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Abstract.

Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged
as a powerful new instrument to collect vast quantities of data about activity in the
human brain. A typical fMRI experiment can produce a three-dimensional image
related to the human subject’s brain activity every half second, at a spatial resolution
of a few millimeters. As in other modern empirical sciences, this new instrumentation
has led to a flood of new data, and a corresponding need for new data analysis
methods. We describe recent research applying machine learning methods to the
problem of classifying the cognitive state of a human subject based on fRMI data
observed over a single time interval. In particular, we present case studies in which
we have successfully trained classifiers to distinguish cognitive states such as (1)
whether the human subject is looking at a picture or a sentence, (2) whether the
subject is reading an ambiguous or non-ambiguous sentence, (3) whether the word
the subject is viewing is a noun or a verb, and (4) whether the noun the subject is
viewing is a word describing food, people, buildings, etc. This learning problem pro-
vides an interesting case study of classifier learning from extremely high dimensional
(10° features), extremely sparse (tens of training examples), noisy data. This paper
summarizes the results obtained in these four case studies, as well as lessons learned
about how to successfully apply machine learning methods to train classifiers in such
settings.

Keywords: Scientific data analysis, functional Magnetic Resonance Imaging, High
dimensional data, Feature selection, Bayesian classifier, Support Vector Machine,
Nearest neighbor, Brain image analysis

1. Introduction

The study of human brain function has received a tremendous boost in
recent years from the advent of functional Magnetic Resonance Imaging
(fMRI), a brain imaging method that dramatically improves our ability
to observe correlates of neural brain activity in human subjects at high
spatial resolution (several millimeters), across the entire brain. This
fMRI technology offers the promise of revolutionary new approaches
to studying human cognitive processes, provided we can develop ap-
propriate data analysis methods to make sense of this huge volume
of data. A twenty-minute fMRI session with a single human subject
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produces a series of three dimensional brain images each containing
approximately 15,000 voxels, collected once per second, yielding tens
of millions of data observations.

Since its advent, fMRI has been used to conduct hundreds of studies
that identify specific regions of the brain that are activated on average
when a human performs a particular cognitive function (e.g., reading,
mental imagery). The vast majority of this published work reports
descriptive statistics of brain activity, calculated by averaging together
fMRI data collected over multiple time intervals, in which the subject
responds to repeated stimuli of some type (e.g., reading a variety of
words).

In this paper we consider a different goal: training machine learning
classifiers to automatically decode the subject’s cognitive state, given
just his/her fMRI activity at a single time instant or time interval.
We describe here several case studies, such as training the system to
distinguish whether the word a subject is currently processing is a noun
or a verb.

This goal of training classifiers to detect cognitive states is important
because such classifiers could provide the basis for new approaches to
studying human reasoning processes in both normal and abnormal pop-
ulations. Put succinctly, such classifiers would constitute virtual sensors
of the subject’s cognitive state, which could be useful to scientists and
clinicians across a range of cognitive science research and diagnostic
medical applications.

This problem is also quite interesting from the perspective of ma-
chine learning, because it provides a case study of classifier learning
from extremely high dimensional, sparse, and noisy data. In our case
studies we encounter problems where the examples are described by
100,000 features, and where we have less than a dozen, very noisy,
training examples per class. Although conventional wisdom might sug-
gest classifier learning would be impossible in such extreme settings,
in fact we have found it is possible in this case, by design of appropri-
ate feature abstraction and classifier training methods tuned to these
problem characteristics.

In this paper we first provide a brief introduction to fMRI, then
describe several fMRI data sets we have analyzed, the machine learning
approaches we explored, and lessons learned about how best to apply
machine learning approaches to the problem of classifying cognitive
states based on single interval fMRI data.
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2. Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a technique for
obtaining three-dimensional images related to activity in the brain
through time. More precisely, fMRI measures the ratio of oxygenated
hemoglobin to deoxygenated hemoglobin in the blood with respect to
a control baseline, at many individual locations within the brain. It
is widely believed that blood oxygen level is influenced by local neural
activity, and hence this blood oxygen level dependent (BOLD) response
is generally taken as an indicator of neural activity.

An fMRI scanner measures the value of the fMRI signal (BOLD
response) at all the points in a three dimensional grid, or image),
covering part of the brain. In the studies described in this paper, a three
dimensional image is captured every 1, 1.5, or 0.5 seconds. We refer to
the cells within an image as vozels (volume elements). The voxels in a
typical fMRI study have a volume of a few tens of cubic millimeters, and
a typical three dimensional image typically contains tens of thousands
of voxels, 10,000 to 15,000 of which contain cortical matter and are
thus of interest. While the spatial resolution of fMRI is dramatically
better than that provided by earlier brain imaging methods, each voxel
nevertheless contains on the order of hundreds of thousands of neurons.

The temporal response of the fMRI BOLD signal is smeared over
several seconds. Given an impulse stimulus such as a flash of patterned
light, the fMRI BOLD response increases to a maximum after approx-
imately four to five seconds, typically returning to baseline levels after
another five to ten seconds. Despite this prolonged temporal response,
researchers have found that the relative timing of events can be resolved
to within a few tens of milliseconds (e.g. to distinguish the relative
timing of two flashes of light - one in the left eye and one in the right
eye - as in (Menon et al., 1998)).

A small portion of fMRI data is illustrated in Figure 1. This figure
shows data collected over a fifteen second interval during which the
subject was read a word, decided whether it was a noun or verb (in
this case, it was a verb), then waited for another word. This data was
sampled once per second for fifteen seconds, over sixteen planar slices,
one of which is shown in the figure.

3. Related Work Analyzing fMRI Data

Over recent years there has been a growing interest within the computer
science community in data processing for fMRI. One popular style of
processing involves using a Generalized Linear Model (GLM) approach
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Figure 1. Typical fMRI data. The top portion of the figure shows fMRI data for
a selected set of voxels in the cortex, from a two-dimensional image plane through
the brain. A fifteen second interval of fMRI data is plotted at each voxel location.
The anterior portion of the brain is at the top of the figure, posterior at bottom.
The left side of the brain is shown on the right, according to standard radiological
convention. The full three-dimensional brain image consists of sixteen such image
planes. The bottom portion of the figure shows one of these plots in greater detail.
During this interval the subject was presented a word, answered whether the word
was a noun or verb, then waited for another word.

(Friston et al., 1995)(Bly, 2001), in which a regression is performed
on the signal value at a voxel with respect to some stimulus property
in order to determine whether the voxel’s activity is related to the
stimulus. Others have used #-statistics to determine relevant active
voxels, and yet others have used more complex statistical methods to
estimate parameters of the BOLD response in the presence of noise
(Genovese, 1999).
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Various methods for modelling time series data have been used for
fMRI data. For example, (Hojen-Sorensen et al., 1999) used Hidden
Markov Models (HMM) to learn a model of activity in the visual cortex
resulting from a flashing light stimulus. Although the program was not
told the stimulus, the on-off stimulus was recovered as the hidden state
by the HMM.

A variety of unsupervised learning methods have also been used for
exploratory analysis of fMRI data. For example, (Goutte et al., 1998)
discussed the use of clustering methods for fMRI data. One partic-
ular approach (Penny, 2001) involved the application of Expectation
Maximization to estimate mixture models to cluster the data. Others
have used Principle Components Analysis and Independent Compo-
nents Analysis (McKeown et al., 1998) to determine spatial-temporal
factors that can be linearly combined to reconstruct the fMRI signal.

