from the timestamps may need to be

weighted by some factor, as in the balancing of acoustic models and language models

in speech recognition. The later generative storyline more directly corresponds to

common datasets (with one timestamp per document); the former is easier to fit,
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and can also allow some flexibility in which different parts of the document may be

discussing different time periods.

Note that, in contrast to other work that models trajectories of individual topics

over time, TOT topics and their meaning are modeled as constant over time. TOT

captures changes in the occurrence (and co-occurrence conditioned on time) of the

topics themselves, not changes in the word distribution of each topic. The classical

view of splitting and merging of topics is thus reflected as dynamic changes in the co-

occurrence of constant topics. While choosing to model individual topics as mutable

could be useful, it can also be dangerous. Imagine a subset of documents contain-

ing strong co-occurrence patterns across time: first between birds and aerodynamics,

then aerodynamics and heat, then heat and quantum mechanics—this could lead to a

single topic that follows this trajectory, and lead the user to inappropriately conclude

that birds and quantum mechanics are time-shifted versions of the same topic. Al-

ternatively, consider a large subject like medicine, which has changed drastically over

time. In TOT we choose to model these shifts as changes in topic co-occurrence—a

decrease in occurrence of topics about blood-letting and bile, and an increase in topics

about MRI and retrovirus, while the topics about blood, limbs, and patients continue

to co-occur throughout. We do not claim that this point of view is better, but the

difference makes TOT much simpler to understand and implement.

In comparison to more complex alternatives such as [9, 41], the relative simplicity

of TOT is a great advantage—not only for the relative ease of understanding and

implementing it, but also because this approach can in the future be naturally injected

into other more richly structured topic models we discussed in previous chapters, such

as the Author-Recipient-Topic model to capture changes in social network roles over

time [39], and the Group-Topic model to capture changes in group formation over

time [62] .
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We present experimental results with three real-world datasets. On more than

two centuries of U.S. Presidential State-of-the-Union addresses, we show that TOT

discovers topics with both time-localization and word-clarity improvements over LDA.

On the 17-year history of the NIPS conference, we show clearly interpretable topical

trends, as well as a two-fold increase in the ability to predict time given a document.

On nine months of a researcher’s email archive (the McCallum dataset used in Chapter

2), we show another example of clearly interpretable, time-localized topics, such as

springtime faculty recruiting. On all three datasets, TOT provides more distinct

topics, as measured by KL divergence.

4.1 Topics over Time

Unlike in LDA, in TOT, topic discovery is influenced not only by word co-

occurrences, but also temporal information. Rather than modeling a sequence of

state changes with a Markov assumption on the dynamics, TOT models (normalized)

absolute timestamp values. This allows TOT to see long-range dependencies in time,

to predict absolute time values given an unstamped document, and to predict topic

distributions given a timestamp. It also helps avoid a Markov model’s risk of inap-

propriately dividing a topic in two when there is a brief gap in its appearance. The

graphical model representations of our TOT models are shown in Figure 4.1 in which

LDA is listed as well for comparison.

Time is intrinsically continuous. Discretization of time always begs the question

of selecting the slice size, and the size is invariably too small for some regions and

too large for others.

TOT avoids discretization by associating with each topic a continuous distribu-

tion over time. Many possible parameterized distributions are possible. Our earlier

experiments were based on Gaussian. All the results in this chapter employ the

Beta distribution (which can behave versatile shapes), for which the time range of
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alternate view for collapsed Gibbs sampling

Figure 4.1. Three topic models: LDA and two perspectives on TOT

the data used for parameter estimation is normalized to a range from 0 to 1. An-

other possible choice of bounded distributions is the Kumaraswamy distribution [31].

Double-bounded distributions are appropriate because the training data are bounded

in time. If it is necessary to ask the model to predict in a small window into the

future, the bounded region can be extended, yet still estimated based on the data

available up to now. Note that Beta distribution can only have a single mode (apart

from the special case where two modes at both ends of the range), and this essentially

rules out topics that recur. TOT would treat recurring topics as separated topics.

Topics over Time is a generative model of timestamps and the words in the times-

tamped documents. There are two ways of describing its generative process. The

first, which corresponds to the process used in collapsed Gibbs sampling for parame-

ter estimation, is as follows:

1. Draw T multinomials φz from a Dirichlet prior β, one for each topic z;

2. For each document d, draw a multinomial θd from a Dirichlet prior α; then for

each word wdi in document d:

(a) Draw a topic zdi from multinomial θd;

(b) Draw a word wdi from multinomial φzdi ;
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(c) Draw a timestamp tdi from Beta ψzdi .

The graphical model is shown in Figure 4.1(c). Although, in the above generative

process, a timestamp is generated for each word token, all the timestamps of the words

in a document are observed as the same as the timestamp of the document. One

might also be interested in capturing burstiness, and some solution such as Dirichlet

compound multinomial model (DCM) can be easily integrated into the TOT model

[35]. In our experiments there are a fixed number of topics, T ; although a non-

parametric Bayes version of TOT that automatically integrates over the number of

topics would certainly be possible.

As shown in the above process, the posterior distribution of topics depends on the

information from two modalities—both text and time. TOT parameterization is

θd|α ∼ Dirichlet(α)

φz|β ∼ Dirichlet(β)

zdi|θd ∼ Multinomial(θd)

wdi|φzdi ∼ Multinomial(φzdi)

tdi|ψzdi ∼ Beta(ψzdi).

Inference can not be done exactly in this model. We employ collapsed Gibbs

sampling to perform approximate inference. Note that we adopt conjugate prior

(Dirichlet) for the multinomial distributions, and thus we can easily integrate out

θ and φ, analytically capturing the uncertainty associated with them. In this way

we facilitate the sampling—that is, we need not sample θ and φ at all. Because we

use the continuous Beta distribution rather than discretizing time, sparsity is not a

big concern in fitting the temporal part of the model. For simplicity and speed we

estimate these Beta distributions ψz by the method of moments, once per iteration of

collapsed Gibbs sampling. One could estimate the values of the hyperparameters of
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the TOT model, α and β, from data using a Gibbs EM algorithm [4]. In the particular

applications discussed in this chapter, we find that the sensitivity to hyperparameters

is not very strong after conducting a similar analysis as in Figure 2.2 of time prediction

performance vs the values of hyperparameters. Thus, again for simplicity, we use fixed

symmetric Dirichlet distributions (α = 50/T and β = 0.1) in all our experiments.

In the collapsed Gibbs sampling procedure above, we need to calculate the con-

ditional distribution P (zdi|w, t, z−di, α, β,Ψ), where z−di represents the topic assign-

ments for all tokens except wdi. We begin with the joint probability of a dataset, and

using the chain rule, we can obtain the conditional probability conveniently as

P (zdi|w, t, z−di, α, β,Ψ) ∝ (mdzdi + αzdi − 1) × nzdiwdi+βwdi−1PV
v=1(nzdiv+βv)−1

(1−tdi)
ψzdi1

−1
t
ψzdi2

−1

di

B(ψzdi1,ψzdi2)
,

where nzv is the number of tokens of word v are assigned to topic z, mdz repre-

sent the number of tokens in document d are assigned to topic z. Detailed derivation

of collapsed Gibbs sampling for TOT is provided in Appendix C. An overview of the

collapsed Gibbs sampling procedure we use is shown in Algorithm 2.

Algorithm 2 Inference on TOT

1: initialize topic assignment randomly for all tokens
2: for iter = 1 to Niter do
3: for d = 1 to D do
4: for w = 1 to Nd do
5: draw zdw from P (zdw|w, t, z−dw, α, β,Ψ)
6: update nzdww and mdzdw

7: end for
8: end for
9: for z = 1 to T do

10: update ψz
11: end for
12: end for
13: compute the posterior estimates of θ and φ

Although a document is modeled as a mixture of topics, there is typically only one

timestamp associated with a document. The above generative process describes data

in which there is a timestamp associated with each word. When fitting our model from

typical data, each training document’s timestamp is copied to all the words in the
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document. However, after fitting, if actually run as a generative model, this process

would generate different timestamps for the words within the same document. In this

sense, thus, it is formally a deficient generative model, but still remains powerful in

modeling large dynamic text collections.

An alternative generative process description of TOT (better suited to generate

an unseen document), is one in which a single timestamp is associated with each

document, generated by rejection or importance sampling, from a mixture of per-

topic Beta distributions over time with mixtures weight as the per-document θd over

topics. As before, this distribution over time is ultimately parameterized by the set

of timestamp-generating Beta distributions, one per topic. The graphical model for

this alternative generative process is shown in Figure 4.1(b).

Using this model we can predict a timestamp given the words in the document.

To facilitate the comparison with LDA, we can discretize the timestamps (only for

this purpose). Given a document, we predict its timestamp by choosing the dis-

cretized timestamp that maximizes the posterior which is calculated by multiplying

the timestamp probability of all word tokens from their corresponding topic-wise Beta

distributions over time, that is, arg maxt
∏Nd

i=1 p(t|ψzi).

It is also interesting to consider obtaining a distribution over topics, conditioned on

a timestamp. This allows us to see the topic occurrence patterns over time. By Bayes

rule, E(θzi |t) = P (zi|t) ∝ p(t|zi)P (zi) where P (zi) can be estimated from data or

simply assumed as uniform. Examples of expected topic distributions θd conditioned

on timestamps are shown in Section 4.3.

Regarding parameter estimation, the two processes in Figure 4.1 (b) and (c) can

become equivalent when we introduce a balancing hyperparameter between the like-

lihood from two modalities. In the second process, not surprisingly, the generation of

one timestamp would be overwhelmed by the plurality of words generated under the

bag of words assumption. To balance the influence from two different modalities, a
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tunable hyperparameter is needed which is responsible for the relative weight of the

time modality versus the text modality. Thus we use such a weighting parameter to

rescale the likelihoods from different modalities, as is also common in speech recogni-

tion when the acoustic and language models are combined, and in the Group-Topic

model [62] in which relational blockstructures and topic models are integrated. Here

a natural setting for the weighting parameter is the inverse of the number of words

Nd in the document, which is equivalent to generating Nd independent and identically

distributed (i.i.d.) samples from the document-specific mixture of Beta distributions.

Thus, it is probabilistically equivalent to drawing Nd samples from the individual

Beta distributions according to the mixture weights θd, which exactly corresponds to

the generative process in Figure 4.1 (c). In practice, it is also important to have such

a hyperparameter when the likelihoods from discrete and continuous modalities are

combined. We find that this hyperparameter is quite sensitive, and set it by trial and

error.

Several previous studies have examined topics and their changes across time.

Rather than jointly modeling word co-occurrence and time, many of these methods

use post-hoc or pre-discretized analysis.

The first style of non-joint modeling involves fitting a time-unaware topic model,

and then ordering the documents in time, slicing them into discrete subsets, and

examining the topic distributions in each time-slice. One example is Griffiths and

Steyvers’ study of PNAS proceedings [20], in which they identified hot and cold

topics based on examination of topic mixtures estimated from an LDA model.

The second style of non-joint modeling pre-divides the data into discrete time

slices, and fits a separate topic model in each slice. Examples of this type include

the experiments with the Group-Topic model we discussed in the previous chapter,

in which several decades worth of U.N. voting records (and their accompanying text)

were divided into 15-year segments; each segment was fit with the GT model, and
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trends were compared. Similarly, in TDT tasks, timelines are constructed for a set

of news stories[56, 55]. A χ2 test is performed to identify days on which the number

of occurrences of named entities or noun phrases produces a statistic above a given

threshold; consecutive days under this criterion are stitched together to form an

interval to be added into the timeline.

4.2 Datasets

We present experiments with the TOT model on three real-world data sets: 9

months of email sent and received by Andrew McCallum (described in Chapter 2),

17 years of NIPS conference papers, and 21 decades of U.S. Presidential State-of-the-

Union Addresses. In all cases, for simplicity, we fix the number of topics T = 501.

The State of the Union is an annual message presented by the President to

Congress, describing the state of the country and his plan for the future. Our dataset2

consists of the transcripts of 208 addresses during 1790-2002 (from George Washington

to George W. Bush). We remove stopwords and numbers, and all text is downcased.

Because the topics discussed in each address are so diverse, and in order to improve

the robustness of the discovered topics, we increase the number of documents in this

dataset by splitting each transcript into 3-paragraph “documents”. The resulting

dataset has 6,427 (3-paragraph) documents, 21,576 unique words, and 674,794 word

tokens in total. Each document’s timestamp is determined by the date on which the

address was given.

The NIPS dataset (provided to us by Gal Chechik) consists of the full text of the 17

years of proceedings from 1987 to 2003 Neural Information Processing Systems (NIPS)

Conferences. In addition to downcasing and removing stopwords and numbers, we

1It would be straightforward to automatically infer the number of topics using algorithms such
as Hierarchical Dirichlet Process [57].

