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Abstract

Very little is known about the relationship between the cognitive states and the fMRI data,
and very little is known about the feasibility of training classifiers to decode cognitive states.
Our efforts aimed to automatically discover which spatial-temporal patterns in the fMRI data
indicate a subject is performing a specific cognitive task, such as watching a picture or sen-
tence. We developed machine learning methods that can be used to discover such spatial-
temporal fMRI patterns, across subjects and contexts, which support probalistic predictions
about the cognitive states of the human subjects.

1 Introduction

The study of human brian function has received a tremendous boot in recent years from the advent
of new brain imaging technique, functional Magnetic Resonance Imaging(fMRI), which dramat-
ically improve our ability to collect data about brain activity in human subjects performing tasks
such as reading, answering questions, comparing images, solving algebra problems, or driving
simulated vehicles. A typical fMRI experiment can produce a three-dimensional image of the hu-
man subject’s brain activation every half second, at a spatial resolution of 3mm, resulting in tens of
millions of observations of local brain activation over the course of a single twenty minute exper-
iment. Quickly, scientists found themselves drowning in a flood of data and in need of computer
support to extract general principles from the millions of observed data points.

Whereas much work has been done to develop fMRI data analysis methods that average together
data from multiple stimuli and episodes in order to determine which brain regions are involved on
average in various cognitive tasks, very little is known about the feasibility of training classifiers
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to decode cognitive states from single episodes. Our research aimed to develop a new category of
computer tools to assist scientists in formulating theories of cognitive brian function from fMRI
data. In this report, we developed software that will automatically detect the time intervals and spe-
cific brain regions in which a subject is performing unreported cognitive activities such as watching
a sentence or picture. These detectors of cognitive activities and states have been developed using
machine learning algorithms, and are used to parse and segment fMRI data from subsequent ex-
periments in which these cognitive activities are otherwise unobservable, producing results such as
“at the time being the subject appears with probability 0.9 to be watching a picture.” Before, most
of the similar researches done by our colleagues are based upon the fMRI data of a single human
subject because of the well-known difficulty, the subject-to-subject variation. The key point of our
software is that it can be trained and applied across subjects and contexts, that is, the data we used
are from an experiment performed by different subjects, or even different experiments, but we can
use them as if they were from an experiment performed by a single subject.

Our classifiers could be used as virtual sensors of hidden cognitive states, which would be of
tremendous use for experimental research in cognitive science and in diagnosis of mental processes
in patients with brain injuries. The results in this report will be of great help to support the study
of cognitive brain function, such as learning transitions among states and discovering abstractions.
Furtherly, it will help scientists discover, represent, and evaluate the correspondence between the
components of their cognitive theory, and the growing database of experimental results from fMRI
and other sources.

In Section 2, we simply introduced the dataset and the corresponding experiment we used in this
report. And then we presented the methods we adapted in this report in Section 3. The results
achieved across subjects and across contexts are detailed in Section 4 and Section 5, respectively.
We also reported some interesting findings in Section 6, which might trigger some new research
directions. Finally, we gave our conclusions in Section 7.

2 The Star/Plus Experiment

The star/plus experiment was designed to engage several different cortical areas, in order to look
at their interaction. The Regions of interst(ROIs) plausibly involved are known from several other
studies. In this experiment, the subject first sees a sentence(semantic stimulus) for 4 seconds,
such as “The plus sign is above on the star sign.”, then a blank screen for 4 seconds, and finally a
picture(symbol stimulus) such as

+
*

for another 4 seconds, during which the subject must press a button for “yes” or “no”, depending
on whether the setence matches the picture seen or not. Snapshots were made every 1/2 seconds.
The subject is instructed to rehearse the sentence in his/her brain until the picture is presented
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rather than try to visualize the sentence immediately. The second variant, for which we also used
in this report, switches the presentations of sentences and pictures, and the instruction is to keep
the picture in mind until the presentation of the sentence. In the later part of this report, we will
note them as ���������	��

��� and ���������	��
���� , respectively.