While there has been little work on our specific problem of training
classifiers to decode cognitive states, there are several papers describing
work with closely related goals. For example, (Haxby et al., 2001)
showed that different patterns of fMRI activity are generated when
a human subject views a photograph of a face versus a house, ver-
sus a shoe, versus a chair. While they did not specifically use these
discovered patterns to classify subsequent single-event data, they did
report that by dividing the fMRI data for each photograph category
into two samples, they could automatically match the sample means
related to the same category. Others (Wagner et al., 1998) reported that
they have been able to make better-than-random predictions regarding
whether a visually presented word will be remembered later, based on
the magnitude of activity within certain parts of left prefrontal and
temporal cortices during that presentation.

In addition to work on fMRI, there has been related recent work
applying machine learning methods to data from other devices mea-
suring brain activity. For example, (Blankertz et al., 2002) describe
experiments training classifiers for single trial EEG data.

4. Approach

This section briefly describes our approach to data preprocessing, train-
ing classifiers, and evaluating them.

4.1. DATA ACQUISITION AND PREPROCESSING

In the fMRI studies considered here, data were collected from normal
students from the university community. Typical studies involved be-
tween five and fifteen subjects, and we generally selected a subset of
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these subjects with the strongest, least noisy fMRI signal to train our
classifiers. Data were preprocessed to remove artifacts due to head mo-
tion, signal drift, and other sources, using the FIASCO program (Eddy
et al., 1998)!. All voxel activity values were represented by the percent
difference from their mean value during fixation (rest) conditions. These
preprocessed images were used as input to our classifiers.

In several cases, we found it useful to identify specific anatomically
defined regions of interest (ROIs) within the brain of each subject. To
achieve this, two types of brain images were collected for each subject.
One type of image, capturing brain activation via the BOLD response,
is referred to as a functional image. The second type of image, called
a structural image, reveals the static physical brain structure at higher
resolution. For each subject, this structural image was used to identify
the anatomical regions of interest, using the parcellation scheme of
(Caviness et al., 1996) and (Rademacher et al., 1992). For each sub-
ject, the mean of their functional images was then co-registered to the
structural image, so that individual voxels in the functional images
could be associated with the ROIs identified in the structural image.

4.2. LEARNING METHODS

In this paper we explore the use of machine learning methods to ap-
proximate classification functions of the following form

f : IMRI-sequence(t, t2) — CognitiveState

where fMRI-sequence(t1,t2) is the sequence of fMRI images collected
during the contiguous time interval [t1,?2], and where CognitiveState
is the set of cognitive states to be discriminated.

We explored a variety of methods for encoding fMRI-sequence(t1, t2)
as input to the classifier. In some cases, we encoded it as a vector of
features, one for each voxel at each time in the interval [t1, t2]. This can
be an extremely high dimensional feature vector, consisting of hundreds
of thousands of features given that a typical image contains 10,000 to
15,000 voxels, and a training example can include dozens of images.
Therefore, we explored a variety of approaches to reducing the dimen-
sion of this feature vector, including methods for feature selection, as
well as methods that replace multiple feature values by their mean.
These feature selection and feature abstraction methods are described
in detail in Section 6.3.

We explored a number of classifier training methods, including:

! FIASCO is available at http://www.stat.cmu.edu/~fiasco.
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— Gaussian Naive Bayes (GNB). The GNB classifier uses the train-
ing data to estimate the probability distribution over fMRI ob-
servations, conditioned on the subject’s cognitive state. It then
classifies a new example X = (x1...x,) by estimating the prob-
ability P(c;|X) of cognitive state c;, using Bayes rule along with
the assumption that the features x; are conditionally independent
given the class:

P(c) T1; P(ajle:)
YklP(c) 1 P(wjlck)]

where P denotes distributions estimated by GNB. Each distribu-
tion of the form P(z;|c;) is modelled as a Gaussian, using maxi-
mum likelihood estimates of the mean and variance derived from
the training data. Distributions of the form P(c;) are modelled
as Bernoulli, again using maximum likelihood estimates based on
training data. Given a new example to be classified, the GNB
outputs posterior probabilities for each cognitive state, calculated
using the above formula.

P(ai|X) =

—  Support Vector Machine (SVM). We used a linear kernel Support
Vector Machine (see, for instance, (Burges, 1998)).

— k Nearest Neighbor(kNN). We use k Nearest Neighbor with a Eu-
clidean distance metric, considering values of 1, 3, 5, 7, and 9 for
k (see, for instance (Mitchell, 1997)).

4.3. EVALUATING RESULTS

Trained classifiers are evaluated by their cross-validated classification
error when learning boolean-valued classification functions. When more
than two classes are involved, the classifier outputs a rank-ordered list
of the potential classes from most to least likely. In this case, we score
the success of each prediction by the normalized rank of the correct
class in this sorted list. Thus, the normalized rank error ranges from
0 when the correct class is ranked most likely, to 1 when it is ranked
least likely. Note that random guessing yields an expected normalized
rank error of 0.5.

To evaluate classifiers, we generally employ k-fold cross-validation,
leaving out one example per class on each fold. In the data sets consid-
ered in this paper, the competing classes are balanced (i.e., the number
of available examples is the same for each competing class). Thus,
by leaving out one example per class we retain a balanced training
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set for each fold, which correctly reflects the class priors. In fact, we
found that when training data was especially sparse, this leave-out-
one-example-per-class approach sometimes significantly outperformed
a leave-out-one-example approach, and that the latter generally yielded
pessimistic error estimates.

Because the fMRI BOLD response lasts for several seconds, a strict
leave-out-one-example-per-class evaluation can sometimes produce op-
timistic estimates of the true classifier error. The reason is straightfor-
ward: when holding out a test image occurring at time %, the training
images at times ¢ + 1 and ¢ — 1 will be highly correlated with this test
image. Therefore, if the images at ¢ — 1 and ¢ + 1 belong to the same
class as the image at ¢, this leads to optimistically biased error estimates
for the held out example. When faced with this situation (i.e., in the
Semantic Categories study described below), we avoid the optimistic
bias by removing from the training set all images that occur within 5
seconds of the held out test image. In this case, our cross validation
procedure involves holding out one test example per class, and also
removing temporally proximate images from the training set.

5. Case Studies

This section describes four distinct fMRI studies, the data collected in
each, and the classifiers trained for each. In this section we summarize
the success of the best classifier obtained for each of these studies. The
subsequent section discusses more generally the lessons learned across
these four case studies.

5.1. PICTURE VERSUS SENTENCE STUDY

In this fMRI study (Keller et al., 2001), subjects went through a se-
quence of trials, during which they were first shown a sentence and a
simple picture, then answered whether the sentence correctly described
the picture. We used this data to explore the feasibility of training
classifiers to distinguish whether the subject is examining a sentence
or a picture during a particular time interval.

In half of the trials the picture was presented first, followed by
the sentence. In the remaining trials, the sentence was presented first,
followed by the picture. In either case, the first stimulus (sentence or
picture) was presented for 4 seconds, followed by a blank screen for 4
seconds. The second stimulus was then presented for up to 4 seconds,
ending when the subject pressed the mouse button to indicate whether
the sentence correctly described the picture. Finally, a rest or fixation
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period of 15 seconds was inserted before the next trial began. Thus,
each trial lasted approximately 27 seconds. Pictures were geometric
arrangements of the symbols +, * and/or §, such as

+

*

Sentences were descriptions such as “It is true that the plus is below
the dollar.” Half of the sentences were negated (e.g., “It is not true
that the star is above the plus.”) and the other half were affirmative
sentences.

Each subject was presented a total of 40 trials as described above,
interspersed with ten fixation periods. In each fixation period the sub-
ject simply stared at a fixed point on the screen. fMRI images were
collected every 500 msec.