2http://www.gutenberg.org/dirs/etext04/suall11.txt
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Mexican War Panama Canal Cold War Modern Tech

states 0.02032 government 0.02928 world 0.01875 energy 0.03902
mexico 0.01832 united 0.02132 states 0.01717 national 0.01534
government 0.01670 states 0.02067 security 0.01710 development 0.01448
united 0.01521 islands 0.01167 soviet 0.01664 space 0.01436
war 0.01059 canal 0.01014 united 0.01491 science 0.01227
congress 0.00951 american 0.00872 nuclear 0.01454 technology 0.01227
country 0.00906 cuba 0.00834 peace 0.01408 oil 0.01178
texas 0.00852 made 0.00747 nations 0.01069 make 0.00994
made 0.00727 general 0.00731 international 0.01024 effort 0.00969
great 0.00611 war 0.00660 america 0.00987 administration 0.00957

mexico 0.06697 government 0.05618 defense 0.05556 program 0.02674
government 0.02254 american 0.02696 military 0.03819 energy 0.02477
mexican 0.02141 central 0.02518 forces 0.03308 development 0.02287
texas 0.02109 canal 0.02283 security 0.03020 administration 0.02119
territory 0.01739 republic 0.02198 strength 0.02406 economic 0.01710
part 0.01610 america 0.02170 nuclear 0.01858 areas 0.01585
republic 0.01344 pacific 0.01832 weapons 0.01654 programs 0.01578
military 0.01111 panama 0.01776 arms 0.01254 major 0.01534
state 0.00974 nicaragua 0.01381 maintain 0.01161 nation 0.01242
make 0.00942 isthmus 0.01137 strong 0.01106 assistance 0.01052

Figure 4.2. Four topics discovered by TOT (above) and LDA (bottom) for the
Address dataset. The titles are our own interpretation of the topics. Histograms
show how the topics are distributed over time; the fitted beta PDFs are shown also.
(For LDA, beta distributions are fit in a post-hoc fashion). The top words with their
probability in each topic are shown below the histograms. The TOT topics are better
localized in time, and TOT discovers more event-specific topical words.

also remove the words appearing less than five times in the corpus—many of them

produced by OCR errors. Two letter words (primarily coming from equations), are

removed, except for “ML”, “AI”, “KL”, “BP”, “EM” and “IR.” The dataset contains

2,326 research papers, 24,353 unique words, and 3,303,020 word tokens in total. Each

document’s timestamp is determined by the year of the proceedings.
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4.3 Experimental Results

In this section, we present the topics discovered by the TOT model and compare

them with topics from LDA. We also demonstrate the ability of the TOT model to

predict the timestamps of documents, more than doubling accuracy in comparison

with LDA. We furthermore find topics discovered by TOT to be more distinct from

each other than LDA topics (as measured by KL Divergence). Finally we show how

TOT can be used to analyze topic co-occurrence conditioned on a timestamp. Topics

presented in this section are extracted from a single sample at the 1000th iteration

of the Gibbs sampler. For the address dataset, 1000 iterations of the Gibbs sampler

took 3 hours on a dual-processor Opteron (Linux), 2 hours for the McCallum dataset,

and 10 hours for the NIPS dataset.

4.3.1 Topics Discovered for Addresses

The State-of-the-Union addresses contain the full range of United States history.

Analysis of this dataset shows strong temporal patterns. Some of them are broad

historical issues, such as a clear “American Indian” topic throughout the 1800s and

peaking around 1860, or the rise of “Civil Rights” across the second half of the 1900s.

Other sharply localized trends are somewhat influenced by the individual president’s

communication style, such as Theodore Roosevelt’s sharply increased use of the words

“great”, “men”, “public”, “country”, and “work”.

Four TOT topics, their most likely words, their Beta distributions over time, their

actual histograms over time, as well as comparisons against their most similar LDA

topic (by KL divergence), are shown in Figure 4.2. Immediately we see that the TOT

topics are more neatly and narrowly focused in time; (time analysis for LDA is done

post-hoc). An immediate and obvious effect is that this helps the reader understand

more precisely when and over what length of time the topical trend was occurring.

For example, in the leftmost topic, TOT clearly shows that the Mexican-American
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war (1846-1848) occurred in the few years just before 1850. In LDA, on the other

hand, the topic spreads throughout American history; it has its peak around 1850,

but seems to be getting confused by a secondary peak around the time of World War

I, (when “war” words were used again, and relations to Mexico played a small part).

It is not so clear what event is being captured by LDA’s topic.

The second topic, “Panama Canal,” is another vivid example of how TOT can

successfully localize a topic in time, and also how jointly modeling words and time

can help sharpen and improve the topical word distribution. The Panama Canal

(constructed during 1904-1914) is correctly localized in time, and the topic accurately

describes some of the issues motivating canal construction: the sinking of the U.S.S.

Maine in a Cuban harbor, and the long time it took U.S. warships to return to

the Caribbean via Cape Horn. The LDA counterpart is not only widely spread

through time, but also confounding topics such as modern trade relations with Central

America and efforts to build the Panama Railroad in the 1850s.

The third topic shows the rise and fall of the Cold War, with a peak on the Reagan

years, when Presidential rhetoric on the subject rose dramatically. Both TOT and

LDA topics mention “nuclear,” but only TOT correctly identifies “soviet”. LDA

confounds what is mostly a cold war topic (although it misses “soviet”) with words

and events from across American history, including small but noticeable bumps for

World War I and the Civil War. TOT correctly has its own separate topic for World

War I.

Lastly, the rightmost topics in Figure 4.2, “Modern Tech,” shows a case in which

the TOT topic is not necessarily better—just interestingly different than the LDA

topic. The TOT topic, with mentions of energy, space, science, and technology, is

about modern technology and energy. Its emphasis on modern times is also very dis-

tinct in its time distribution. The closest LDA topic also includes energy, but focuses

on economic development and assistance to other nations. Its time distribution shows
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Faculty Recruiting ART Paper MALLET CVS Operations

cs 0.03572 xuerui 0.02113 code 0.05668 check 0.04473
april 0.02724 data 0.01814 files 0.04212 page 0.04070
faculty 0.02341 word 0.01601 mallet 0.04073 version 0.03828
david 0.02012 research 0.01408 java 0.03085 cvs 0.03587
lunch 0.01766 topic 0.01366 file 0.02947 add 0.03083
schedule 0.01656 model 0.01238 al 0.02479 update 0.02539
candidate 0.01560 andres 0.01238 directory 0.02080 latest 0.02519
talk 0.01355 sample 0.01152 version 0.01664 updated 0.02317
bruce 0.01273 enron 0.01067 pdf 0.01421 checked 0.02277
visit 0.01232 dataset 0.00960 bug 0.01352 change 0.02156

cs 0.05137 email 0.09991 code 0.05947 paper 0.06106
david 0.04592 ron 0.04536 mallet 0.03922 page 0.05504
bruce 0.02734 messages 0.04095 version 0.03772 web 0.04257
lunch 0.02710 data 0.03408 file 0.03702 title 0.03526
manmatha 0.02391 calo 0.03236 files 0.02534 author 0.02763
andrew 0.02332 message 0.03053 java 0.02522 papers 0.02741
faculty 0.01764 enron 0.03028 cvs 0.02511 email 0.02204
april 0.01740 project 0.02415 directory 0.01978 pages 0.02193
shlomo 0.01657 send 0.02023 add 0.01932 nips 0.01967
al 0.01621 part 0.01680 checked 0.01481 link 0.01860

Figure 4.3. Four topics discovered by TOT (above) and LDA (bottom) for the
McCallum dataset, showing improved results with TOT. For example, the Faculty
Recruiting topic is correctly identified in the spring in the TOT model, but LDA
confuses it with other interactions among faculty.

an extra bump around the decade of the Marshal Plan (1947-1951), and a lower level

during George W. Bush’s presidency—both inconsistent with the time distribution

learned by the TOT topic.
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4.3.2 Topics Discovered for Email

In Figure 4.3 we demonstrate TOT on the McCallum dataset. Email is typically

full of seasonal phenomena (such as paper deadlines, summer semester, etc.). One

such seasonal example is the “Faculty Recruiting” topic, which (unlike LDA) TOT

clearly identifies and localizes in the spring. The LDA counterpart is widely spread

over the whole time period, and consequently, it cannot separate faculty recruiting

from other types of faculty interactions and collaboration. The temporal information

captured by TOT plays a very important role in forming meaningful time-sensitive

topics.

The topic “ART paper” reflects a surge of effort in collaboratively writing a paper

on the Author-Recipient-Topic model. Although the co-occurrence pattern of the

words in this topic is strong and distinct, LDA failed to discover a corresponding

topic—likely because it was a relatively short-lived phenomena. The closest LDA

topic shows the general research activities, work on the DARPA CALO project, and

various collaborations with SRI to prepare the Enron email dataset for public release.

Not only does modeling time help TOT discover the “ART paper” task, but an

alternative model that relied on coarse time discretization may miss such topics that

have small time spans.

The “MALLET” topic shows that, after putting in an intense effort in writing

and discussing Java programming for the MALLET toolkit, McCallum had less and

less time to write code for the toolkit. In the corresponding LDA topic, MALLET

development is confounded with CVS operations—which were later also used for

managing collaborative writing of research papers.

TOT appropriately and clearly discovers a separate topics for “CVS operations,”

seen in the rightmost column. The closest LDA topic is the previously discussed

one that merges MALLET and CVS. The second closest LDA topic (bottom right)

discusses research paper writing, but not CVS. All these examples show that TOT’s
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Recurrent NN Game Theory

state 0.05963 game 0.02850
recurrent 0.03765 strategy 0.02378
sequence 0.03616 play 0.01490
sequences 0.02462 games 0.01473
time 0.02402 player 0.01451
states 0.02057 agents 0.01346
transition 0.01300 expert 0.01281
finite 0.01242 strategies 0.01123
length 0.01154 opponent... 0.01088
strings 0.01013 nash 0.00848

state 0.05957 game 0.01784
sequence 0.03939 strategy 0.01357
sequences 0.02625 play 0.01131
time 0.02503 games 0.00940
states 0.02338 algorithm 0.00915
recurrent 0.01451 expert 0.00898
markov 0.01398 time 0.00837
transition 0.01369 player 0.00834
length 0.01164 return 0.00750
hidden 0.01072 strategies 0.00640

Figure 4.4. Two topics discovered by TOT (above) and LDA (bottom) for the
NIPS dataset. For example, on the left, two major approaches to dynamic system
modeling are mixed together by LDA, but TOT more clearly identifies waning interest
in Recurrent Neural Networks, with a separate topic (not shown) for rising interest
in Markov models.

use of time can help it pull apart distinct events, tasks and topics that may be

confusingly merged by LDA.
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4.3.3 Topics Discovered for NIPS

Research paper proceedings also present interesting trends for analysis. Success-

fully modeling trends in the research literature can help us understand how research

fields evolve, and measure the impact of differently shaped profiles in time.

Figure 4.4 shows two topics discovered from the NIPS proceedings. “Recurrent

Neural Networks” is clearly identified by TOT, and correctly shown to rise and fall

in prominence within NIPS during the 1990s. LDA, unaware of the fact that Markov

models superseded Recurrent Neural Networks for dynamic systems in the later NIPS

years, and unaware of the time-profiles of both, ends up mixing the two methods

together. LDA has a second topic elsewhere that also covers Markov models.

On the right, we see “Games” and game theory. This is an example in which

TOT and LDA yield nearly identical results, although, if the terms beyond simply

the first ten are examined, one sees that LDA is emphasizing board games, such as

chess and backgammon, while TOT used its ramping-up time distribution to more

clearly identify game theory as part of this topic (e.g., the word “Nash” occurs in

position 12 for TOT, but not in the top 50 for LDA).

We have been discussing the salience and specificity of TOT’s topics. Distances

between topics can also be measured numerically. Table 4.1 shows the average dis-

tance of word distributions between all pairs of topics, as measured by KL Divergence.

In all three datasets, the TOT topics are more distinct from each other. Partially be-

cause the Beta distribution is rarely multi-modal, the TOT model strives to separate

events that occur during different time spans, and in real-world data, time differences

are often correlated with word distribution differences that would have been more

difficult to tease apart otherwise. The MALLET-CVS-paper distinction in the Mc-

Callum dataset is one example. (Events with truly multi-modal time distributions

would be modeled with alternatives to the Beta distribution.)
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Table 4.1. Average KL divergence between topics for TOT vs. LDA on three
datasets. TOT finds more distinct topics.

Address Email NIPS
TOT 0.6266 0.6416 0.5728
LDA 0.5965 0.5943 0.5421

Table 4.2. Predicting the decade, in the Address dataset. L1 Error is the difference
between predicted and true decade. In the Accuracy column, we see that TOT
predicts exactly the correct decade nearly twice as often as LDA.