This task engages several brain areas, such as visual cortex for reading and seeing the sentence,
Broca’s area for language processing, the Intra Parietal Sulcus for spatial visualization, motor
cortex for pressing the button, etc. The exact way in which the areas coordinate varies across
subjects, based on their mental and verbal abilities and also on the strategy followed(e.g. mentally
rehearse the sentence until you see the picture Vs. making up a picture as you read the sentence and
then match it with the picture being displayed). The subject were instructed to try to rehearse the
sentence and delay making a mental picture of its semantic content until the picture was presented.
Similarily, in the picture first variant, the subjects should try not to express the picture as a sentence
while they wait for the sentence presentation.

The subject does this affirmative task 10 times where the sentence and picture are consistent, a
similar task where the sentence contains a negative description 10 times, and a control task where
he or she looks at a fixed point in the screen. The order in which these repetitions are performed
is randomized and each repetition is called a ��������� . Not surprisingly, we call these 3 kinds of trials
����������������� ��� trial, !"��#$�������%� trial and ���'&(�)��� *�! trial in the later part of this report.

Based upon the observations that the activity of an voxel will last about 8-10 seconds after stimulus,
in ���+�����	��
���� , we divided the whole course of activity of a voxel into two segments: the first 16
snapshots as ���,!(�	�,!�-.� segment, and the next 16 snapshots as �/��-0��12�3� segment, and vice versa in
�4�5�����	�%
���� . Our classifier could predict, with probability, whether a subject is looking at a picture
or a sentence, given an unlabeled segment.

3 Methods

In the fMRI field, a very basic difficulty arises from the fact that the data are very high dimen-
sional (an fMRI image contains 10,000-20,000 voxels) and training data is relatively sparse (in
many cases we have only a few dozen training examples). Therefore, we also need discover useful
abstractions of the fMRI signals to reduce the apparent dimensionality of the learning task. On the
other hand, the subject-to-subject variation makes difficult using the data from different subjects
uniformly partially because the number of voxels in an ROI will definitely vary across subjects.
Normally, two basic abstractions are used: one is the mean, i.e., averaging the activity values of all
voxels in an ROI to get an “averaged” voxel, and the other one is the top ! active voxels in an ROI
under � -test. Through these ways, we can have the same number of voxels in an ROI for different
subjects, which means that we will have the same number of features in the training examples from
different subjects and on this basis, we can take advantage of the common Machine Learning meth-
ods, such as Support Vector Machine, and Naive Gaussian Bayes Classifier, K Nearest Neighbour,
Logistic Regression, and so on. In this report, we will provide our results using Naive Gaussian
Bayes Classifier based upon the average abstraction.

3



Another basic difficulty arises also from the subject-to-subject variation. Without surprise, the
responses of different subjects to some particular stimuli are same, to some extent, in pattern, but
might differ greatly in intensity. Even for a single subject, the response of him/her is not fixed, but
usally assumed normal distributed at corresponding time points. Obviously, the data from different
subjects are not directly comparable. Now we can apply a common technique in machine learning:
Normalization. But for different machine learning methods, we will definitely do normalization
a little differently. In this report, for Naive Bayes Classifier, the features in training examples are
assumed to be independent, we simply normalized the data of each ROI in each trial of each subject
subjects into ��������� , that is,

�
	�� 
 	�� � ��! 	 
 	
����& 	 
 	�� � � ! 	 
 	 � � ���������������

��� �,�3� 
��	 
 ��!"� � �	 
 �)�3� � � � �����	� � �
�"*���� �)!"� ���(�	�,� !�*
������� �"!�������*
!#� ���

%$2��- ���������'&��
but for other classifiers, we have to do some particular process, such as making the data at particular
time points have the same intertrial mean and variance for different subjects.

Sanity check is necessary almost for all fMRI data analyses. In both of our datasets, the data
from 3 subjects are with extraordinary large or small values(even 100 times greater or smaller
than the normal values). A possible reason for this might be related with the scaling factor in
the proprecessing step. More possibly, those 3 subjects performed very badly in the Star/Plus
experiment. After sanity check, we have totally 13 “good” subjects. We made some selections of
subjects according to the “goodness” of subject.