The learning task we consider for this study is to train a classifier to
determine, given a particular 8-second interval of fMRI data, whether
the subject is viewing a sentence or a picture during this interval. In
other words, we wish to learn a separate classifier for each subject, of
the following form

[ IMRI-sequence(to, to + 8) — {Picture, Sentence}

where t is the time of stimulus (picture or sentence) onset. The fMRI-
sequence was described by the activities of all voxels appearing in 7
distinct ROIs. These 7 ROIs were selected as most likely to be relevant
by a domain expert, and contained a total of 1397 to 2864 voxels per
subject, varying due to differences in brain structure from one subject
to another. Note that the eight second interval considered by the clas-
sifier contains 16 images (captured twice per second), yielding an input
feature vector containing from 22,352 to 45,824 features, depending on
the human subject.

The expected classification error for the default classifier (guessing
the most common class) is 0.50 in this case. The average error obtained
for the most successful trained classifier, using the most successful fea-
ture selection strategy, was 0.09, over 13 subjects, with the best subject
reaching 0.01 (refer to Section 6.2 for more details). These results are
statistically highly significant, and indicate that it is indeed possible to
train classifiers to distinguish these two cognitive states reliably.

In addition to these single-subject classifiers, we also experimented
with training classifiers that operate across multiple subjects. In this
case, we evaluated the classification error using a leave-one-subject-
out regime in which we held out each of the 13 subjects in turn while
training on the other 12. The mean error over the held out subject
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for the most successful combination of feature selection and classifier
was 0.25. Again, this is significantly better than the expected 0.5 error
from random guessing, indicating that it is possible to train classifiers
for this task that operate on human subjects who where not part of
the training set. These results are described in detail in Section 6.4.

5.2. SYNTACTIC AMBIGUITY STUDY

In this fMRI study (see (Mason et al., in press)) subjects were presented
with two types of ambiguous sentences and two types of unambiguous
sentences, and were asked to respond to a yes-no question about the
content of each sentence. The questions were designed to ensure that the
subject was in fact processing the sentence. The learning task for this
study was to distinguish whether the subject was currently reading the
least ambiguous or the most ambiguous type of sentence. An example
of the most ambiguous type of sentence is “The experienced soldiers
warned about the dangers conducted the midnight raid.” An example
of the least ambiguous type of sentence is “The experienced soldiers
spoke about the dangers before the midnight raid.”

Ten sentences of each of type were presented to each subject. Each
sentence was presented for 10 seconds. Next a question was presented,
and the subject was given 4 seconds to answer. After the subject an-
swered the question, or 4 seconds elapsed, an “X” appeared on the
screen for a 12 second rest period. The scanner collected one image
every 1.5 seconds.

We are interested here in learning a classifier that takes as input
an interval of fMRI activity, and determines which of the two types
of sentence the subject is reading. Using our earlier notation, for each
subject we trained classifiers of the form

f : IMRI-sequence(tg + 4.5,ty + 15) — SentenceType

where SentenceType = {Ambiguous, Unambiguous}, and where g is
the time at which the sentence is first presented to the subject. Note
the classifier input describes fMRI activity during the interval from 4.5
to 15 seconds following initial presentation of the sentence. This is the
interval during which the fMRI activity is most intense. In this case we
also reduced the set of voxels considered to those in 4 ROIs considered
to be most relevant by a domain expert. These 4 ROIs contained a
total of 1500 to 3508 voxels, depending on the subject.

The expected classification error from random guessing in this case
is 0.50, given the equal number of examples from both classes. The
average error obtained by the most successful combination of feature
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selection and classifier is 0.21, over 5 subjects, with the best subject
reaching 0.10 (refer to 6.2 for more details).

5.3. NOUN VERSUS VERB STUDY

In this study, subjects were shown single words, and answered for each
whether it was a verb or a noun. We used this data to explore the
feasibility of training classifiers to distinguish whether the subject is
considering a verb or noun.

In each trial, the word was presented for 1 second, followed by a
blank screen so that the total trial length was 16 seconds. A total of
16 trials, 8 of each kind of word, were presented to each subject (trials
9 through 16 used the same words as trials 1 through 8, presented in a
different randomized sequence). fMRI images were captured once per
second.

In this case, we trained classifiers to discriminate whether the sub-
ject is considering a noun or a verb, based on observations during a
subinterval of the trial:

f : IMRI-sequence(ty + 5, tg + 13) — WordType

where WordType = {Noun, Verb}, and where ¢; is the time when the
word is first presented. This time interval was selected to capture the
peak fMRI response for each word. In this case, all voxels from 30 ROIs
were included, yielding a total of 8,586 to 10,899 voxels, depending
on the subject. Given the nine images collected during each example,
this forms a classifier whose input contains between 77,274 and 98,091
features, and which is trained from 16 examples.

Given the equal number of noun and verb trials, the expected error
from random guessing is again 0.50. The average error obtained by the
most successful combination of feature selection and classifier is 0.23,
over four subjects, with the best subject reaching 0.19 (refer to 6.2 for
details).

5.4. SEMANTIC CATEGORIES STUDY

In this study, 10 subjects were presented with individual nouns belong-
ing to twelve distinct semantic categories (e.g., Fruits, Tools), and asked
to determine whether the word belonged to a particular category. We
used this data to explore the feasibility of training classifiers to detect
which of the semantic categories of word the subject was examining.
The trials in this study were divided into twelve blocks. In each
block, the name of a semantic category was first displayed for 2 seconds.
Following this, the subject was shown a succession of 20 words, each
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presented for 400 msec and followed by 1200 msec of blank screen.
After each word was presented, the subject clicked a mouse button to
indicate whether the word belonged to the semantic category named
at the beginning of the block. In fact, nearly all words belonged to the
named category (half the blocks contained no out-of-category words,
and the remaining blocks contained just one out-of-category word). A
multi-second blank screen rest period was inserted between each of
the twelve blocks. The twelve semantic categories of words presented
were “fish,” “four-legged animals,” “trees,” “flowers,” “fruits,” “veg-
etables,” “family members,” “occupations,” “tools,” “kitchen items,”
“dwellings,” and “building parts.” Words were chosen from lists of high
frequency words of each category, as given in (Battig and Montague,
1968), in order to avoid obscure or multiple-meaning words. fMRI
images were acquired once per second.

The learning task we considered for this study is to distinguish which
of the twelve semantic categories the subject is considering, based on
a single observed fMRI image. Following our earlier notation, we wish
to learn a classifier of the form:

f : IMRI(t) — WordCategory

where fMRI(¢) is a single fMRI image, and where WordCategory is the
set of 12 semantic categories described above. All voxels from 30 ROIs
were used, yielding a total of 8,470 to 11,136 voxels, depending on the
subject.

The trained classifier outputs a rank-ordered list of the 12 categories,
ranked from most to least probable. We therefore evaluate classifier
error using the normalized rank error described in Section 4, where
random guessing gives an expected normalized rank error of 0.50. The
normalized rank error for the most successful combination of feature
selection and classifier is 0.08 (i.e. on average the correct word category
was ranked first or second out of the twelve categories), over 10 subjects,
with the best subject reaching 0.04. (please refer to 6.2 for more details).