L1 Error E(L1) Accuracy
TOT 1.97 1.99 0.19
LDA 2.54 2.62 0.09

4.3.4 Time Prediction

One interesting feature of our approach (not shared by state-transition-based

Markov models of topical shifts) is the capability of predicting the timestamp given

the words in a document. This task also provides another opportunity to quantita-

tively compare TOT against LDA.

On the State-of-the-Union Address dataset, we measure the ability to predict the

decade given the text of the address, as measured in accuracy, L1 error and average L1

distance to the correct decade (number of decades difference between predicted and

correct decade). We randomly split our datasets into a training set (9/10) and a test

set (the remaining 1/10) and do 10-fold cross-validation. As shown in Table 4.2, TOT

achieves double the accuracy of LDA, and provides an L1 relative error reduction of

20%3.

3When treating the timestamp as class label, a discriminative linear SVM classifier gives 72.4%
accuracy under the same setting, but yields much less interpretability as expected.
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4.3.5 Topic Distribution Profile over Time

It is also interesting to consider the TOT model’s distribution over topics as a

function of time. The time distribution of each individual topic is described as a

Beta distribution (having flexible mean, variance and skewness), but even more rich

and complex profiles emerge from the interactions among these Beta distributions.

TOT’s approach to modeling topic distributions conditioned on time stamp—based on

multiple time-generating Betas, inverted with Bayes rule—has the dual advantages of

a relatively simple, easy-to-fit parameterization, while also offering topic distributions

with a flexibility that would be more difficult to achieve with a direct, non-inverted

parameterization, (i.e., one generating topic distributions directly conditioned on

time, without Bayes-rule inversion).

The expected topic mixture distributions for the NIPS dataset are shown in Figure

4.5. The topics are consistently ordered in each year, and the heights of a topic’s

region represents the relative weight of the corresponding topic given a timestamp,

calculated using the procedure described in Section 4.1. We can clearly see that topic

mixtures change dramatically over time, and have interesting shapes. NIPS begins

with more emphasis on neural networks, analog circuits and cells, but now emphasizes

more SVMs, optimization, probability and inference.

4.3.6 Topic Co-occurrences over Time

We can also examine topic co-occurrences over time, which, as discussed earlier,

are dynamic for many large text collections. In the following, we say two topics z1

and z2 (strongly) co-occur in a document d if both θz1 and θz2 are greater than some

threshold h (we set h = 2/T ); then we can count the number of documents in which

certain topics (strongly) co-occur, and map out how co-occurrence patterns change

over time.
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Figure 4.5. The distribution over topics given time in the NIPS data set. Note the
rich collection of shapes that emerge from the Bayesian inversion of the collection of
per-topic Beta distributions over time.

Figure 4.6 shows the prominence profile over time of those topics that co-occur

strongly with the NIPS topic “classification.” We can see that at the beginning NIPS,

this problem was solved primarily with neural networks. It co-occurred with the “digit

recognition” in the middle 90’s. Later, probabilistic mixture models, boosting and

SVM methods became popular.

4.4 Summary

This chapter has presented Topic over Time (TOT), a model that jointly mod-

els both word co-occurrences and localization in continuous time. Results on three
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Figure 4.6. Eight topics co-occurring strongly with the “classification” topic in
the NIPS dataset. Other co-occurring topics are labeled as a combined background
topic. Classification with neural networks declined, while co-occurrence with SVMs,
boosting and NLP are on the rise. The x-axis is the proceeding number, e.g., 1
corresponding to NIPS 1987 and 17 corresponding to NIPS 2003.

real-world datasets show the discovery of more salient topics that are associated with

events, and clearly localized in time. We also show improved ability to predict time

given a document. Reversing the inference by Bayes rule, yields a flexible parame-

terization over topics conditioned on time, as determined by the interactions among

the many per-topic Beta distributions.

Unlike some related work with similar motivations, TOT does not require dis-

cretization of time or Markov assumptions on state dynamics. The relative simplicity

of our approach provides advantages for injecting these ideas into other topic models.
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CHAPTER 5

PHRASE AND TOPIC DISCOVERY WITH
APPLICATION TO INFORMATION RETRIEVAL

Although the bag-of-words assumption is prevalent in document classification and

topic models as we showed in previous chapters, the great majority of natural lan-

guage processing methods represent word order, including n-gram language models

for speech recognition, finite-state models for information extraction and context-

free grammars for parsing. Word order is not only important for syntax, but also

important for lexical meaning. A collocation is a phrase with meaning beyond the

individual words.

N -gram phrases are fundamentally important in many areas of natural language

processing and text mining, including parsing, machine translation and information

retrieval. In general, phrases as the whole carry more information than the sum of its

individual components, thus they are much more crucial in determining the topics of

collections than individual words. Most topic models such as latent Dirichlet alloca-

tion (LDA) [8], however, assume that words are generated independently from each

other, i.e., under the bag-of-words assumption. Adding phrases increases the model’s

complexity, but it could be useful in certain contexts. The possible over complicacy

caused by introducing phrases makes these topic models completely ignore them. It is

true that these models with the bag-of-words assumption have enjoyed a big success,

and attracted a lot of interests from researchers with different backgrounds. We be-

lieve that a topic model considering phrases would be definitely more useful in certain

applications.
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Assume that we conduct topic analysis on a large collection of research papers.

The acknowledgment sections of research papers have a distinctive vocabulary. Not

surprisingly, we would end up with a particular topic on acknowledgment (or fund-

ing agencies) since many papers have an acknowledgment section that is not tightly

coupled with the content of papers. One might therefore expect to find words such

as “thank”, “support” and “grant” in a single topic. One might be very confused,

however, to find words like “health” and “science” in the same topic, unless they are

presented in context: “National Institutes of Health” and “National Science Founda-

tion”.

Phrases often have specialized meaning, but not always. For instance, “neural

networks” is considered a phrase because of its frequent use as a fixed expression.

However, it specifies two distinct concepts: biological neural networks in neuroscience

and artificial neural networks in modern usage. Without consulting the context in

which the term is located, it is hard to determine its actual meaning. In many

situations, topic is very useful to accurately capture the meaning. Furthermore,

topic can play a role in phrase discovery. Considering learning English, a beginner

usually has difficulty in telling “strong tea” from “powerful tea” [36], which are both

grammatically correct. The topic associated with “tea” might help to discover the

misuse of “powerful”.

In this chapter, we propose a new topical n-gram (TNG) model [61] that automat-

ically determines unigram words and phrases based on context and assign mixture

of topics to both individual words and n-gram phrases. The ability to form phrases

only where appropriate is unique to our model, distinguishing it from the traditional

collocation discovery methods with which a discovered phrase is always treated as a

collocation regardless of the context (which would possibly make us incorrectly con-

clude that “white house” remains a phrase in a document about real estate). Thus,

TNG is not only a topic model that uses phrases, but also help linguists discover
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meaningful phrases in right context, in a completely probabilistic manner. We show

examples of extracted phrases and more interpretable topics on the NIPS data, and

we present better information retrieval performance on an ad-hoc retrieval task over

TREC collections, compared with other similar models.

5.1 N-gram based Topic Models

Before presenting our topical n-gram model, we first describe two related n-gram

models, with the graphical models shown in Figure 5.1. For simplicity, all the models

discussed in this section make the 1st order Markov assumption, that is, they are

actually bigram models. However, all the models have the ability to provide higher

order n-grams (n > 2) by concatenating consecutive bigrams.

5.1.1 Bigram Topic Model (BTM)

A bigram topic model was recently developed [59] on the basis of the hierarchical

Dirichlet language model [34], by incorporating the concept of topic into bigram

models. This model is one solution for the “neural network” example discussed earlier.

We assume a dummy word w0 existing at the beginning of each document. The

graphical model presentation of this model is shown in Figure 5.1(a). The generative

process of this model can be described as follows:

1. draw discrete distributions σzw from a Dirichlet prior δ for each topic z and

each word w;

2. for each document d, draw a discrete distribution θ(d) from a Dirichlet prior α;

then for each word w
(d)
i in document d:

(a) draw z
(d)
i from discrete θ(d); and

(b) draw w
(d)
i from discrete σ

z
(d)
i w

(d)
i−1

.
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(a) Bigram topic model (b) LDA-Collocation model (c) Topical n-gram model

Figure 5.1. Three n-gram based topic models

Obviously, in most cases, two consecutive words do not form bigrams, and we

believe that forming bigrams in appropriate context will help us understand largest

text collections better.

5.1.2 LDA Collocation Model (LDACOL)

Starting from the LDA topic model, the LDA collocation model [22] introduces a

new set of random variables (for bigram status) x (xi = 1: wi−1 and wi form a bigram;

xi = 0: they do not) that denote if a bigram can be formed with the previous token, in

addition to the two sets of random variables z and w in LDA. Thus, it has the power

to decide if to generate a bigram or a unigram. At this aspect, it is more realistic

than the bigram topic model which always generates bigrams. After all, unigrams are

the major components in a document. We assume the status variable x1 is observed,

and only a unigram is allowed at the beginning of a document. If we want to put

more constraints into the model (e.g., no bigram is allowed for sentence/paragraph

boundary; only a unigram can be considered for the next word after a stopword is

removed; etc.), we can assume that the corresponding status variables are observed

as well. This model’s graphical model presentation is shown in Figure 5.1(b).

The generative process of the LDA collocation model is described as follows:
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1. draw discrete distributions φz from a Dirichlet prior β for each topic z;

2. draw Bernoulli distributions ψw from a Beta prior γ for each word w;

3. draw discrete distributions σw from a Dirichlet prior δ for each word w;

4. for each document d, draw a discrete distribution θ(d) from a Dirichlet prior α;

then for each word w
(d)
i in document d:

(a) draw x
(d)
i from Bernoulli ψ

w
(d)
i−1

;

(b) draw z
(d)
i from discrete θ(d); and

(c) draw w
(d)
i from discrete σ

w
(d)
i−1

if x
(d)
i = 1; else draw w

(d)
i from discrete φ

z
(d)
i

.

Note that in the LDA Collocation model, bigrams do not have topics since the second

term of a bigram is generated from a distribution σv conditioned on the previous word

v only.

5.1.3 Topical N-gram Model (TNG)

The topical n-gram model (TNG) is not a simple combination of the bigram topic

model and LDA collocation model. It can solve the problem associated with the

“neural network” example as the bigram topic model, and automatically determine

whether a composition of two terms is indeed a bigram as in the LDA collocation

model. However, like other collocation discovery methods, a discovered bigram is

always a bigram in the LDA Collocation model no matter what the context is.

One of the key contributions of our model is to make it possible to decide whether

to form a bigram for the same two consecutive word tokens depending on their nearby

context (i.e., co-occurrences). As in the LDA collocation model, we may assume some

x’s are observed for the same reason as we discussed in Section 5.1.2. The graphical

model presentation of this model is shown in Figure 5.1(c). Its generative process can

be described as follows:
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1. draw discrete distributions φz from a Dirichlet prior β for each topic z;

2. draw Bernoulli distributions ψzw from a Beta prior γ for each topic z and each

word w;

3. draw discrete distributions σzw from a Dirichlet prior δ for each topic z and

each word w;

4. for each document d, draw a discrete distribution θ(d) from a Dirichlet prior α;

then for each word w
(d)
i in document d:

(a) draw x
(d)
i from Bernoulli ψ

z
(d)
i−1w

(d)
i−1

;

(b) draw z
(d)
i from discrete θ(d); and

(c) draw w
(d)
i from discrete σ

z
(d)
i w

(d)
i−1

if x
(d)
i = 1; else draw w

(d)
i from discrete

φ
z

(d)
i

.

Note that our model is a generalization of BTM and of LDACOL. Both BTM (by

setting all x’s to 1) and LDACOL (by making σ conditioned on previous word only)

are the special cases of our TNG models.

Before discussing the inference problem of our model, I will discuss the topic

consistency of terms in a bigram. As shown in the above, the topic assignments for

the two terms in a bigram are not required to be identical. We can take the topic of

the first/last word token or the most common topic in the phrase, as the topic of the

phrase. In this chapter, we will use the topic of the last term as the topic of the phrase

for simplicity, since long noun phrases do truly sometimes have components indicative

of different topics, and its last noun is usually the “head noun”. Alternatively, we

could enforce consistency in the model with ease, by simply adding two more sets

of arrows (zi−1 → zi and xi → zi). Accordingly, we could substitute Step 4(b) in

the above generative process with “draw z
(d)
i from discrete θ(d) if x

(d)
i = 1; else let

z
(d)
i = z

(d)
i−1;” In this way, a word has the option to inherit a topic assignment from its
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previous word if they form a bigram phrase. However, from our experimental results,

the first choice yields visually better topics. From now on, we will focus on the model

shown in Figure 5.1(c).

Finally we want to point out that the topical n-gram model is not only a new

framework for distilling n-gram phrases depending on nearby context, but also a

more sensible topic model than the ones using word co-occurrences alone.