In the Star/Plus experiment, our psychology colleagues thought that 7 ROIs(CALC, LDLPFC,
LIPL, LIPS, LOPER, LT, and LTRIA) were most possibly involved in the Star/Plus task. But base
upon our experiment results, we found that some ROIs are not selective at all. We made some
selections of ROIs by hand according to our observations, too.

How to measure a classifier? We use cross-validation because we only have limited training ex-
amples. Two kinds of cross-validations are used in this report. Leave-one-example-out cross-
validation is used to roughly measure the power of the classifier, and leave-one-subject-out cross-
validation is used to measure whether a classifier trained for some subjects is still useful for a new
subject. Normally, the accuracy will be better under leave-one-example-out cross-validation than
under leave-one-subject-out cross-validation, because we use more data under leave-one-example-
out cross-validation. Since we have equal numbers of �/��-0��12�3� examples and ���,!��	�,!�-.� examples,
the random guess probability to predict whether a segment is � � - ��12��� or ���,!��	�,!�-.� is 0.5. If the
accuracy of our classifiers were much better than 0.5, our classifiers work!

4 Results Across Subjects

In this section, based on the average abstraction, we provided the accuracies of the Naive Gaussian
Bayes Classifier trained across subjects for ��� �����	�%
���� and ���������	��
���� separately.
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Note:

A. 7 ROIs: {’CALC’ ’LDLPFC’ ’LIPL’ ’LIPS’ ’LOPER’ ’LT’ ’LTRIA’}
B. 4 ROIs: {’CALC’ ’LIPL’ ’LIPS’ ’LOPER’}
C. 1 ROI: {’CALC’}
D. 13 subjects: {’04799’ ’04805’ ’04820’ ’04847’ ’04958’ ’05005’
’05018’ ’05093’ ’05131’ ’05675’ ’05680’ ’05695’ ’05710’}
E. 9 subjects: {’04805’ ’04820’ ’04847’ ’04958’ ’05093’ ’05131’
’05675’ ’05680’ ’05710’}
F. 8 subjects: {’04805’ ’04820’ ’04847’ ’04958’ ’05093’ ’05675’
’05680’ ’05710’}
G. 4 subjects: {’04847’ ’05675’ ’05680’ ’05710’}
H. 2 subjects: {’04847’ ’05710’}
I. Average Accuracy: the mean value of all single subject accura-
cies.
I. The accuracies in parenthesis are the corresponding accuracies
after simply normalizing the first 32 snapshots of each ROI in e-
ach trial of each subject into [0,1].

Subject 7 ROIs 4 ROIs 1 ROI
04799 75%(90%) 80%(93%) 42%(45%)
04805 88%(88%) 93%(95%) 82%(90%)
04820 88%(97%) 95%(100%) 90%(90%)
04847 100%(100%) 100%(100%) 100%(100%)
04958 88%(97%) 88%(97%) 93%(93%)
05005 65%(82%) 62%(80%) 70%(80%)
05018 72%(88%) 72%(90%) 60%(68%)
05093 90%(95%) 90%(95%) 93%(90%)
05099 50%(50%) 50%(50%) 50%(50%)
05131 82%(80%) 85%(82%) 88%(88%)
05393 50%(50%) 50%(50%) 72%(75%)
05643 50%(50%) 50%(50%) 50%(50%)
05675 93%(95%) 93%(95%) 97%(95%)
05680 97%(95%) 100%(97%) 97%(95%)
05695 62%(65%) 75%(70%) 53%(60%)
05710 100%(100%) 100%(100%) 100%(100%)