One reasonable question that can be raised regarding these classi-
fier results is whether the classifier is indeed learning the pattern of
brain activity predictive of semantic categories, or whether it is instead
learning patterns related to some other time-varying phenomenon that
influences fMRI activation. One unfortunate property of the experimen-
tal protocol for collecting data, from this point of view, is that all of
the words belonging to a single category are presented within a single
time interval (i.e., a single experiment block). In fact we do believe
this temporal adjacency may be influencing our results, but we also
believe the classifier is indeed capturing regularities primarily related
to semantic categories. One strong piece of supporting evidence is that
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classifiers trained for different human subjects tend to rely on the same
brain locations to make their predictions, and that these regions have
been reported by others as related to semantic categorization. Figure
2 illustrates the brain regions containing the most informative fMRI
signal for classification, across three subjects. Note the highly discrim-
inating voxels are clustered together, in similar regions across these
subjects. These locations for discriminability match those reported in
earlier work on semantic categorization by (Chao et al., 1999),(Chao
et al., 2002), (Ishai et al., 1999) and (Aguirre et al., 1998), as well as
some novel areas that are currently under investigation.

Figure 2. Color plots show locations of voxels that best predict the word seman-
tic category, for three different subjects. For each voxel, the color indicates the
normalized rank error over the test set, for a GNB classifier based on this single
voxel. Note the spatial clustering of highly predictive voxels, and the similar regions
of predictability across these three subjects. The range of normalized rank errors
is [Red= 0.25,Dark Bluex 0.6], with other colors intermediate between these two
extremes.

6. Lessons Learned

6.1. CAN ONE LEARN TO DECODE MENTAL STATES FROM FMRI?

The primary goal leading to this research was to determine whether
it is feasible to use machine learning methods to decode mental states
from single interval fMRI data. The successful results reported above
for all four data sets indicate that this is indeed feasible in a variety of
interesting cases. However, it is important to note that while our em-
pirical results demonstrate the ability to successfully distinguish among
a predefined set of states occurring at specific times while the subject
performs specific tasks, they do not yet demonstrate that trained clas-
sifiers can reliably detect cognitive states occurring at arbitrary times
while the subject performs arbitrary tasks. While our current results
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may already be of use in cognitive science research, we intend to pursue
this more general goal in future work.

We also attempted but failed to train successful classifiers for several
other classification functions over these same data sets. For example,
we were unable to train an accurate classifier to distinguish the pro-
cessing of negated versus affirmative sentences in the Picture versus
Sentence study, or to distinguish the processing of true versus false
sentences. We were also unable to train classifiers to distinguish the
exact word the subject was reading in the Noun versus Verb study.
It may be that these failures could be reversed given larger training
sets or more effective learning algorithms. Alternatively, it may be
the case that the fMRI data simply lacks the information needed to
make these distinctions. This line of research is still very new, and
while the above results demonstrate the feasibility of discriminating a
variety of cognitive states based on fMRI, at this point the question
of exactly which cognitive states can be reliably decoded remains an
open empirical question. However, given our initial successes, likely
advances in brain imaging technology, and likely progress in developing
machine learning methods specifically for this type of application, we
are optimistic that over time we will be able to decode an increasingly
useful collection of cognitive states in an increasingly open ended set
of experimental settings.

6.2. WHIcH CLASSIFIER WORKS BEST?

As discussed earlier, we experimented with three classifier learning
methods: a Gaussian Naive Bayes (GNB) classifier, k-nearest neighbor
(kNN), and linear Support Vector Machines (SVM). These classifiers
were selected because they have been used successfully in other ap-
plications involving high dimensional data. For example, Naive Bayes
classifiers, kNN, and SVM have all been used for text classification
problems (Nigam et al., 2000; Joachims, 2001; Yang, 1999), where the
dimension of the data is approximately 10°, corresponding to the size
of the natural language vocabulary.

In considering these classifiers, one interesting and relevant rela-
tionship to consider is that GNB is a generative classifier (i.e., it learns
a function f : X — Y by instead directly modelling P(X|Y’) and
P(Y)), whereas SVM is a discriminative classifier (i.e., it learns f
by estimating parameters that map X directly to Y). As discussed
in (Ng and Jordan, 2002), the relative performance of generative and
discriminative classifiers can depend strongly on the number of training
examples available and the dimension of the data. More specifically,
they consider the relationship between the generative classifier GNB
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Table I. Comparison of Classification Methods. The numbers in the table are test
errors averaged over all single-subject classifiers trained for each study. The rows
with Feature Selection “All” show the result of using all voxels within the available
ROIs. The results in the second row for each study are obtained using the feature
selection method that performed best with GNB for that study. This same method
performed best with SVM’s as well, except in the case of Active feature selection in
the Syntactic Ambiguity study, where the ROIActiveAvg feature selection method
achieved a small but statistically insignificant improvement for the SVM.

Study Feature Selection GNB SVM 1NN 3NN 5NN 7NN 9NN
Picture vs All 029 032 043 041 037 037 0.33
Sentence Active 0.16 0.09 020 0.18 0.19 0.18 0.17
Semantic All 0.10 N/A 040 040 0.40 040 0.25
Categories Active 008 N/A 030 020 0.16 0.14 0.13
Syntactic All 043 038 0.50 0.46 047 0.39 043
Ambiguity Active 025 023 029 029 0.28 029 0.26
Noun vs All 036 039 044 045 039 044 041
Verb ROIActiveAvg 023 028 038 0.38 033 0.28 031

and its discriminative counterpart, Logistic regression. The discrimi-
native Logistic regression is usually preferred over GNB when training
data are plentiful, because it does not make the restrictive conditional
independence assumptions of GNB and therefore asymptotically it can
better model the target function. However, (Ng and Jordan, 2002) show
that given a feature space of dimension n, the number of examples
needed to reach the asymptotic error rate for the generative GNB is
O(log(n)), whereas for the discriminative Logistic regression it is O(n).
Because of this fact, one might expect that even if the discriminative
classifier outperforms the generative classifier asymptotically (in the
number of training examples), the generative classifier might outper-
form the discriminative classifier when training data is very sparse.
Ng and Jordan show exactly this empirical result over a number of
data sets. Furthermore, one might expect feature selection methods,
which reduce the dimension n, to potentially benefit the discriminative
classifier more than the generative classifier.

While our linear SVM classifier is different from Logistic regression,
it is also a linear discriminative classifier that converges toward its
asymptotic error rate in O(n) examples, and hence we expect the num-
ber of training examples and dimension of the data to have a similar
influence on the relative performance of GNB and SVM.
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To test the relative performance of our classifiers, we performed two
sets of experiments. First, for each study we analyzed the performance
of GNB, linear SVM, and kNN (with £ € {1,3,5,7,9}) using as input
to the classifier all voxels in the ROIs selected for those studies. Here
the performance metric is classification error, except for the Semantic
Categories study where the metric is average normalized rank error.
The performance reported for a specific study is the average over all
single-subject classifiers trained for that study, as obtained by leave-
one-example out from each class. Because the Semantic Categories
study is not a binary classification task, we did not experiment with
SVMs on this specific study.

The results are shown in Table I (first line for each study). As can
be seen here, the GNB and SVM classifiers consistently outperform
kNN. Examining the performance of kNN, one can also see a trend
that performance generally improves with increasing values of k.

Our second set of experiments examined the performance of the
classifiers when used in conjunction with feature selection. The specific
feature selection methods we considered are described in detail in the
next subsection. For each study we first determined the feature selection
method that yielded the best results for the GNB classifier, and the
feature selection method that yielded the best results for the SVM
classifier. As it turned out, this best method was identical for GNB and
SVM in all cases except for one: the Syntactic Ambiguity study, where
there was a small, statistically insignificant difference.? Therefore, we
report here the performance of all classifiers using the feature selection
method that optimizes GNB (and usually SVM) performance. These
results are summarized in Table I, on the second line corresponding
to each study. As in the first experiment, GNB and SVM outperform
kNN, and the performance of kNN improves as k increases.