In state-of-the-art hierarchical Bayesian models such as latent Dirichlet alloca-

tion, exact inference over hidden topic variables is typically intractable due to the

large number of latent variables and parameters in the models. Approximate infer-

ence techniques such as variational methods [27], Gibbs sampling [4] and expecta-

tion propagation [42] have been developed to address this issue. We use collapsed

Gibbs sampling again to conduct approximate inference in this chapter. To reduce

the uncertainty introduced by θ, φ, ψ, and σ, we could integrate them out with

no trouble because of the conjugate prior setting in our model. Starting from the

joint distribution P (w, z,x|α, β, γ, δ), we can work out the conditional probabilities

P (z
(d)
i , x

(d)
i |z(d)

−i ,x
(d)
−i ,w, α, β, γ, δ) conveniently1 using Bayes rule, where z

(d)
−i denotes

the topic assignments for all word tokens except word w
(d)
i , and x

(d)
−i represents the

bigram status for all tokens except word w
(d)
i . During collapsed Gibbs sampling, we

draw the topic assignment z
(d)
i and the bigram status x

(d)
i iteratively2 for each word

token w
(d)
i according to the following conditional probability distribution:

P (z
(d)
i , x

(d)
i |z(d)

−i ,x
(d)
−i ,w, α, β, γ, δ)

∝ (γ
x

(d)
i

+ p
z

(d)
i−1w

(d)
i−1xi
− 1)(α

z
(d)
i

+ q
dz

(d)
i
− 1)×


β
w

(d)
i

+n
z
(d)
i

w
(d)
i

−1PW
v=1(βv+n

z
(d)
i

v
)−1

if x
(d)
i = 0

δ
w

(d)
i

+m
z
(d)
i

w
(d)
i−1

w
(d)
i

−1PW
v=1(δv+m

z
(d)
i

w
(d)
i−1

v
)−1

if x
(d)
i = 1

1As shown in Appendix A, one could further calculate P (z(d)
i | · · · ) and P (x(d)

i | · · · ) as in a tradi-
tional Gibbs sampling procedure.

2For some observed x
(d)
i , only z(d)

i needs to be drawn.
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where nzw represents how many times word w is assigned into topic z as a unigram,

mzwv represents how many times word v is assigned to topic z as the 2nd term of a

bigram given the previous word w, pzwk denotes how many times the status variable

x = k (0 or 1) given the previous word w and the previous word’s topic z, and

qdz represents how many times a word is assigned to topic z in document d. Note

all counts here do include the assignment of the token being visited. Details of the

collapsed Gibbs sampling derivation are provided in Appendix D.

Simple manipulations give us the posterior estimates of θ, φ, ψ, and σ as follows:

θ̂
(d)
z = αz+qdzPT

t=1(αt+qdt)
φ̂zw = βw+nzwPW

v=1(βv+nzv)

ψ̂zwk = γk+pzwkP1
k=0(γk+pzwk)

σ̂zwv = δv+mzwvPW
v=1(δv+mzwv)

(5.1)

As discussed in the bigram topic model [59], one could certainly infer the values

of the hyperparameters in TNG using a Gibbs EM algorithm [4]. In the particular

experiments discussed in this chapter, we find that sensitivity to hyperparameters is

not a big concern after some analysis of average precision versus 5 different values for

each hyperparameter. For simplicity and feasibility in our Gigabyte TREC retrieval

tasks, we skip the inference of hyperparameters, and use some reported empirical

values for them instead to show salient results.

5.2 Experimental Results

We apply the topical n-gram model to the NIPS proceedings dataset described

in Chapter 4. Topics found from a 50-topic run on the NIPS dataset (10,000 Gibbs

sampling iterations) of the topical n-gram model are shown in Table 5.1 as anecdotal

evidence, with comparison to the corresponding closest (by KL divergence) topics

found by LDA. We use a symmetric priors α = 1, β = 0.01, γ = 0.1, and δ = 0.01.

The “Reinforcement Learning” topic provides an extremely salient summary of the

corresponding research area. The LDA topic assembles many common words used in
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Reinforcement Learning Human Receptive System
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
state reinforcement learning action motion receptive field motion
learning optimal policy policy visual spatial frequency spatial
policy dynamic programming reinforcement field temporal frequency visual
action optimal control states position visual motion receptive
reinforcement function approximator actions figure motion energy response
states prioritized sweeping function direction tuning curves direction
time finite-state controller optimal fields horizontal cells cells
optimal learning system learning eye motion detection figure
actions reinforcement learning rl reward location preferred direction stimulus
function function approximators control retina visual processing velocity
algorithm markov decision problems agent receptive area mt contrast
reward markov decision processes q-learning velocity visual cortex tuning
step local search goal vision light intensity moving
dynamic state-action pair space moving directional selectivity model
control markov decision process step system high contrast temporal
sutton belief states environment flow motion detectors responses
rl stochastic policy system edge spatial phase orientation
decision action selection problem center moving stimuli light
algorithms upright position steps light decision strategy stimuli
agent reinforcement learning methods transition local visual stimuli cell

Speech Recognition Support Vector Machines
LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
recognition speech recognition speech kernel support vectors kernel
system training data word linear test error training
word neural network training vector support vector machines support
face error rates system support training error margin
context neural net recognition set feature space svm
character hidden markov model hmm nonlinear training examples solution
hmm feature vectors speaker data decision function kernels
based continuous speech performance algorithm cost functions regularization
frame training procedure phoneme space test inputs adaboost
segmentation continuous speech recognition acoustic pca kkt conditions test
training gamma filter words function leave-one-out procedure data
characters hidden control context problem soft margin generalization
set speech production systems margin bayesian transduction examples
probabilities neural nets frame vectors training patterns cost
features input representation trained solution training points convex
faces output layers sequence training maximum margin algorithm
words training algorithm phonetic svm strictly convex working
frames test set speakers kernels regularization operators feature
database speech frames mlp matrix base classifiers sv
mlp speaker dependent hybrid machines convex optimization functions

Table 5.1. The four topics from a 50-topic run of TNG on 13 years of NIPS research
papers with their closest counterparts from LDA. The Title above the word lists
of each topic is our own summary of the topic. To better illustrate the difference
between TNG and LDA, we list the n-grams (n > 1) and unigrams separately for
TNG. Each topic is shown with the 20 sorted highest-probability words. The TNG
model produces clearer word list for each topic by associating many generic words
(such as “set”, “field”, “function”, etc.) with other words to form n-gram phrases.

reinforcement learning, but in its word list, there are quite a few generic words (such

as “function”, “dynamic”, “decision”) that are common and highly probable in many

other topics as well. In TNG, we can find that these generic words are associated with

other words to form n-gram phrases (such as “markov decision process”, etc.) that

are only highly probable in reinforcement learning. More importantly, by forming n-

gram phrases, the unigram word list produced by TNG is also cleaner. For example,

because of the prevalence of generic words in LDA, highly related words (such as

“q-learning” and “goal”) are not ranked highly enough to be shown in the top 20

86



word list. On the contrary, they are ranked very high in the TNG’s unigram word

list.

In the other three topics (Table 5.1), we can find similar phenomena as well.

For example, in “Human Receptive System”, some generic words (such as “field”,

“receptive”) are actually the components of the popular phrases in this area as shown

in the TNG model. “system” is ranked high in LDA, but almost meaningless, and

on the other hand, it does not appear in the top word lists of TNG. Some extremely

related words (such as “spatial”), ranked very high in TNG, are absent in LDA’s top

word list. In “Speech Recognition”, the dominating generic words (such as “context”,

“based”, “set”, “probabilities”, “database”) make the LDA topic less understandable

than even just TNG’s unigram word list.

In many situations, a crucially related word might be not mentioned enough to be

clearly captured in LDA, on the other hand, it would become very salient as a phrase

due to the relatively stronger co-occurrence pattern in an extremely sparse setting for

phrases. The “Support Vector Machines” topic provides such an example. We can

imagine that “kkt” will be mentioned no more than a few times in a typical NIPS

paper, and it probably appears only as a part of the phrase “kkt conditions”. TNG

satisfyingly captures it successfully as a highly probable phrase in the SVM topic.

As we discussed before, higher-order n-grams (n > 2) can be approximately mod-

eled by concatenating consecutive bigrams in the TNG model, as shown in Table

5.1 (such as “markov decision process”, “hidden markov model” and “support vector

machines”, etc.).

To quantitively evaluate the topical n-gram model, we could use some standard

measures such as perplexity and document classification accuracy. However, to con-

vincingly illustrate the power of the TNG model on larger, more real scale, here we

apply the TNG model to a much larger standard text mining task—we employ the
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TNG model within the language modeling framework to conduct ad-hoc retrieval on

Gigabyte TREC collections.

5.2.1 Ad-hoc Retrieval

Traditional information retrieval (IR) models usually represent text with a bags-

of-words assumption indicating that words occur independently. However, this is not

an accurate statement about natural language. To address this problem, researchers

have been working on capturing word dependencies. There are mainly two types of

dependencies being studied: (1) topical (semantic) dependency, which is also called

long-distance dependency. Two words are considered dependent when their mean-

ings are related and they co-occur often, such as “fruit” and “apple.” Among models

capturing semantic dependency, the LDA-based document models [67] is one recent

example. For IR applications, a major advantage of topic models (document expan-

sion), compared to online query expansion in pseudo relevance feedback, is that they

can be trained offline, thus more efficient in handling a new query; (2) phrase de-

pendency, also called short-distance dependency. As reported in literature, retrieval

performance can be boosted if the similarity between a user query and a document

is calculated by common phrases instead of common words [16, 17, 43, 54]. Most

research on phrases in information retrieval has employed an independent collocation

discovery module. In this way, a phrase can be indexed exactly as an ordinary word.

The topical n-gram model automatically and simultaneously takes cares of both

semantic co-occurrences and phrases. Also, it does not need a separate module for

phrase discovery, and everything can be seamlessly integrated into the language mod-

eling framework, which is one of the most popular statistically principled approaches

to IR. In this section, we illustrate the difference in IR experiments of the TNG and

LDA models, and compare the IR performance of all three models in Figure 5.1 on

TREC collections introduced below.
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The SJMN dataset, taken from TREC with standard queries 51-150 that are taken

from the title field of TREC topics, covers materials from San Jose Mercury News

in 1991. For validation purpose, we also consider the WSJ dataset with standard

queries 51-100 and 151-200 that are also from the TREC topics (title only). All

text is downcased and only alphabetic characters are kept. Stop words in both the

queries and documents are removed, according to a common stopword list in the Bow

toolkit [37]. If any two consecutive tokens were originally separated by a stopword,

no bigram is allowed to be formed. In total, the SJMN dataset we use contains 90,257

documents, 150,714 unique words, and 21,156,378 tokens, which is order of magnitude

larger than the NIPS dataset. Relevance judgments are taken from the the judged

pool of the top retrieved documents by various participating retrieval systems from

previous TREC conferences.

The number of topics is set to be 100 for all models with 10,000 Gibbs sampling

iterations, and the same hyperparameter setting (with symmetric priors α = 1, β =

0.01, γ = 0.1, and δ = 0.01) for the NIPS dataset are used. Here, the focus of

this experiment is to compare our results to another published model [67] that also

uses LDA for information retrieval, not to achieve state-of-the-art results in TREC

retrieval that need significant, non-modeling effort to achieve (such as stemming).

5.2.2 Difference between Topical N-grams and LDA in IR Applications

From both of LDA and TNG, a word distribution for each document can be

calculated, which thus can be viewed as a document model. With these distributions,

the likelihood of generating a query can be computed to rank documents, which is the

basic idea in the query likelihood (QL) model in IR. When the two models are directly

applied to do ad-hoc retrieval, the TNG model performs significant better than the

LDA model under the Wilcoxon test at 95% level. Among of 4881 relevant documents

for all queries, LDA retrieves 2257 of them but TNG gets 2450, 8.55% more. The
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average precision for TNG is 0.0709, 61.96% higher than its LDA counterpart (0.0438).

Although these results are not the state-of-the-art IR performance, we claim that, if

used alone, TNG represent a document better than LDA. The average precisions for

both models are very low, because corpus-level topics may be too coarse to be used as

the only representation in IR [13, 67]. Significant improvements in IR can be achieved

through a combination with the basic query likelihood model.

In the query likelihood model, each document is scored by the likelihood of its

model generating a query Q, PLM(Q|d). Let the query Q = (q1, q2, ..., qLQ). Under

the bag-of-words assumption, PLM(Q|d) =
∏LQ

i=1 P (qi|d), which is often specified by

the document model with Dirichlet smoothing [74],

PLM(q|d) =
Nd

Nd + µ
PML(q|d) + (1− Nd

Nd + µ
)PML(q|coll),

where Nd is the length of document d, PML(q|d) and PML(q|coll) are the maximum

likelihood (ML) estimates of a query term q generated in document d and in the

entire collection, respectively, and µ is the Dirichlet smoothing prior (in our reported

experiments we used a fixed value with µ = 1000 as in [67]).