Table 1: Accuracies for single subject in ��� �����	��
����

Table 1 and Table 2 gave the accuaries for single subject in ��� �����	��

��� and �4�������	��

��� under
leave-one-example-out crossvalidation. The Naive Bayes Classifier performed much better for
��� �����	��
���� than for �4� �����	��
���� . In virtue of that the segment is naturally a time course, we
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Subject 7 ROIs 4 ROIs 1 ROI
04799 62%(68%) 45%(57%) 62%(72%)
04805 78%(80%) 80%(85%) 80%(75%)
04820 75%(88%) 75%(85%) 68%(68%)
04847 85%(95%) 88%(95%) 95%(93%)
04958 68%(95%) 75%(95%) 72%(82%)
05005 57%(68%) 55%(68%) 62%(72%)
05018 50%(72%) 60%(80%) 68%(53%)
05093 72%(80%) 80%(85%) 80%(80%)
05099 50%(50%) 50%(50%) 50%(50%)
05131 75%(88%) 72%(88%) 75%(72%)
05393 50%(50%) 50%(50%) 72%(72%)
05643 50%(50%) 50%(50%) 50%(50%)
05675 70%(80%) 72%(78%) 75%(70%)
05680 55%(72%) 60%(80%) 78%(82%)
05695 60%(65%) 62%(78%) 65%(68%)
05710 78%(90%) 82%(90%) 82%(93%)

Table 2: Accuracies for single subject in �4�5�����	��
����

tried to improve the accuracy by trying to capture the trend of it. We tried to use some statistics,
such as �4�)��� 
 	���� ��������� 
 	��	��
 , etc.) instead of using the activity value at a single time point as
a feature. We also tried the difference at lag � (i.e., 
 	 � 
 	���� ) and smoothing techniques(i.e.,
�����)!�� 
 	���� ��������� 
 	��	��
 ). But all these methods made no improvement in accuracy. After checking
the actual time courses, we found that even using eyeballs, it is harder to distinguish � � - ��12���
segment and ���,!(�	�,!�-.� segment for �4� ���)�	��
���� than for ��� ���)�	��
���� . It might be the true reason
why the accuracy is lower for �4�5�����	��

��� .

Selected Subjects Average Accuracy Leave-1-example-out Leave-1-subject-out
13 subjects 85%(90%) 80%(88%) 76%(86%)
9 subjects 92%(94%) 85%(93%) 81%(91%)
8 subjects 93%(96%) 87%(95%) 82%(94%)
4 subjects 98%(98%) 94%(94%) 85%(85%)
2 subjects 100%(100%) 95%(93%) 55%(60%)

Table 3: Accuracies for multiple subjects in � �������	��
���� (Using 7 ROIs)

For ��� �����	��

��� , the accuracies of the classifiers trained across subjects are provided in Table
3(using 7 ROIs), Table 4(using 4 ROIs) and Table 5(using 1 ROI). For ���������	��
���� , the accuracies
are reported in Table 6(using 13 subjects). We can find that the simple normalization improved
the accuracy of the classifier by about 10%. They showed the selection of subjects and ROIs
changed the accuracy greatly, too. The effect of normalization is better for ��� ���)�	��
���� than for
��� �����	��
���� , but the accuracy for ��� �����	��

��� is still be lower than for ��� ���)�	��
���� because of
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Selected Subjects Average Accuracy Leave-1-example-out Leave-1-subject-out
13 subjects 87%(92%) 82%(88%) 80%(88%)
9 subjects 93%(96%) 89%(95%) 89%(95%)
8 subjects 95%(97%) 89%(96%) 89%(96%)
4 subjects 98%(98%) 96%(98%) 95%(98%)
2 subjects 100%(100%) 100%(100%) 80%(100%)

Table 4: Accuracies for multiple subjects in � �������	��
���� (Using 4 ROIs)

Selected Subjects Average Accuracy Leave-1-example-out Leave-1-subject-out
13 subjects 82%(84%) 84%(84%) 83%(83%)
9 subjects 93%(93%) 93%(94%) 92%(94%)
8 subjects 94%(94%) 94%(96%) 93%(95%)
4 subjects 99%(98%) 97%(98%) 97%(99%)
2 subjects 100%(100%)) 100%(100%) 96%(100%)

Table 5: Accuracies for multiple subjects in ��� ���)�	��
���� (Using 1 ROI)