6.2.1. Analysis

One clear trend in this data is that kNN fared less well than GNB or
SVMs across all studies and conditions. In retrospect, this is not too
surprising given the high dimensional, sparse training data sets. It is
well known that the kNN classifier is sensitive to irrelevant features,
as these features add in irrelevant ways to the distance between train
and test examples (Mitchell, 1997). This explanation for the poor per-
formance of kNN is also consistent with the dramatic improvement in
kNN performance resulting from feature selection. As the table results
indicate, feature selection often reduces kNN error by a factor of two

2 The “Active” feature selection method which optimized GNB performance in
the Syntactic Ambiguity study yielded an SVM error of 0.23, compared to an SVM
error of 0.21 using the “ROIActiveAvg” method.
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or more, presumably by removing many of these irrelevant, misleading
features.

The relationship between the performance of GNB and SVM is less
clear cut, as each outperforms the other in three of the six rows where
they are compared in Table I. Given the small number of examples
available in both the Syntactic Ambiguity study, and the Noun vs.
Verb study, the differences reported between GNB and SVM for these
two studies are not statistically significant. However, for the Picture
vs. Sentence study, which has more examples, the difference between
GNB and SVM using no feature selection (the row labeled “All”) is
significant at the p=0.15 level, and the difference when using feature
selection (the row labeled “Active) is significant at a p value extremely
close to zero.

These two statistically significant results comparing GNB and SVM
for the Picture vs. Sentence study are consistent with the general obser-
vations in the beginning of this subsection: the SVM performed more
poorly than GNB when no feature selection was used but outperformed
GNB when using feature selection. In fact, the stronger performance of
SVM when using feature selection held whether the number of features
selected was 20, 100, 200, 400, or 800, and held not only on average
across subjects, but also held for individual subject accuracies on at
least 12 of the 13 subjects. The number of selected active voxels for
which GNB and SVM reached their optimal accuracies were similar.

In summary, we found when training fMRI classifiers across a variety
of data sets and target functions that GNB and SVM outperformed
kNN quite consistently. Furthermore, in choosing between GNB and
SVMs, we found trends consistent with the analysis in (Ng and Jordan,
2002), namely that GNB worked better when the data was especially
sparse and high dimensional, and that SVM performed relatively better
when data sets were larger, or feature selection was used to reduce the
data dimension.

6.3. WHICH FEATURE ABSTRACTION METHOD WORKS BEST?

Given that our classification problem involves very high dimensional,
noisy, sparse training data, it is natural to consider feature selection
methods to reduce the dimensionality of the data before training the
classifier. As we discussed in the previous section, and as summarized
in Table I, feature selection leads to large and statistically significant
improvements in classification error across all four of our case stud-
ies. In this section we discuss in detail the feature selection methods
explored in our work, and some surprising lessons learned regarding
which feature selection methods worked best.
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6.3.1. Approach

The most common approach to feature selection when training clas-
sifiers is to select a subset of the available features based on some
statistical test that scores each feature by its ability to discriminate
the target classes. For example, given the goal of learning a target
classification function f : X — Y, one common approach to feature
selection is to rank order the features of X by their mutual information
with the class variable Y, then to greedily select the n highest scoring
features (e.g., (Cover and Thomas, 1991)).

Given the nature of classification problems in the fMRI domain (and
many other domains as well), a second general approach to feature
selection is also possible. To illustrate, consider the problem of learning
a Boolean classifier f : X — Y where Y = {1,2}, given training
examples labeled as belonging to either class 1 or class 2 (e.g., learning
to distinguish whether the subject is viewing a noun or verb). In fMRI
studies, we naturally obtain three classes of data rather than two. In
addition to data representing class 1 and class 2, we also obtain data
corresponding to a third “fixation” or “rest” condition. This fixation
condition contains data observed during the time intervals between
trials, during which the subject is generally at rest (e.g., they are
examining neither a noun nor a verb, but are instead staring at a
fixation point). Thus, we can view the data associated with class 1
and class 2 as containing some signal conditioned on the class variable
Y, whereas the data associated with fixation contains no such signal,
and instead contains only background noise relative to our classification
problem. In this setting, we can consider a second general approach to
feature selection: score each feature by how well it discriminates the
class 1 or class 2 data from the zero signal data. In the terminology of
fMRI, we score each feature based on how active it is during the class
1 or class 2 intervals, relative to the fixation intervals. The intuition
behind this feature selection method is that it emphasizes choosing
voxels with large signal-to-noise ratios, though it ignores whether the
feature distinguishes the target classes.

We refer to this general setting as the “zero signal” learning setting,
summarized in Figure 3. Notice many classification problems involv-
ing sensor data can be modeled in terms of this zero signal learning
setting (e.g., classifying speakers based on voice data, where the zero
signal condition corresponds to background noise when neither person
is speaking). Therefore, understanding how to perform feature selection
and classification within this setting has relevance beyond the domain
of fMRI. In fact, within the fMRI literature it is common to use activity
to select a subset of relevant voxels, and then to compare the behavior
of this selected subset over various conditions.
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Figure 3. The “zero signal” learning setting. Boolean classification problems in the
fMRI domain naturally give rise to three types of data: data corresponding to the
two target classes plus data collected when the subject is in the “fixation” or “rest”
condition. We assume the data from class 1 and class 2 are composed of some
underlying signal plus noise, whereas data from the fixation condition contains
no relevant signal but only noise. In such settings, feature selection methods can
consider both vozel discriminability (how well the feature distinguishes class 1 from
class 2), and vozel activity (how well the feature distinguishes class 1 or class 2 from
the zero signal class).

In the experiments summarized below, we consider feature selection
methods that select voxels based on both their ability to distinguish the
target classes from one another (which we call discriminability), and on
their ability to distinguish the target classes from the fixation condition
(which we call activity). Although each feature consists of the value of
a single voxel at a single time, we group the features involving the
same voxel together for the purpose of feature selection, and thus focus
on selecting a subset of voxels. In greater detail, the feature selection
(voxel selection) methods we consider here are:

— Select the n most discriminating vozels (Discrim). In this method,
a separate classifier is trained for each voxel, using only the ob-
served fMRI data associated with that voxel. The accuracy of this
single-voxel classifier over the training data is taken as a measure
of the discriminating power of the voxel, and the n voxels that
score highest according to this measure are selected. Note when
reporting cross validation errors on final classifiers using this fea-
ture selection method, features are selected separately for each
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cross-validation fold in order to avoid using data from the test fold
during the feature selection process. Thus, the voxels selected may
vary from fold to fold.

— Select the n most active vozels (Active). In this method, voxels
are selected based on their ability to distinguish either target class
from the fixation condition. More specifically, for each voxel, v,
and each target class y;, a t-test is applied to compare the voxel’s
fMRI activity in examples belonging to class y; to its activity in
examples belonging to fixation periods. The first voxels are then
selected by choosing for each target class y; the voxel with the
greatest t statistic. The next voxels are selected by picking the
second most active remaining voxel for each class, and so on, until
n voxels are chosen. Notice the selected voxels may distinguish
just one target class from fixation, or may distinguish both target
classes from fixation.

— Select the n most active vozels per Region of Interest (roiActive).
This is similar to the Active method above, but ensures that voxels
are selected uniformly from all regions of interest (ROIs) within
the brain. More precisely, given m prespecified ROIs, this method
applies the Active method to each ROI, selecting n/m voxels from
each. The union of these voxels are returned as the n selected
voxels.