To calculate the query likelihood from the TNG model within the language mod-

eling framework, we need to sum over the topic variable and bigram status variable

for each token in the query token sequence. Given the posterior estimates θ̂, φ̂, ψ̂,

and σ̂ (Equation 5.1), the query likelihood of query Q given document d, PTNG(Q|d)

can be calculated3 as PTNG(Q|d) =
∏LQ

i=1 PTNG(qi|qi−1, d), where PTNG(qi|qi−1, d) =∑T
zi=1(P (xi = 0|ψ̂qi−1

)P (qi|φ̂zi)+P (xi = 1|ψ̂qi−1
)P (qi|σ̂ziqi−1

))P (zi|θ̂(d)), and we define

P (xi|ψ̂qi−1
) =

∑T
zi−1=1 P (xi|ψ̂zi−1qi−1

)P (zi−1|θ̂(d)).

3A dummy q0 is assumed at the beginning of every query, for the convenience of mathematical
presentation.
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No. Query LDA TNG Change
053 Leveraged Buyouts 0.2141 0.3665 71.20%
097 Fiber Optics Applications 0.1376 0.2321 68.64%
108 Japanese Protectionist Measures 0.1163 0.1686 44.94%
111 Nuclear Proliferation 0.2353 0.4952 110.48%
064 Hostage-Taking 0.4265 0.4458 4.52%
125 Anti-smoking Actions by Government 0.3118 0.4535 45.47%
145 Influence of the “Pro-Israel Lobby” 0.2900 0.2753 -5.07%
148 Conflict in the Horn of Africa 0.1990 0.2788 40.12%

Table 5.2. Comparison of LDA and TNG on TREC retrieval performance (average
precision) of eight queries on the SJMN dataset. The top four queries obviously
contain phrase(s), and thus TNG achieves much better performance. On the other
hand, the bottom four queries do not contain common phrase(s) after preprocessing
(stopword and punctuation removal). Surprisingly, TNG still outperforms LDA on
some of these queries.

Due to stopword and punctuation removal, we may simply set P (xi = 0|ψ̂qi−1
) = 1

and P (xi = 1|ψ̂qi−1
) = 0 at corresponding positions in a query. Note here in the above

calculation, the bag-of-words assumption is not made any more.

Similar to the method in [67], we can combine the query likelihood from the basic

language model and the likelihood from the TNG model in various ways. One can

combine them at query level, i.e., P (Q|d) = λPLM(Q|d) + (1 − λ)PTNG(Q|d), where

λ is a weighting factor between the two likelihoods.

Alternatively (used in this chapter), under first order Markov assumption, P (Q|d) =

P (q1|d)
∏LQ

i=2 P (qi|qi−1, d), and one can combine the query likelihood at query term

level, that is, P (qi|qi−1, d) = λPLM(qi|d) + (1− λ)PTNG(qi|qi−1, d).

To illustrate the difference of TNG and LDA in IR applications, we select a few of

the 100 queries that clearly contain phrase(s), and another few of them that do not

contain phrase due to stopword and punctuation removal, on which we compare the

IR performance (average precision)4 as shown in Table 5.2.

4The results reported in [67] is a little better since they did stemming.
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No. Query TNG BTM Change LDACOL Change
061 Israeli Role in Iran-Contra Affair 0.1635 0.1104 -32.47% 0.1316 -19.49%
069 Attempts to Revive the SALT II Treaty 0.0026 0.0071 172.34% 0.0058 124.56%
110 Black Resistance Against the South African Government 0.4940 0.3948 -20.08% 0.4883 -1.16%
117 Capacity of the U.S. Cellular Telephone Network 0.2801 0.3059 9.21% 0.1999 -28.65%
130 Jewish Emigration and U.S.-USSR Relations 0.2087 0.1746 -16.33% 0.1765 -15.45%
138 Iranian Support for Lebanese Hostage-takers 0.4398 0.4429 0.69% 0.3528 -19.80%
146 Negotiating an End to the Nicaraguan Civil War 0.0346 0.0682 97.41% 0.0866 150.43%
150 U.S. Political Campaign Financing 0.2672 0.2323 -13.08% 0.2688 0.59%

All Queries 0.2122 0.1996 -5.94%* 0.2107 -0.73%*

Table 5.3. Comparison of the bigram topic model (λ = 0.7), LDA collocation model
(λ = 0.9) and the topical n-gram Model (λ = 0.8) on TREC retrieval performance
(average precision) on the SJMN dataset. * indicates statistically significant differ-
ences in performance with 95% confidence according to the Wilcoxon test. TNG
performs significantly better than other two models overall.

5.2.3 Comparison of BTM, LDACOL and TNG on TREC Ad-hoc Re-

trieval

In this section, we compare the IR performance of the three n-gram based topic

models on the SJMN dataset5, as shown in Table 5.3. For a fair comparison, the

weighting factor λ (reported in Table 5.3) are independently chosen to get the best

performance from each model. Under the Wilcoxon test with 95% confidence, TNG

significantly outperforms BTM and LDACOL on this standard retrieval task.

It is interesting to see that different models are good at quite different queries.

For some queries (such as No. 117 and No. 138), TNG and BTM perform similarly,

and better than LDACOL, and for some other queries (such as No. 110 and No. 150),

TNG and LDACOL perform similarly, and better than BTM. There are also queries

(such as No. 061 and No. 130) for which TNG performs better than both BTM and

LDACOL. We believe that they are clear empirical evidence that our TNG model are

more generic and powerful than BTM and LDACOL.

It is true that for certain queries (such as No. 069 and No. 146), TNG performs

worse than BTM and LDACOL, but we notice that all models perform badly on these

queries and the behaviors are more possibly due to randomness.

5The running times of our C implementation on a dual-processor Opteron for the three models
are 11.5, 17, 22.5 hours, respectively.
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Dataset TNG BTM Change LDACOL Change
SJMN 0.2122 0.1996 -5.94%* 0.2107 -0.73%*
WSJ 0.3051 0.2863 -6.16%* 0.2999 -1.70%*

Table 5.4. Comparison of the bigram topic model (λ = 0.7), LDA collocation model
(λ = 0.9) and the topical n-gram Model (λ = 0.8) on TREC retrieval performance
(average precision). The values of λ were tuned on the SJMN dataset. * indicates
statistically significant differences in performance with 95% confidence according to
the Wilcoxon test. TNG performs significantly better than other two models on both
datasets.

As one might notice, we tuned the λ parameter on the SJMN dataset. As a

validation, we conduct the same experiments on the WSJ dataset using the exactly

same setting, shown in Table 5.4 (we show the results on SJMN again for comparison).

The WSJ dataset is roughly twice as large as the SJMN dataset, and we can see that

TNG outperform BTM and LDACOL as well on the WSJ dataset.

5.3 Summary

In this chapter, we have presented the topical n-gram model. The TNG model

automatically determines whether to form an n-gram (and further assign a topic) or

not, based on its surrounding context. Examples of topics found by TNG are more

interpretable than its LDA counterpart. We also demonstrate how TNG can help

improve retrieval performance in standard ad-hoc retrieval tasks on TREC collections

over its two special-case n-gram based topic models.

Unlike some traditional phrase discovery methods, the TNG model provides a

systematic way to model (topical) phrases and can be seamlessly integrated with

many probabilistic frameworks for various tasks such as phrase discovery, ad-hoc

retrieval, machine translation, speech recognition and statistical parsing.

Evaluating n-gram based topic models is a big challenge. As reported in [59], the

bigram topic models have only been shown to be effective on hundreds of documents,
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and also we have not seen a formal evaluation of the LDA collocation models. To the

best of our knowledge, our work presents the very first application of all three n-gram

based topic models on Gigabyte collections, and a novel way to integrate n-gram

based topic models into the language modeling framework for information retrieval

tasks.
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CHAPTER 6

CONCLUSIONS

This thesis has developed sophisticated topic models for analyzing text collections

with multiple modality attributes. Directed graphical models were employed as a

flexible framework to describe modeling assumptions about the data. Furthermore,

we adopted collapsed Gibbs sampling inference techniques which free us from having

to specify tractable models. These methods support a systemic approach to handling

large datasets with multiple modalities.

With the general principle in mind, we developed several multi-modality topic

models that could be mapped to one of the three meaningful configurations in Figure

1.2 (i.e., ART to configuration (A), GT and TOT to configuration (B), and TNG

to configuration (C)). As we have shown, all the models presented are capable to

discover interesting topics that could be not be found via text alone, or from multiple

modalities without joint inference. In various real world applications such as infor-

mation retrieval, timestamp prediction, these models outperform significantly their

counterparts, respectively.

In terms of inference, we have used collapsed Gibbs sampling in the thesis. One

concern is how long it will take for a Gibbs chain to reach equilibrium in complicated

topic models on massive text collections. The general practice is to let the chain

run long enough, say, 10,000 iterations. We did some formal analysis about the

autocorrelation of perplexity [10]. Using ART model on the McCallum dataset as an

example, the autocorrelation plot of perplexity on iterations 10001-10500 is shown in

Figure 6.1. As we can see, the autocorrelations are near zero for almost all time-lag
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Figure 6.1. The autocorrelation plot of perplexity in the Gibbs Chain for iterations
10001-10500 of the ART Model on the McCallum dataset. Y-axis is the autocor-
relations for perplexity at varying time lags. The randomness of Gibbs samples is
ascertained by near-zero autocorrelations for any and all time-lag separations.

separations, i.e., the chain is mixed very well. Furthermore, we check the perplexity

around 20,000 iterations and do not find significant difference in perplexity compared

to 10,000 iterations. A useful future direction would be to utilize the “Gelman-Rubin”

convergence test [19] to analyze the Gibbs chain from a different perspective.

We identify three areas of future work:

• More conditional dependencies. For simplicity, in this thesis, we limited the

number of conditional dependencies to two, and we have demonstrated the

usefulness of such a design in certain applications. However, three or more con-

ditional dependencies do emerge in real world. For example, When consumers

shop online, they are not just looking for attractive websites and easy naviga-

tion, they are looking for content. They want to search for the products that

interest them, compare them to similar products, and ensure that they have all
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the details they need to make informed buying decisions. Product specifications

are one of the most important information in online catalogs for retailers.

In their specifications, products have different attributes and/or values for these

attributes. Many attributes are pretty common across different categories, such

as size and weight. On the other hand, some attributes are somewhat category

specific, such as max shutter speed. In another word, the co-occurrence patterns

of attributes are dramatically different across different categories.

At the same time, words in attribute values also have co-occurrence patterns

like in other kind of text documents. One could run a topic model without

distinguishing attributes and their values, treating such pairs as an atomic tex-

tual description. However, obviously, treating products as atomic entities hin-

ders the effectiveness of many applications such as demand forecasting, product

recommendations, and product supplier selection. If we can utilize the rich

information contained in these pairs, all these application can be significantly

improved.

Furthermore, the co-occurrence patterns over words in attribute values are not

flat across the whole product specifications, and instead, many patterns are at-

tribute dependent. For example, Mac, MS, and Windows probably only appear

with OS-related attributes.

We would like models that captures both of the co-occurrences of words and

attributes. In one possible scenario, attributes and words in their values are

all generated from a hidden topic which in turn comes from a category specific

distribution. To capture the association of attributes and their values, the

words in attribute values are generated from a topic and attribute dependent

distribution. As we can see, words are not independent to the attributes give
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the hidden topics, another conditional dependency arrow in the graphical model

representation.

Similar ideas can be applied to research articles as well if we consider a section

header as an attribute, and text within a section as its value. In addition to the

language usage difference, we might be able to discover different writing styles

for different subjects, such as biology and computer science.

• More modalities. Directed graphical models can be described as generative

processes and thus enjoy modeling and computational benefits conferred from

conditional independencies, such as simple sampling procedures. However, in

many applications, the dependency between two random variables in directed

models can be difficult to describe and specify as a generative process and the

direction of directed edges in the underlying graph can arguably be set either

way. For example, when considering the authors and topics of documents,

one can give reasonable arguments about either authors → topics or topics →

authors. Particularly, when dealing with more modalities, the huge number of

possible configurations of these directions between a large number of random

variables have complicated the application of directed models to more complex

multimodal, heterogeneous textual data.

Furthermore, in state-of-the-art hierarchical Bayesian models such as LDA, ex-

act posterior inference over hidden topic variables and parameters is typically

intractable and approximate inference techniques such as variational methods

[27], Gibbs sampling [4] and expectation propagation [42] are employed to ad-

dress these issues. As a result, the inference for obtaining a topic decomposition

for a previously unseen document can be slow and troublesome.