Selected ROIs Average Accuracy Leave-1-example-out Leave-1-subject-out
7 ROIs 68%(80%) 65%(80%) 64%(80%)
4 ROIs 70%(82%) 68%(81%) 67%(81%)
1 ROI 74%(75%) 73%(78%) 72%(77%)

Table 6: Accuracies for multiple subjects in �4�5�����	�%
���� (Using 13 subjects)

Selected ROIs Leave-1-example-out Leave-1-subject-out
7 ROIs 70%(71%) 69%(70%)
4 ROIs 74%(75%) 73%(75%)
1 ROI 75%(75%) 75%(75%)

Table 7: Accuracies for multiple subjects in both datasets (Using 13 subjects)
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the large difference in single subject accuracies. What is most exciting is that the accuracy under
leave-one-subject-out cross-validation is even comparable to the average value of single subject
accuracies.

5 Results Across Contexts

The accuracies trained across contexts and subjects are reported in Table 7. Here, the training
examples are from different contexts( ��� �����	��
���� and �4�5�����	�%
���� ), and leave-1-subject-out cross-
validation will leave the test subject out from both of ��� �����	��
���� and ���������	��
���� . Obviously,
although the accuracies here are lower than for same context, the accuracy above 70% is still
acceptable because of the great difference among contexts. A fact we have to pay attention to is
that matching the sentence and picture happened in the second segment no matter which kind of
segment it is. This will confuse the classifier since the classifier doesn’t know whether a matching
process took place in a segment. This might be another reason why the accuracy decreased when
we train the classifier across contexts.

6 Interesting Findings

The activity intensity is generally higher in !"��#$�������%� trials than in ����������������� ��� trials. It is rather
reasonalbe, because we can imagine a subject’ brain will need more activity to give an answer when
he or she met some inconsistence. Based upon this observation, is it possible to do classification
between �������������������%� trials and !"��#$�������%� trials?

To some extent, but not generally, the activity intensity is kind of higher in ��� �����	��
���� than in
�4� �����	��

��� . We conjecture that it is more difficult for a subject to remember a sentence than
a picture in a short period, which matches our intuition. Is it reasonable and feasible to train a
classifier to detect which context the segments came from?

As mentioned in Section 5, we conjecture that an additional workload in the second segment led a
lower accuracy of a classifier. Is there a more exact way to define �/��-0��12�3� segment and � �,!(�	�,!�-.�
segment?

Normalization improved the accuracy of the classifier trained in same context, but was not helpful
when across context. Can we get higher accuracy by normalizing the segments instead of the whole
time course? In our experiment results, the answer is no. Actually, this way will greatly reduce the
difference between ���,!��	�,!"- � segment and � � - ��12��� segment, however, that difference is the basis
where we can do classification.

In Naive Bayes Classifier, the independency of features are assumed, that is, it doesn’t take ad-
vantage of the temporal nature of fMRI data. We have reason to believe that some temporal mod-
els(such as Hidden Markov Models) will give better accuracy for our learning task. But it is not
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easy to extend the temporal models to the field of fMRI data analysis.

The abstraction we mainly used is averaging all voxels in an ROI into an “averaged” voxel. It is too
coarse to some extent. There will definitely exist more useful abstractions that not only reduce the
apparent dimensionality of our learning task, but take more information as well. Can we extract
more useful abstractions automatically using some machine learning methods(such as Artificial
Neural Network), even beyond the limitation of ROI?

7 Conclusions

It is feasible to train classifiers to decode an interesting category of cognitive states, but a variety of
machine learning research is needed to extend these capabilities, and such classifiers could be used
as virtual sensors of hidden cognitive states, which would be of tremendous use for experimental
research in cognitive science and in diagnosis of mental processes in patients with brain injuries.
Our learning algorithms for training classifiers when used over multiple human subjects are with
satisfying accuracy. The accuary of our classifier is still exciting when used across contexts. Our
classifier can explicitly represent the scientist’s hypotheses, and continuously evaluate the fit of
these hypotheses to data gathered over time from multiple experiments, and suggest refinement to
these hypotheses resulting in improved fit to these multiple datasets.
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