The approaches above for selecting voxels can be combined with
methods for averaging the values of multiple features (in space or time),
and with methods that select data over a sub-interval in time. We
experimented with various combinations of such approaches, and report
here on the above three methods (Discrim, Active, roiActive) as well
as a fourth method derived from roiActive:

— Calculate the mean of active vozels per ROI (roiActiveAvg). This
method first selects n/m voxels for each of the m ROIs using the
roiActive method. It then creates a single “supervoxel” for each
ROI, whose activity at time ¢ is the mean activity of the selected
ROI voxels at time ¢.

6.3.2. Results

We experimented with each of these four feature selection methods,
over each of the four case study data sets. For comparison purposes
we also report errors obtained using all features (denoted as “All”). In
each experiment we considered a range of numbers of voxels to keep 3.

3 The numbers of voxels considered were {20,100, 200, 400, 800} for Picture
vs Sentence, {4, 20, 40, 80,160} for Syntactic Ambiguity, {100, 800,1600} for Verb
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Table II. Picture vs Sentence Study - errors by subject and feature selection method.
The first column indicates the feature selection method, with each row reporting
errors achieved using GNB with this method (feature selection method “All” uses
all available features). The second column indicates the average error over all 13
subjects. Remaining columns indicate errors for individual subjects A through M.
Errors in columns A through M are the minimum errors achieved by varying the
number of features selected.

Feature Sel.  Average Error A B C D E F G

All 0.29 048 0.10 031 0.03 031 040 0.45

Discrim 0.26 026 009 034 006 024 031 033

Active 0.16 021 0.08 019 0.01 0.11 031 0.33

roiActive 0.18 030 0.09 024 0.03 013 029 031

roiActiveAvg 0.21 045 0.16 031 0.01 0.25 0.28 0.26
H I J K L M

0.06 0.16 0.11 0.13 0.31 0.09
019 031 029 036 045 0.15
005 013 0.19 015 0.33 0.10
0.11 019 019 019 024 0.11
0.21 028 0.28 023 046 0.20

Tables II through V present summarized results for each of the
four fMRI studies. Each table shows the best errors obtained for each
feature selection method and for each subject considered in the study,
when using a GNB classifier. Here the best error refers to the lowest
error achieved by varying the number of selected voxels. The optimal
number of voxels selected varied by study, subject, and feature selection
method, typically ranging from 5 to 20% of the total number available
in the selected ROIs.

6.3.3. Analysis
These results indicate that using feature selection leads to improved
classifier error in all studies considered. More specifically, the best fea-
ture selection method outperforms no feature selection for every human
subject in every case study except the “Noun versus Verb” study, where
it outperforms no feature selection in three of the four subjects.

A second strong trend in the results is the dominance of feature
selection methods based on activity (Active, roiActive, roiActiveAvg)

vs Noun and {100, 200,400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4400} for
Semantic Categories.
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Table III. Syntactic Ambiguity Study - GNB errors by subject and feature selection
method. Results are presented using the same format as Table II.

Feature Selection Average Error A B C D E
All 0.43 0.30 0.55 0.55 0.35 0.40
Discrim 0.34 0.25 0.50 0.30 0.30 0.35
Active 0.25 0.20 0.35 0.25 0.25 0.20
roiActive 0.27 0.15 0.35 0.35 0.30 0.20
roiActiveAvg 0.27 0.25 0.30 0.30 0.30 0.20

Table IV. Noun vs Verb Study - GNB errors by subject and feature selection
method. Results are presented using the same format as Table II.

Feature Selection Average Error A B C D
All 0.36 0.38 0.19 0.38 0.50
Discrim 0.36 0.38 0.19 0.38 0.50
Active 0.34 0.31 0.38 0.31 0.38
roiActive 0.31 0.25 0.31 0.31 0.38
roiActiveAvg 0.23 0.19 0.25 0.25 0.25

over those based on discriminability (Discrim). As can be seen in the
tables, the average error for the best activity-based method outperforms
the average error for the discriminability method in all four case studies.
The best activity-based method dominates the discriminability-base
method for 11/13 subjects in the “Picture versus Sentence” study,
for 8/10 subjects in the “Semantic Categories” study, 5/5 subjects
in the “Syntactic Ambiguity” study and 3/4 subjects in the “Noun
versus Verb” study. Under the null hypothesis that activity-based and
discrimination-based methods perform better equally often, the prob-

Table V. Semantic Categories - GNB errors by subject and feature selection method. Results are
presented using the same format as Table II.

Feature Sel. Avg Error A B C D E F G H I J

All 0.10 0.13 0.17 0.04 0.12 0.06 0.07 020 0.04 014 0.05
Discrim 0.10 0.10 0.17 0.04 0.12 0.06 0.07 019 0.04 013 0.05
Active 0.08 0.11 0.12 0.04 0.10 0.06 006 0.11 0.04 0.13 0.04

roiActive 0.09 0.12 0.13 0.05 0.11 0.06 0.07 0.12 0.04 0.14 0.04
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ability of the activity-based methods dominating at least this often is,
respectively, 0.05, 0.01, 0.03 and 0.31 (using a binomial distribution
with a parameter of 0.5, where the number of trials corresponds to the
number of subjects in the study).

It is at first surprising to observe that selecting features based on
their activity level works dramatically better than selecting them based
on their ability to discriminate the target classes. Given that the end
goal is to discriminate the target classes, and that selecting features
based on discriminability is the norm in machine learning applica-
tions, one might well expect discriminability to have been the dominant
method. Below we look deeper into why we observe the opposite result
in all four fMRI studies.

One situation in which we might expect activity-based feature selec-
tion to outperform discrimination-based methods is when data dimen-
sionality is very high, noise levels are high, training data are sparse,
and very few voxels contain a signal related to the target classes. In
such cases, we should expect to find that some voxels that are truly
irrelevant appear nonetheless to be good discriminators over the sparse
sample of training data - even when using cross validation to test their
discrimination power. The larger the set of such irrelevant voxels, the
more likely that a feature selection strategy focused on discrimination
would select such overfitting voxels, and be unable to distinguish these
from truly informative discriminating voxels. However, in this same
case we might expect that choosing voxels with high signal-to-noise
ratios would be a useful strategy, as it would remove from consideration
the large number of irrelevant voxels (i.e., those with no signal, but
only noise). In fact, our activity-based feature selection strategies select
exactly this kind of high signal-to-noise ratio voxels. The bottom line
is that each feature selection strategy runs its own risk: discrimination-
based methods run the risk of selecting voxels that only coincidentally
fit the noisy training sample, whereas activity-based methods run the
risk of choosing high signal-to-noise voxels that cannot discriminate
the target classes. Which risk is greater depends on the exact prob-
lem, but the relative risk for the discrimination-based method grows
more quickly with increasing data dimension, increasing noise level,
decreasing training set size, and an increasing fraction of irrelevant
features.

To explore this conjecture, let us examine the actual characteristics
of the voxels selected by these two methods in our data. In particular,
let us focus on a single subject in the Semantic Categories study: sub-
ject G, whose best average normalized rank error (0.108) is obtained
by a GNB classifier using 800 voxels chosen using the Active feature
selection strategy. Using the same number of voxels selected instead by
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Figure 4. (a) Scatter plots of training set error (horizontal axis) against test set error
(vertical axis) for the voxels in each subset (row). (b) Histograms depicting for each
voxel subset the number of voxels that overfit to various degrees. The horizontal axis
in this case is (test error minus training error), measuring the degree of overfitting.

the Discrim method leads to a substantially higher error (0.190). Are
there in fact differences in the degree of overfitting between these two
sets of selected voxels?