Recently, a class of structured undirected latent variable models have gained

attention for topic modeling – largely due to the fact that once model parameters

98



have been optimized, inference of hidden topics for a new document has the

complexity of a matrix multiplication, which is fast compared to hierarchical

Bayesian models.

Several pieces of work in this direction rely on a two-layer structure [18, 64, 68,

72, 73] that has an important property: the random variables at the two layers

are conditionally independent given each other, which provides the property

that the mapping from one layer to the other layer can be done by a simple ma-

trix multiplication (and possibly some trivial follow-up transformations). How-

ever, there is no free lunch. The faster inference leads to more difficult learning

due to the intractable normalizing constant in these types of undirected mod-

els. Fortunately, the contrastive divergence [23] approach has been shown to

be efficient for inference and effective for learning in these models. Further and

more importantly, in many situations involving document processing, training

can be done off-line, which gives us more freedom in learning.

Undirected models of this structure have another important property that di-

rected models lack: a more accurate characterization of rare words. As discussed

in [72], in directed models such as latent Dirichlet allocation, a word is always

generated from a single topic. When its count is low, this behavior becomes

a very strong assumption or limitation. In the harmonium-structured models,

a word arises from a distribution influenced by all the topics. This different

mechanism might play a crucial role in certain applications.

• Faster inference. As we face more and more data in applications such as Web

search, speeding up the inference procedure in topic models is in great need.

One kind of the accelerated procedures slices up the sampling probability in

different ways [48]. For any particular word and document, the distributions we

want to draw sample from are often skewed such that most of the probability
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mass is concentrated on a few topics, which leads to a possibility that on average

only a small fraction of the topic probabilities need to be actually computed.

With this principle in hand, a bound and refine procedure could be depicted.

Similarly, sparsity could be utilized to limit word inclusion on per-topic basis.

For example, for the topic “Panama Canal”, we do not care about the proba-

bilities for the words ”Enron” or ”LDA”. However, the plain model insists on

probabilities for every word in every topic, no mater how they are irrelevant.

Also, tricks such as storing pre-computed statistics could certainly help to some

extent.

Another direction is parallelism. Due to the intrinsic sequential nature of in-

ference procedures such as Gibbs sample, standard map-reduce could not be

directly applied here. Nevertheless, limited parallelism has been demonstrated

to be effective [44, 45].
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APPENDIX A

COLLAPSED GIBBS SAMPLING DERIVATION FOR
ART

We need to derive P (xdi, zdi|x−di, z−di,w, α, β, a, r), the conditional distribution

of a topic and recipient for the word wdi given all other words’ topic and recipient

assignments, x−di and z−di, to carry out the collapsed Gibbs sampling procedure for

ART. We begin with the joint probability of the whole dataset. Note here that we

can take advantage of conjugate priors to simplify the integrals.

P (x, z,w|α, β, a, r)

=

∫∫ A∏
i=1

A∏
j=1

p(θij|α)
T∏
t=1

p(φt|β)
D∏
d=1

Nd∏
i=1

P (xdi|rd) · P (zdi|θadxdi)P (wdi|φzdi)dΦdΘ

=
D∏
d=1

(
1

|rd|
)Nd
∫ A∏

i=1

A∏
j=1

(
Γ(
∑T

t=1 αt)∏T
t=1 Γ(αt)

T∏
t=1

θαt−1
ijt

)
A∏
i=1

A∏
j=1

T∏
t=1

θ
nijt
ijt dΘ

×
∫ T∏

t=1

(
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φβv−1
tv

)
T∏
t=1

V∏
v=1

φmtvtv dΦ

∝
A∏
i=1

A∏
j=1

∫ T∏
t=1

θ
αt+nijt−1
ijt dθij

T∏
t=1

∫ V∏
v=1

φβv+mtv−1
tv dφt

∝
A∏
i=1

A∏
j=1

∏T
t=1 Γ(αt + nijt)

Γ(
∑T

t=1(αt + nijt))

T∏
t=1

∏V
v=1 Γ(βv +mtv)

Γ(
∑V

v=1(βv +mtv))

where |rd| is the number of recipients in message d, nijt is the number of tokens

assigned to topic t and the author-recipient pair (i, j), and mtv represent the number

of tokens of word v assigned to topic t.
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Using the chain rule, we can obtain the conditional probability conveniently. We

define w−di as all word tokens except the token wdi.

P (xdi, zdi|x−di, z−di,w, α, β, a, r) =
P (xdi, zdi, wdi|x−di, z−di,w−di, α, β, a, r)

P (wdi|x−di, z−di,w−di, α, β, a, r)

∝ P (x, z,w|α, β, a, r)

P (x−di, z−di,w−di|α, β, a, r)
∝

Γ(αzdi+nadxdizdi )

Γ(αzdi+nadxdizdi−1)

Γ(
PT
t=1(αt+nadxdit))

Γ(
PT
t=1(αt+nadxdit)−1)

Γ(βwdi+mzdiwdi )

Γ(βwdi+mzdiwdi−1)

Γ(
PV
v=1(βv+mzdiv))

Γ(
PV
v=1(βv+mzdiv)−1)

∝ αzdi + nadxdizdi − 1∑T
t=1(αt + nadxdit)− 1

βwdi +mzdiwdi − 1∑V
v=1(βv +mzdiv)− 1

∝ αzdi + n′adxdizdi∑T
t=1(αt + n′adxdit)

βwdi +m′zdiwdi∑V
v=1(βv +m′zdiv)

In the above, for simplicity, we redefine n and m as n′ and m′, respectively, to exclude

the assignments of token wdi. If one wants, further manipulation can turn the above

formula into separated update equations for the topic and recipient of each token,

suitable for random or systematic scan updates:

P (xdi|x−di, z,w, α, β, a, r) ∝ αzdi + n′adxdizdi∑T
t=1(αt + n′adxdit)

P (zdi|x, z−di,w, α, β, a, r) ∝ αzdi + n′adxdizdi∑T
t=1(αt + n′adxdit)

βwdi +m′zdiwdi∑V
v=1(βv +m′zdiv)
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APPENDIX B

COLLAPSED GIBBS SAMPLING DERIVATION FOR GT

Begin with the joint distribution P (g,V,w, t|α, β, η), we can take the advantages

of conjugate priors to simplify the formulae. All symbols are defined in Sec. 3.1.

P (g,V,w, t|α, β, η) =

∫∫∫
p(g,V,w, t, θ, γ, φ|α, β, η)dθdγdφ

=

∫∫∫ B∏
b=1

P (tb)
T∏
t=1

(
p(θt|α)

S∏
s=1

P (gst|θt)p(φt|η)

)

×
B∏
b=1

G∏
g=1

G∏
h=g

p(γ
(b)
gh |β)

B∏
b=1

Nb∏
i=1

P (w
(b)
i |φtb)×

B∏
b=1

S∏
i=1

S∏
j=i+1

P (V
(b)
ij |γ(b)

gigj
))dθdγdφ

=

∫∫∫ (
1

T

)B T∏
t=1

(
Γ(
∑G

g=1 αg)∏G
g=1 Γ(αg)

G∏
g=1

θ
αg−1
tg

G∏
g=1

θ
ntg
tg

)
×

T∏
t=1

(
Γ(
∑V

v=1 ηv)∏V
v=1 Γ(ηv)

V∏
v=1

φηv−1
tv

)

×
B∏
b=1

G∏
g=1

G∏
h=g

(
Γ(
∑2

k=1 βk)∏2
k=1 Γ(βk)

2∏
k=1

(γ
(b)
ghk)

βk−1

)
×

T∏
t=1

V∏
v=1

φctvtv

B∏
b=1

G∏
g=1

G∏
h=g

2∏
k=1

(γ
(b)
ghk)

m
(b)
ghkdθdγdφ

∝
∫∫∫ T∏

t=1

G∏
g=1

θ
αg+ntg−1
tg

T∏
t=1

V∏
v=1

φηv+ctv−1
tv ×

B∏
b=1

G∏
g=1

G∏
h=g

2∏
k=1

(γ
(b)
ghk)

βk+m
(b)
ghk−1dθdγdφ

∝
T∏
t=1

( ∏G
g=1 Γ(αg + ntg)

Γ(
∑G

g=1(αg + ntg))

∏V
v=1 Γ(ηv + ctv)

Γ(
∑V

v=1(ηv + ctv))

)
×

B∏
b=1

G∏
g=1

G∏
h=g

∏2
k=1 Γ(βk +m

(b)
ghk)

Γ(
∑2

k=1(βk +m
(b)
ghk))

Using the chain rule, we can get the conditional probability conveniently,

P (gst|V,g−st,w, t, α, β, η) =
P (g,V,w, t|α, β, η)

P (g−st,V,w, t|α, β, η)
∝ P (g,V,w, t|α, β, η)

P (g−st,V−st,w, t|α, β, η)

∝ αgst + ntgst − 1∑G
g=1(αg + ntg)− 1

B∏
b=1

(
I(tb = t)×

G∏
h=1

∏2
k=1

∏d
(b)
gsthk

x=1

(
βk +m

(b)
gsthk
− x
)

∏P2
k=1 d

(b)
gsthk

x=1

(
(
∑2

k=1(βk +m
(b)
gsthk

)− x
)
)
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and,

P (tb|V,g,w, t−b, α, β, η) =
P (g,V,w, t|α, β, η)

P (g,V,w, t−b|α, β, η)
∝ P (g,V,w, t|α, β, η)

P (g,V−b,w−b, t−b|α, β, η)

∝
∏V

v=1

∏e
(b)
v

x=1(ηv + ctbv − x)∏PV
v=1 e

(b)
v

x=1

(∑V
v=1(ηv + ctbv)− x

) × G∏
g=1

G∏
h=g

∏2
k=1 Γ(βk +m

(b)
ghk)

Γ(
∑2

k=1(βk +m
(b)
ghk))
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APPENDIX C

COLLAPSED GIBBS SAMPLING DERIVATION FOR
TOT

We begin with the joint distribution P (w, t, z|α, β,Ψ). We can take advantage of

conjugate priors to simplify the integrals. All symbols are defined in Section 4.1.

P (w, t, z|α, β,Ψ) = P (w|z, β)p(t|Ψ, z)P (z|α)

=

∫
P (w|Φ, z)p(Φ|β)dΦp(t|Ψ, z)

∫
P (z|Θ)p(Θ|α)dΘ

=

∫ D∏
d=1

Nd∏
i=1

P (wdi|φzdi)
T∏
z=1

p(φz|β)dΦ
D∏
d=1

Nd∏
i=1

p(tdi|ψzdi)

×
∫ D∏

d=1

(
Nd∏
i=1

P (zdi|θd)p(θd|α)

)
dΘ

=

∫ T∏
z=1

V∏
v=1

φnzvzv

T∏
z=1

(
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φβv−1
zv

)
dΦ

×
∫ D∏

d=1

T∏
z=1

θmdzdz

D∏
d=1

(
Γ(
∑T

z=1 αz)∏T
z=1 Γ(αz)

T∏
z=1

θαz−1
dz

)
dΘ×

D∏
d=1

Nd∏
i=1

p(tdi|ψzdi)

=

(
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

)T (
Γ(
∑T

z=1 αz)∏T
z=1 Γ(αz)

)D D∏
d=1

Nd∏
i=1

p(tdi|ψzdi)

×
T∏
z=1

∏V
v=1 Γ(nzv + βv)

Γ(
∑V

v=1(nzv + βv))

D∏
d=1

∏T
z=1 Γ(mdz + αz)

Γ(
∑T

z=1(mdz + αz))

Using the chain rule, we can obtain the conditional probability conveniently,
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P (zdi|w, t, z−di, α, β,Ψ) =
P (zdi, wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

P (wdi, tdi|w−di, t−di, z−di, α, β,Ψ)

∝ P (w, t, z|α, β,Ψ)

P (w−di, t−di, z−di|α, β,Ψ)
∝ nzdiwdi + βwdi − 1∑V

v=1(nzdiv + βv)− 1
(mdzdi + αzdi − 1)p(tdi|ψzdi)

∝ (mdzdi + αzdi − 1)
nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

× (1− tdi)ψzdi1−1t
ψzdi2−1

di

B(ψzdi1, ψzdi2)

In practice, the balancing hyperparameter often appears as an exponential power

of the last term above. Since timestamps are drawn from continuous Beta distribu-

tions, sparsity is not a big problem for parameter estimation of Ψ. For simplicity, we

update Ψ after each Gibbs sample by the method of moments, detailed as follows:

ψ̂z1 = t̄z

(
t̄z(1− t̄z)

s2
z

− 1

)
ψ̂z2 = (1− t̄z)

(
t̄z(1− t̄z)

s2
z

− 1

)

where t̄z and s2
z indicate the sample mean and the biased sample variance of the

timestamps belonging to topic z, respectively.
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APPENDIX D

COLLAPSED GIBBS SAMPLING DERIVATION FOR
TNG

We begin with the joint distribution P (w,x, z|α, β, γ, δ). We can take advantage

of conjugate priors to simplify the integrals. All symbols are defined in Section 5.1.

P (w, z,x|α, β, γ, δ)

=

∫∫∫∫ D∏
d=1

Nd∏
i=1

(P (w
(d)
i |x(d)

i , φ
z

(d)
i
, σ

z
(d)
i w

(d)
i−1

)P (x
(d)
i |ψz(d)

i−1w
(d)
i−1

))

T∏
z=1

W∏
v=1

p(σzv|δ)p(ψzv|γ)dΣdΨ
T∏
z=1

p(φz|β)dΦ

∫ D∏
d=1

(
Nd∏
i=1

P (z
(d)
i |θd)p(θd|α)

)
dΘ

=

∫ T∏
z=1

(
W∏
v=1

φnzvzv

Γ(
∑W

v=1 βv)∏W
v=1 Γ(βv)

W∏
v=1

φβv−1
zv

)
dΦ

×
∫ T∏

z=1

W∏
w=1

(
W∏
v=1

σmzwvzwv

Γ(
∑W

v=1 δv)∏W
v=1 Γ(δv)

W∏
v=1

σδv−1
zwv

)
dΣ

×
∫ T∏

z=1

W∏
w=1

(
1∏

k=0

ψpzwkzwk

Γ(
∑1

k=0 γv)∏1
k=0 Γ(γk)

1∏
k=0

ψγk−1
zwk

)
dΨ

×
∫ D∏

d=1

(
T∏
z=1

θqdzdz
Γ(
∑T

z=1 αz)∏T
z=1 Γ(αz)

T∏
z=1

θαz−1
dz

)
dΘ

∝
T∏
z=1

∏W
v=1 Γ(nzv + βv)

Γ(
∑W

v=1(nzv + βv))

T∏
z=1

W∏
w=1

∏W
v=1 Γ(mzwv + δv)

Γ(
∑W

v=1(mzwv + δv))

T∏
z=1

W∏
w=1

∏1
k=0 Γ(pzwk + γk)

Γ(
∑1

k=0(pzwk + γk))

D∏
d=1

∏T
z=1 Γ(qdz + αz)

Γ(
∑T

z=1(qdz + αz))

Using the chain rule and Γ(α) = (α − 1)Γ(α − 1), we can obtain the conditional

probability conveniently,
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P (z
(d)
i , x

(d)
i |w, z(d)

−i ,x
(d)
−i , α, β, γ, δ) =

P (w
(d)
i , z

(d)
i , x

(d)
i |w(d)

−i , z
(d)
−i ,x

(d)
−i , α, β, γ, δ)

P (w
(d)
i |w(d)

−i , z
(d)
−i ,x

(d)
−i , α, β, γ, δ)

∝ (γ
x

(d)
i

+ p
z

(d)
i−1w

(d)
i−1xi
− 1)(α

z
(d)
i

+ q
dz

(d)
i
− 1)×


β
w

(d)
i

+n
z
(d)
i

w
(d)
i

−1PW
v=1(βv+n

z
(d)
i

v
)−1

if x
(d)
i = 0

δ
w

(d)
i

+m
z
(d)
i

w
(d)
i−1

w
(d)
i

−1PW
v=1(δv+m

z
(d)
i

w
(d)
i−1

v
)−1

if x
(d)
i = 1

Or equivalently,

P (z
(d)
i |w, z(d)

−i ,x, α, β, γ, δ)

∝ (α
z

(d)
i

+ q
dz

(d)
i
− 1)×


β
w

(d)
i

+n
z
(d)
i

w
(d)
i

−1PW
v=1(βv+n

z
(d)
i

v
)−1

if x
(d)
i = 0

δ
w

(d)
i

+m
z
(d)
i

w
(d)
i−1

w
(d)
i

−1PW
v=1(δv+m

z
(d)
i

w
(d)
i−1

v
)−1

if x
(d)
i = 1

And,

P (x
(d)
i |w, z,x(d)

−i , α, β, γ, δ)

∝ (γ
x

(d)
i

+ p
z

(d)
i−1w

(d)
i−1xi
− 1)×


β
w

(d)
i

+n
z
(d)
i

w
(d)
i

−1PW
v=1(βv+n

z
(d)
i

v
)−1

if x
(d)
i = 0

δ
w

(d)
i

+m
z
(d)
i

w
(d)
i−1

w
(d)
i

−1PW
v=1(δv+m

z
(d)
i

w
(d)
i−1

v
)−1

if x
(d)
i = 1
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APPENDIX E

ALL 50 ART TOPICS FOR ENRON DATASET

Topic 1 Topic 2
folder 0.2363 report 0.1029
synchronizing 0.2102 website 0.0859
offline 0.0890 published 0.0569
item 0.0770 named 0.0558
added 0.0446 viewing 0.0487
updated 0.0293 class 0.0361
deleted 0.0255 propt 0.0274
notes 0.0171 pm 0.0197
calendar 0.0151 call 0.0175
mailbox 0.0145 material 0.0175
debra.perlingiere@enron.com 0.2461 errol.mclaughlin@enron.com 0.0679
richard.sanders@enron.com sara.shackleton@enron.com
gerald.nemec@enron.com 0.2127 sara.shackleton@enron.com 0.0471
mark.taylor@enron.com errol.mclaughlin@enron.com
steven.kean@enron.com 0.1310 john.arnold@enron.com 0.0454
richard.sanders@enron.com susan.scott@enron.com

Topic 3 Topic 4
trading 0.0596 system 0.0281
master 0.0318 existing 0.0266
financial 0.0306 agreement 0.0259
trade 0.0258 questions 0.0253
counterparty 0.0247 opportunity 0.0222
online 0.0226 facilities 0.0213
place 0.0178 capacity 0.0197
company 0.0167 compression 0.0191
database 0.0152 compressor 0.0184
credit 0.0150 basis 0.0172
tana.jones@enron.com 0.3471 chris.germany@enron.com 0.1460
mark.taylor@enron.com scott.hendrickson@enron.com
tana.jones@enron.com 0.0784 jeff.dasovich@enron.com 0.0641
sara.shackleton@enron.com richard.shapiro@enron.com
mark.taylor@enron.com 0.0497 drew.fossum@enron.com 0.0388
tana.jones@enron.com steven.harris@enron.com

109



Topic 5 Topic 6
section 0.0299 texas 0.0738
party 0.0265 america 0.0681
language 0.0226 houston 0.0672
contract 0.0203 north 0.0661
date 0.0155 smith 0.0661
enron 0.0151 fax 0.0655
parties 0.0149 debra 0.0637
notice 0.0126 street 0.0634
days 0.0112 corp 0.0585
include 0.0111 phone 0.0542
mary.hain@enron.com 0.0549 debra.perlingiere@enron.com 0.1651
james.steffes@enron.com dan.hyvl@enron.com
jeff.dasovich@enron.com 0.0377 debra.perlingiere@enron.com 0.1359
richard.shapiro@enron.com stacy.dickson@enron.com
dan.hyvl@enron.com 0.0362 debra.perlingiere@enron.com 0.1037
kim.ward@enron.com gerald.nemec@enron.com

Topic 7 Topic 8
bill 0.0439 time 0.0457
edison 0.0310 july 0.0408
assembly 0.0284 month 0.0375
senate 0.0238 june 0.0339
dwr 0.0206 total 0.0330
direct 0.0131 december 0.0302
access 0.0129 october 0.0299
legislature 0.0126 august 0.0282
committee 0.0116 amount 0.0279
vote 0.0114 payment 0.0277
jeff.dasovich@enron.com 0.2446 jeff.dasovich@enron.com 0.0330
james.steffes@enron.com richard.shapiro@enron.com
jeff.dasovich@enron.com 0.1851 phillip.allen@enron.com 0.0308
richard.shapiro@enron.com john.lavorato@enron.com
jeff.dasovich@enron.com 0.1048 jeff.dasovich@enron.com 0.0279
john.lavorato@enron.com james.steffes@enron.com
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Topic 9 Topic 10
deal 0.0493 numbers 0.0677
zone 0.0254 data 0.0661
fuel 0.0200 day 0.0251
ces 0.0178 monthly 0.0251
capacity 0.0176 show 0.0233
demand 0.0176 file 0.0222
storage 0.0137 question 0.0214
transport 0.0135 spreadsheet 0.0214
contract 0.0133 flow 0.0206
transco 0.0124 include 0.0198
chris.germany@enron.com 0.3337 jeff.dasovich@enron.com 0.0867
judy.townsend@enron.com james.steffes@enron.com
chris.germany@enron.com 0.1087 jeff.dasovich@enron.com 0.0330
scott.neal@enron.com richard.shapiro@enron.com
chris.germany@enron.com 0.0872 vince.kaminski@enron.com 0.0309
scott.hendrickson@enron.com matt.smith@enron.com

Topic 11 Topic 12
information 0.0822 price 0.0623
access 0.0299 trading 0.0534
including 0.0232 market 0.0431
financial 0.0166 pricing 0.0289
software 0.0151 prices 0.0261
events 0.0143 physical 0.0236
systems 0.0143 energy 0.0203
investment 0.0143 index 0.0189
management 0.0143 commodity 0.0167
system 0.0140 offer 0.0158
vince.kaminski@enron.com 0.0919 louise.kitchen@enron.com 0.1821
fletcher.sturm@enron.com lynn.blair@enron.com
jeff.dasovich@enron.com 0.0713 shelley.corman@enron.com 0.0859
james.steffes@enron.com vince.kaminski@enron.com
fletcher.sturm@enron.com 0.0637 jeff.dasovich@enron.com 0.0531
richard.shapiro@enron.com james.steffes@enron.com
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Topic 13 Topic 14
ll 0.1243 business 0.0413
ve 0.0854 opportunity 0.0255
don 0.0548 commercial 0.0254
won 0.0208 unit 0.0207
week 0.0179 interest 0.0198
couple 0.0173 development 0.0181
thing 0.0158 support 0.0174
problem 0.0151 directly 0.0164
show 0.0141 participate 0.0158
didn 0.0140 position 0.0157
jeff.dasovich@enron.com 0.1548 vince.kaminski@enron.com 0.0916
james.steffes@enron.com joe.parks@enron.com
jeff.dasovich@enron.com 0.0920 jeff.dasovich@enron.com 0.0711
richard.shapiro@enron.com richard.shapiro@enron.com
jeff.dasovich@enron.com 0.0313 jeff.dasovich@enron.com 0.0690
steven.harris@enron.com james.steffes@enron.com

Topic 15 Topic 16
agreement 0.0552 contract 0.0532
master 0.0515 dated 0.0319
corp 0.0437 executed 0.0304
north 0.0355 referenced 0.0270
america 0.0323 copy 0.0263
entity 0.0299 list 0.0250
executed 0.0296 received 0.0233
stephanie 0.0282 confidentiality 0.0220
received 0.0265 llc 0.0213
transactions 0.0242 copies 0.0209
tana.jones@enron.com 0.0726 tana.jones@enron.com 0.1691
susan.bailey@enron.com mark.taylor@enron.com
stephanie.panus@enron.com 0.0699 tana.jones@enron.com 0.1198
mark.taylor@enron.com louise.kitchen@enron.com
stephanie.panus@enron.com 0.0690 tana.jones@enron.com 0.1091
susan.bailey@enron.com carol.clair@enron.com
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Topic 17 Topic 18
attached 0.0742 gas 0.3183
agreement 0.0493 pipeline 0.0387
review 0.0340 storage 0.0324
questions 0.0257 natural 0.0280
draft 0.0245 week 0.0232
letter 0.0239 end 0.0192
comments 0.0207 supply 0.0190
copy 0.0165 summary 0.0181
revised 0.0161 set 0.0151
document 0.0156 demand 0.0132
gerald.nemec@enron.com 0.0737 jeff.dasovich@enron.com 0.0834
barry.tycholiz@enron.com james.steffes@enron.com
gerald.nemec@enron.com 0.0551 jeff.dasovich@enron.com 0.0454
mark.whitt@enron.com richard.shapiro@enron.com
barry.tycholiz@enron.com 0.0325 drew.fossum@enron.com 0.0297
gerald.nemec@enron.com steven.harris@enron.com