To explore this question, let us consider three sets of voxels: voxels
chosen by Active feature selection but not by Discrim (“ActiveOnly”),
voxels chosen by Discrim by not by Active (“DiscriminatingOnly”),
and voxels chosen independently by both methods (“Intersection”). For
this particular subject, there are 251 voxels in the Intersection set, and
549 in each of ActiveOnly and DiscriminatingOnly. Training a GNB
classifier using Intersection yields an error of (0.106), slightly but not
significantly better than the error from the Active voxels.

Figure 4 shows the degree of overfitting for each of the three sets of
voxels. On the left, panel (a) provides a scatterplot of training set error
(horizontal axis) versus test set error (vertical axis). The straight line
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indicates where training error equals test error. Notice all three sets of
voxels overfit to some degree (i.e., test error is generally greater than or
equal to training error), but that the cluster of voxels ranges furthest
from the straight line for the DiscriminatingOnly voxels. On the right,
panel (b) provides a histogram showing the number of voxels in each set
that overfit to varying degrees. Note the DiscriminatingOnly voxel set
contains many more voxels that overfit to a large degree. Based on the
data summarized in this figure, it is clear that the degree of overfitting
is indeed greater in this case for voxels selected by Discrim than those
selected by Active. It is also clear that the voxels in Intersection suffer
the least overfitting.

A different view into the character of these three voxel sets is pro-
vided by Figure 5. Panel (a) plots the 10 voxels with the best training
set error from each of the three sets. Each voxel plot shows the learned
Gaussian model for each of the twelve target classes. Notice the greater
spread of these models for the voxels chosen by the Discrim method
(DiscriminatingOnly and Intersection) than for the ActiveOnly set.
Panel (b) provides a scatter plot of standard deviation (horizontal
axis) versus test error (vertical axis) for the three voxel sets. Notice
the significantly lower standard deviation for the ActiveOnly set.

Above we suggested that the Discrim method for feature selection
carries a risk of selecting voxels that overfit the data. The above data,
especially from Figure 4 indicates that in fact overfitting is greater
for Discrim than for Active in our data. We also suggested the Active
method carries the counterbalancing risk of selecting irrelevant voxels.
Is this in fact occurring in our case? The plots in Figure 5 show that
the ActiveOnly set of voxels does appear to contain voxels that are
poor discriminators among the twelve target classes.

To understand the impact of poor discriminators (irrelevant voxels)
selected by the Active method, consider the relative weight of the
relevant versus irrelevant voxels used by a GNB. Given an instance
X to be classified, the log odds assigned by the GNB for two classes ¢;
and ¢; is

P(leX) (

where 7y, is the observed value for the kth feature (i.e., the kth voxel) of
X, and where P denotes distributions estimated by GNB based on the
training data. Note the GNB classifier will predict class ¢; if the above
log odds ratio is positive, and ¢; if it is negative. Thus, the decision of
the GNB is determined by a linear sum, where each voxel contributes
one term to the sum.
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Figure 5. In the top half of the figure, each plot shows the 12 learned class probability
densities for a given voxel, with the x axis ranging from -5 to 5. Each row contains
the 10 voxels with the lowest training set errors from each voxel subset, sorted by
increasing error. For reference, the leftmost and rightmost plots in each row have
their (training set,test set) error values below them. The bottom half of the figure
provides scatterplots depicting the average class standard deviation (horizontal axis)
against the test error (vertical axis) for each voxel subset (row). Note the higher
variance for the Discriminating voxels (Intersection and DiscriminatingOnly).
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Now let us consider a voxel z; which is truly irrelevant to the clas-
sification (i.e., where the true distributions P(zx|c;) and P(z|c;) are
identical). First, consider the situation in which the learned estimates
P(xy|c;) and P(:ck\cj) are also identical. In this case the fraction in-
volving xj will be equal to 1, its log will be equal to 0 regardless of
the observed value of xj, and voxel x; will therefore have no influ-
ence on the final GNB decision. Now consider the situation in which
P(zk|c;) and P(zy|c;) differ (e.g., due to overfitting) despite the fact
that P(zg|c;) = P(zg|c;). In this case, the z; term will in fact be non-
zero, and will have a detrimental, randomizing influence on the final
GNB classification. Is this in fact occurring in our data? The plots in
panels (a) and (b) of Figure 5 suggest that the Active voxels that are ir-
relevant (i.e., those in ActiveOnly) do indeed have strongly overlapping
P(xy|c;) distributions, limiting the magnitude of their contribution to
the final GNB classification.

To summarize, we find clear empirical evidence that feature selection
consistently improves classification error, and that activity-based fea-
ture selection outperforms discrimination-based feature selection in all
four studies. Our classification problem setting involves an interesting
third category of “fixation” data, as illustrated in Figure 3. In fact,
we believe that a variety of sensor-based classification problems have a
similar property, providing a zero-signal class of data. We conjecture,
and support with a variety of empirical observations, that activity-
based feature selection may outperform discrimination-based feature
selection in zero-signal classification problems, especially with increas-
ing data dimension, noise, and sparsity, and as the proportion of truly
relevant features decreases.

6.4. CAN ONE TRAIN CLASSIFIERS ACROSS MULTIPLE SUBJECTS?

All results discussed so far in this paper have focused on the problem of
training subject-specific classifiers. This section considers the question
of whether it is possible to train classifiers that apply across multiple
human subjects, including subjects beyond the training set.

The biggest obstacle to inter-subject analysis of fMRI data is anatom-
ical variability among subjects. Different brains have different shapes
and sizes, making it problematic to register the many thousands of
voxels in one brain to their precise corresponding locations in a sec-
ond brain. One common approach to this problem is to transform
(geometrically morph) fMRI data from different subjects into some
standard anatomical space, such as Talairach coordinates (Talairach
and Tournoux, 1988). The drawback of this method is that the trans-
formation always introduces some degree of error into the spatial map.
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However, some feature selection and abstraction methods used in our
studies are immune to anatomical variability. For example, by averaging
the voxels in a particular ROI into a supervoxel (and treating it as a
single voxel ROI afterwards), we can easily map one brain to another
in terms of these anatomically defined ROI supervoxels. This approach
provides a successful way to train classifiers across subjects.

A second difficulty that arises when training multiple-subject clas-
sifiers is that the intensity of fMRI response to a particular stimulus is
usually different across subjects. We employ a normalization method
that linearly rescales the data from different subjects into the same
range to partially address this issue. While there are many inter-subject
differences that cannot be addressed by this simple linear transforma-
tion, we have found this normalization to be useful. We have also found
a similar normalization method can sometimes reduce classification
error for single-subject classifiers, when used to normalize data across
different trials for that subject.

We performed experiments to train multiple subject classifiers using
two data sets: the Picture versus Sentence data, and the Syntactic Am-
biguity data. The following two subsections describe these experiments
in turn.

6.4.1. Sentence Versus Picture Study

We trained multiple-subject classifiers for the Sentence versus Picture
study, to discriminate whether the subject was viewing a picture or a
sentence. Multiple-subject classifiers were trained using data from 12
of the 13 subjects, abstracting the data from each subject into ROI
supervoxels as described above. To evaluate the error of these trained
classifiers, we used leave-one-subject-out cross validation. In particular,
for each subject we trained on the remaining 12 subjects, measured the
error on this held out subject, then calculated the mean error over all
held out subjects.

The results, summarized in Table VI, show that the linear SVM
learns a cross-subject classifier that achieves error of 0.25+0.026 over
the left out subject. This is highly statistically significant compared to
the 0.50 error expected of random guessing, indicating that it is indeed
possible to train a classifier to capture significant subject-independent
regularities in brain activity that are sufficiently strong to detect single-
interval cognitive states in human subjects who are not part of the
training set. As in earlier experiments, we note that SVM and GNB
again outperform kNN.