Topic 19 Topic 20
employees 0.0453 cut 0.0523
working 0.0391 schedule 0.0487
team 0.0369 power 0.0398
year 0.0194 number 0.0260
join 0.0194 put 0.0201
hr 0.0147 transmission 0.0201
level 0.0144 tag 0.0174
compensation 0.0137 bert 0.0148
job 0.0137 sold 0.0141
bonus 0.0134 cuts 0.0141
sally.beck@enron.com 0.1343 albert.meyers@enron.com 0.1398
stacey.white@enron.com bill.williams@enron.com
vince.kaminski@enron.com 0.1078 albert.meyers@enron.com 0.0434
darrell.schoolcraft@enron.com kate.symes@enron.com
shelley.corman@enron.com 0.0337 bill.williams@enron.com 0.0391
lynn.blair@enron.com albert.meyers@enron.com
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Topic 21 Topic 22
tw 0.0502 bankruptcy 0.0287
rate 0.0272 money 0.0258
capacity 0.0266 million 0.0256
fuel 0.0260 years 0.0184
lindy 0.0161 court 0.0156
michelle 0.0160 committee 0.0138
contract 0.0144 order 0.0133
year 0.0132 companies 0.0131
cost 0.0122 spent 0.0116
transport 0.0114 told 0.0107
kevin.hyatt@enron.com 0.0969 jeff.dasovich@enron.com 0.3265
michelle.lokay@enron.com richard.sanders@enron.com
lindy.donoho@enron.com 0.0924 jeff.dasovich@enron.com 0.1477
steven.harris@enron.com james.steffes@enron.com
michelle.lokay@enron.com 0.0796 jeff.dasovich@enron.com 0.1299
kevin.hyatt@enron.com richard.shapiro@enron.com

Topic 23 Topic 24
plant 0.0317 area 0.0265
oneok 0.0301 environmental 0.0223
meters 0.0236 project 0.0211
test 0.0220 construction 0.0181
dave 0.0193 south 0.0168
northern 0.0188 impact 0.0152
effect 0.0177 amount 0.0139
points 0.0177 john 0.0131
force 0.0172 existing 0.0122
hpl 0.0145 miles 0.0105
drew.fossum@enron.com 0.2175 larry.campbell@enron.com 0.2759
lynn.blair@enron.com kevin.hyatt@enron.com
jim.schwieger@enron.com 0.0414 larry.campbell@enron.com 0.1352
thomas.martin@enron.com steven.harris@enron.com
drew.fossum@enron.com 0.0376 jeff.dasovich@enron.com 0.0518
stanley.horton@enron.com james.steffes@enron.com

114



Topic 25 Topic 26
don 0.0407 customers 0.0541
love 0.0327 rate 0.0436
night 0.0320 increase 0.0201
good 0.0268 rates 0.0193
work 0.0239 end 0.0191
play 0.0239 utility 0.0179
guys 0.0201 continue 0.0173
email 0.0192 decision 0.0172
great 0.0180 credit 0.0159
tonight 0.0144 tomorrow 0.0149
matthew.lenhart@enron.com 0.0869 jeff.dasovich@enron.com 0.3751
eric.bass@enron.com james.steffes@enron.com
eric.bass@enron.com 0.0772 james.steffes@enron.com 0.0831
matthew.lenhart@enron.com jeff.dasovich@enron.com
susan.scott@enron.com 0.0419 jeff.dasovich@enron.com 0.0776
monique.sanchez@enron.com richard.shapiro@enron.com

Topic 27 Topic 28
day 0.0419 ferc 0.0851
friday 0.0418 iso 0.0350
morning 0.0369 information 0.0229
monday 0.0282 px 0.0195
office 0.0282 market 0.0179
wednesday 0.0267 attached 0.0170
tuesday 0.0261 filing 0.0157
time 0.0218 order 0.0141
good 0.0214 epmi 0.0138
thursday 0.0191 section 0.0138
jeff.dasovich@enron.com 0.0340 mary.hain@enron.com 0.2703
richard.shapiro@enron.com james.steffes@enron.com
jeff.dasovich@enron.com 0.0289 james.steffes@enron.com 0.0678
james.steffes@enron.com richard.shapiro@enron.com
carol.clair@enron.com 0.0175 mary.hain@enron.com 0.0644
mark.taylor@enron.com jeff.dasovich@enron.com
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Topic 29 Topic 30
request 0.0947 credit 0.0540
tana 0.0643 master 0.0529
pm 0.0380 agreement 0.0446
jones 0.0377 isda 0.0382
subject 0.0364 guaranty 0.0291
link 0.0361 form 0.0208
questions 0.0292 send 0.0175
cc 0.0292 swap 0.0171
requests 0.0177 copy 0.0168
click 0.0168 legal 0.0164
mark.taylor@enron.com 0.1157 tana.jones@enron.com 0.0767
tana.jones@enron.com sara.shackleton@enron.com
sara.shackleton@enron.com 0.0637 stephanie.panus@enron.com 0.0712
tana.jones@enron.com sara.shackleton@enron.com
lynn.blair@enron.com 0.0409 sara.shackleton@enron.com 0.0689
tana.jones@enron.com susan.bailey@enron.com

Topic 31 Topic 32
president 0.0440 company 0.0963
vice 0.0340 skilling 0.0284
general 0.0311 people 0.0223
power 0.0240 lay 0.0217
counsel 0.0226 business 0.0168
esq 0.0214 stock 0.0157
reference 0.0196 houston 0.0140
executive 0.0185 world 0.0138
page 0.0148 profile 0.0129
houston 0.0137 change 0.0124
mark.taylor@enron.com 0.5327 shelley.corman@enron.com 0.3256
louise.kitchen@enron.com lynn.blair@enron.com
joe.stepenovitch@enron.com 0.0433 jeff.dasovich@enron.com 0.0925
don.baughman@enron.com richard.shapiro@enron.com
jeff.dasovich@enron.com 0.0107 vince.kaminski@enron.com 0.0509
richard.shapiro@enron.com fletcher.sturm@enron.com
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Topic 33 Topic 34
contracts 0.0464 operations 0.0321
puc 0.0452 team 0.0234
edison 0.0324 office 0.0173
costs 0.0179 list 0.0144
utility 0.0150 bob 0.0129
contract 0.0144 open 0.0126
lynch 0.0124 meeting 0.0107
pay 0.0123 gas 0.0107
purchases 0.0119 business 0.0106
deal 0.0118 houston 0.0099
jeff.dasovich@enron.com 0.2412 sally.beck@enron.com 0.2158
steven.kean@enron.com louise.kitchen@enron.com
jeff.dasovich@enron.com 0.2259 sally.beck@enron.com 0.0826
james.steffes@enron.com john.lavorato@enron.com
jeff.dasovich@enron.com 0.2101 sally.beck@enron.com 0.0530
richard.shapiro@enron.com stacey.white@enron.com

Topic 35 Topic 36
risk 0.0857 system 0.1026
meeting 0.0331 make 0.0274
rac 0.0212 include 0.0270
management 0.0209 rights 0.0239
view 0.0154 based 0.0222
board 0.0148 production 0.0209
portfolio 0.0144 process 0.0205
systems 0.0138 offering 0.0191
review 0.0138 release 0.0181
capital 0.0132 opportunity 0.0178
vince.kaminski@enron.com 0.1383 jeff.dasovich@enron.com 0.2232
james.steffes@enron.com richard.shapiro@enron.com
rick.buy@enron.com 0.0841 chris.germany@enron.com 0.0759
david.delainey@enron.com scott.hendrickson@enron.com
rick.buy@enron.com 0.0619 jeff.dasovich@enron.com 0.0735
sally.beck@enron.com james.steffes@enron.com
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Topic 37 Topic 38
market 0.0567 utilities 0.0528
power 0.0563 governor 0.0462
price 0.0280 commission 0.0450
system 0.0206 state 0.0432
prices 0.0182 utility 0.0235
high 0.0124 rate 0.0226
based 0.0120 percent 0.0226
buy 0.0117 california 0.0197
customers 0.0110 crisis 0.0153
costs 0.0106 gov 0.0127
jeff.dasovich@enron.com 0.1231 jeff.dasovich@enron.com 0.3040
james.steffes@enron.com richard.shapiro@enron.com
jeff.dasovich@enron.com 0.1133 jeff.dasovich@enron.com 0.2979
richard.shapiro@enron.com james.steffes@enron.com
mark.taylor@enron.com 0.0218 jeff.dasovich@enron.com 0.1030
elizabeth.sager@enron.com richard.sanders@enron.com

Topic 39 Topic 40
var 0.0514 issues 0.0641
greg 0.0465 process 0.0443
position 0.0294 group 0.0369
jan 0.0257 discuss 0.0319
million 0.0224 project 0.0310
interest 0.0216 plan 0.0305
current 0.0163 work 0.0283
resume 0.0159 additional 0.0224
positions 0.0147 projects 0.0148
interview 0.0106 update 0.0134
john.lavorato@enron.com 0.0861 jeff.dasovich@enron.com 0.0700
john.arnold@enron.com james.steffes@enron.com
john.lavorato@enron.com 0.0355 vince.kaminski@enron.com 0.0528
rick.buy@enron.com jeffrey.shankman@enron.com
john.lavorato@enron.com 0.0273 richard.shapiro@enron.com 0.0298
greg.whalley@enron.com steven.kean@enron.com
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Topic 41 Topic 42
state 0.0404 blackberry 0.0726
california 0.0367 net 0.0557
power 0.0337 www 0.0409
energy 0.0239 website 0.0375
electricity 0.0203 report 0.0373
davis 0.0183 wireless 0.0364
utilities 0.0158 handheld 0.0362
commission 0.0136 stan 0.0282
governor 0.0132 fyi 0.0271
prices 0.0089 named 0.0260
jeff.dasovich@enron.com 0.3338 rod.hayslett@enron.com 0.1432
richard.shapiro@enron.com tracy.geaccone@enron.com
jeff.dasovich@enron.com 0.2440 tracy.geaccone@enron.com 0.0737
james.steffes@enron.com rod.hayslett@enron.com
jeff.dasovich@enron.com 0.1394 rod.hayslett@enron.com 0.0420
richard.sanders@enron.com drew.fossum@enron.com

Topic 43 Topic 44
list 0.0767 business 0.0476
change 0.0494 presentation 0.0308
make 0.0486 businesses 0.0285
people 0.0454 document 0.0256
give 0.0390 mike 0.0250
put 0.0343 goals 0.0221
person 0.0338 specific 0.0180
send 0.0312 activities 0.0174
add 0.0262 discuss 0.0157
wanted 0.0258 information 0.0151
tana.jones@enron.com 0.0460 mike.mcconnell@enron.com 0.2555
mark.taylor@enron.com jeffrey.shankman@enron.com
jeff.dasovich@enron.com 0.0361 mike.mcconnell@enron.com 0.0929
richard.shapiro@enron.com greg.whalley@enron.com
james.steffes@enron.com 0.0279 mike.mcconnell@enron.com 0.0662
jeff.dasovich@enron.com steven.kean@enron.com

119



Topic 45 Topic 46
game 0.0170 expense 0.0732
draft 0.0156 report 0.0708
week 0.0135 phone 0.0614
team 0.0135 info 0.0555
eric 0.0130 gerald 0.0508
make 0.0125 personal 0.0496
free 0.0107 list 0.0449
year 0.0106 vacation 0.0401
pick 0.0097 nemec 0.0331
phillip 0.0095 travel 0.0295
eric.bass@enron.com 0.3050 gerald.nemec@enron.com 0.4156
matthew.lenhart@enron.com lynn.blair@enron.com
eric.bass@enron.com 0.0780 john.hodge@enron.com 0.0248
phillip.love@enron.com gerald.nemec@enron.com
matt.motley@enron.com 0.0522 dan.hyvl@enron.com 0.0236
mike.grigsby@enron.com stacy.dickson@enron.com

Topic 47 Topic 48
group 0.0379 oneok 0.0715
number 0.0326 meters 0.0443
process 0.0245 test 0.0318
people 0.0203 plant 0.0284
back 0.0175 majeure 0.0284
moving 0.0172 force 0.0227
start 0.0165 quality 0.0227
move 0.0161 northern 0.0227
plan 0.0158 special 0.0216
note 0.0158 measurement 0.0216
louise.kitchen@enron.com 0.1739 drew.fossum@enron.com 0.4767
john.lavorato@enron.com lynn.blair@enron.com
louise.kitchen@enron.com 0.0372 drew.fossum@enron.com 0.0647
geoff.storey@enron.com stanley.horton@enron.com
vince.kaminski@enron.com 0.0365 carol.clair@enron.com 0.0250
sally.beck@enron.com susan.bailey@enron.com
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Topic 49 Topic 50
transwestern 0.0546 issue 0.0674
parties 0.0487 issues 0.0583
project 0.0308 long 0.0250
settlement 0.0298 based 0.0249
affiliates 0.0258 specific 0.0241
supply 0.0238 general 0.0227
igs 0.0209 problems 0.0179
fawcett 0.0179 due 0.0177
scott 0.0169 position 0.0174
adequate 0.0169 understand 0.0172
susan.scott@enron.com 0.3555 jeff.dasovich@enron.com 0.0683
steven.harris@enron.com james.steffes@enron.com
jeff.dasovich@enron.com 0.1231 tana.jones@enron.com 0.0651
susan.scott@enron.com mark.taylor@enron.com
susan.scott@enron.com 0.0665 vince.kaminski@enron.com 0.0398
jeff.dasovich@enron.com mark.taylor@enron.com
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