In a second set of experiments, we partitioned the Sentence versus
Picture data into two disjoint subsets: trials in which the sentence was
presented before the picture (which we will refer to as S-then-P), and
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Table VI. Errors for multiple subject classifier, Sentence versus Picture study. The
last column shows the error of a multi-subject classifier when applied to a subject
withheld from the training set. Results are obtained using normalization and 7 ROIs.
All classifiers are trained by averaging all voxels in an ROI into a supervoxel. 95%
confidence intervals are computed under the assumption that test examples are i.i.d.
Bernoulli distributed. The error of a random classifier is 0.50.

Classifier Leave-1-subject-out error
GNB 0.30+0.028
SVM 0.25+0.026
INN 0.36+0.029
3NN 0.33+0.029
5NN 0.3240.028

Table VII. Errors for single-subject and multiple-subject classifiers, when trained on
P-then-S, and S-then-P data. The third column shows the average error of classifiers
trained for single subjects. The fourth column shows the error of multi-subject
classifiers applied to subjects withheld from the training set. Results are obtained
using normalization. All classifiers are trained based upon averaging all voxels in an
ROI into a supervoxel. 95% confidence intervals are computed under the assumption
that test examples are i.i.d. Bernoulli distributed. The error of a random classifier
is 0.50.

Data Set Classifier Avg Single Subject Error Leave-1-subject-out
S-then-P GNB 0.10+0.024 0.1440.030
S-then-P SVM 0.11+0.025 0.13+0.029
S-then-P INN 0.13+0.028 0.15+0.031
S-then-P 3NN 0.1240.027 0.13+0.029
S-then-P 5NN 0.10+£0.025 0.11+£0.027
P-then-S GNB 0.2040.033 0.20+0.034
P-then-S SVM 0.1740.031 0.2240.036
P-then-S 1NN 0.38+0.041 0.26+0.038
P-then-S 3NN 0.31+0.039 0.24+0.037
P-then-S 5NN 0.26+0.037 0.2140.035

trials in which the picture was presented before the sentence (which we
will call P-then-S). For each of these sets we repeated the training of
multi-subject classifiers, training and testing using only the data from
the subset. We performed this experiment to understand the impact
of these two differing contexts on the difficulty of the classification
problem. The results are summarized in Table VII. Note for comparison
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we present both the leave-1-subject-out error of the multiple subject
classifiers, and the average leave-one-example-per-class-out error of the
corresponding single subject classifiers.

As in the first table, the multiple subject classifiers achieve accura-
cies significantly greater than the 0.5 expected from random guessing.
In fact, these classifiers are significantly more accurate than those in
the first experiment, despite the fact that they are trained using only
half of the data. Presumably the explanation for this greater accuracy
is that the classification task is easier here than when using the full data
— in the full data examples come from a greater diversity of temporal
contexts, and the effects of these different contexts can remain apparent
for several seconds due to the temporally delayed BOLD response.

A second interesting trend apparent in Table VII is that the error
on the left out subject for the multiple subject classifiers is often very
close to the average error of the single subject classifiers, and in several
cases it is statistically significantly better than the corresponding single
subject classifiers. Presumably this better performance by the multiple
subject classifier can be explained by the fact that it is trained using
an order of magnitude more training examples, from twelve subjects
rather than one.

6.4.2. Syntactic Ambiguity Study

We also attempted to train multiple subject classifiers for the Syntac-
tic Ambiguity study, to discriminate whether the subject was reading
an ambiguous or non-ambiguous sentence. In this case, the best error
of a multi-subject classifier obtained was 0.3640.094 under leave-one-
subject-out cross validation, and correspondingly the average error of
single subject classifiers is 0.35+0.092. The setting which produced this
result was using GNB, Normalization, and feature selection method
roiActiveAvg, averaging the 20 most active voxels from each ROI into
a supervoxel. These errors are significantly better than expected from
a random classifier, 0.50. Unlike the Sentence versus Picture study,
however, these results are quite sensitive to the particular selection of
learning method and feature selection. Although we cannot draw strong
conclusions from this result, it provides modest additional support for
the feasibility of training multiple subject classifiers.

7. Summary and Conclusions
We have presented results from four different fMRI studies demon-

strating the feasibility of training classifiers to distinguish a variety
of cognitive states, based on single-interval fMRI observations. This
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problem is interesting both because of its relevance to studying human
cognition, and as a case study of machine learning in high dimensional,
noisy, sparse data settings.

Our comparison of classifiers indicates that Gaussian Naive Bayes
(GNB) and linear Support Vector Machine (SVM) classifiers outper-
form k Nearest Neighbor across all four studies, and that feature selec-
tion methods consistently improve classification error in all four studies.
In comparing GNB to SVM, we found trends consistent with the ob-
servations in (Ng and Jordan, 2002), that the relative performance
of generative versus discriminative classifiers depends in a predictable
fashion on the number of training examples and data dimension. In
particular, our experiments are consistent with the hypothesis that the
accuracy of SVM’s increases relatively more quickly than the accuracy
of GNB as the data dimension is reduced via feature selection, and as
the number of training examples increases.

Feature selection is an important aspect in the design of classifiers
for high dimensional, sparse, noisy data. We defined a new classifier
setting (the zero signal setting) that captures an important aspect of
our fMRI classification problem, as well as a variety of other classi-
fication problems involving sensor data. In this setting, the available
data includes not only examples of the classes to be discriminated (e.g.,
data when the subject is reading a noun, or a verb), but also a class
of “zero signal” data (e.g., when the subject is reading neither a noun
nor a verb, but is simply fixating on the screen). Our experiments show
that feature selection methods taking advantage of this zero signal data
consistently outperform traditional feature selection methods that use
only data from the target classes. We plan further research to develop
a more precise formal model of this zero signal setting, and to develop
and experiment with feature selection strategies tuned to take maximal
advantage of this setting.

In addition to training classifiers to detect cognitive states in single
subjects, we also explored the feasibility of training cross-subject clas-
sifiers to make predictions across multiple human subjects. In this case,
we found it useful to abstract the fMRI data by using the mean fMRI
activity in each of several anatomically defined brain regions. Using this
approach, it was possible to train classifiers to distinguish, e.g., whether
the subject was viewing a picture or a sentence describing a picture, and
to apply these successfully to subjects outside the training set. In some
cases, the classification accuracy for subjects outside the training set
equalled the accuracy achieved by training on data from just this single
subject. Given this success in training cross-subject classifiers, we plan
additional research to explore a number of alternative approaches to
cross-subject classification (e.g., instead of abstracting the data for each
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subject, map the different brain structures to a standard coordinate
system such as Talairach coordinates).

There are many additional opportunities for machine learning re-
search in the context of fMRI data analysis. For example, it would
be useful to learn models of temporal behavior, in contrast to the
work reported here which considers only data at a single time or time
interval. Machine learning methods such as Hidden Markov Models
and Dynamic Bayesian Networks appear relevant. A second research
direction is to develop learning methods that take advantage of data
from multiple studies, in contrast to the single study efforts described
here. In our own lab, for example, we have accumulated fMRI data from
over 800 human subjects. A third research topic is to develop machine
learning methods that could take as a starting point computational
cognitive models of human processing, such as ACT-R (Anderson et
al., in press) and 4CAPS (Just et al., in press), using these as prior
knowledge for guiding the analysis of fMRI, and automatically refining
these models to better fit the observed fMRI data.
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