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ABSTRACT
Motivation: The Gene Ontology (GO) project develops a stan-
dard way to describe gene products in terms of their associated
biological processes, cellular components and molecular func-
tions. However, it is far from complete. Due to lacking biological
knowledge or other technical difficulties, many gene pro-
ducts do not have GO annotations, and the annotations for
many other gene products are not specific enough to be
useful. Previous studies show that, to some extent, both
sequence similarity and expression similarity indicate functio-
nal relationship. The ability to infer unknown annotations or to
refine known (but not specific) annotations is fundamentally
important in discovery of various new biological knowledge.
Results: In this paper, we focus on gene expression data and
biological process annotations. The present work describes a
new probabilistic framework based on the GO hierarchy where
specific (biological process) annotations of genes are infer-
red from gene expression data. We apply the method to the
gene expression data of [5] and the GO annotations from Sac-
charomyces Genome Database(SGD). We show the results in
predicting (or refining) already known GO annotations under
leave-1-out cross-validation. By comparing the results with
previous non-generative models (such as kNN), we also con-
clude that genes having close annotations to each other in GO
are not necessarily more similar in expression data than genes
are further away. Additionally, we propose a new rank-based
distance metric which is provably more robust than well-known
metrics for gene similarity.
Availability: Available upon request.
Contact: xuerui@cs.umass.edu

1 INTRODUCTION
Rapid advancements in high-throughput methods for measu-
ring levels of gene expression for tens of thousand of of genes
in parallel have led to revolutionary changes in bioinformatics
research. The abundance of available microarray data ena-
bles us to conduct large-scale inference using computational
approaches regarding the roles of genes and relations between
genes in cellular context.

Biological knowledge of gene and protein role in cells is
being accumulated in an explosive fashion. To address the

need for consistent descriptions of gene products, the Gene
Ontology (GO) project [4], among other efforts using control-
led vocabularies, organizes biological terms into three onto-
logies: cellular component, biological process, and molecular
function. The GO annotations are very powerful in searching
all available aggregated biological knowledge regarding spe-
cific topics, for example, finding all the gene products that
are involved in bacterial protein synthesis when searching for
new targets for antibiotics [4].

However, the Gene Ontology is far from complete. Many
genes discussed in the literature do not have GO annotations
due to lagged updates and many genes do not have speci-
fic enough annotations because of lack of related biological
knowledge. There is a great need to automatically iden-
tify unknown annotations or refine known (but not specific)
annotations, and thus to accumulate and discover biological
knowledge in a more systematic way.

The huge amount of gene express data make it possi-
ble to conduct gene annotation inference computationally.
Previous studies showed that genes with similar expression
profiles (under some conditions) have similar annotations in
GO [9, 7, 2, 10, 8, 17]. However, it is not yet clear whether, in
the DAG structure of the Gene Ontology, genes that have close
annotations to each other are more similar in expression than
genes are further away. To computationally prove/disprove
the validity of the above statement is also an objective of this
paper.

The GO annotations are organized in a species-independent
manner. The yeast genome has been well studied and thus its
GO annotations are relatively accurate and complete. To make
it easier to assess the methods, in this paper, we will focus on
theSaccharomyces Genome Database(SGD) annotations.

Among the three GO ontologies (biological processes, cel-
lular components and molecular functions), for our analysis
of gene expression data, we only focus on Biological Process
in this paper. Molecular Function and Cellular Location are
conventionally assumed to be more amenable to sequence-
based comparisons. For example, conserved motifs indicate
how the protein interacts with other molecules, but not what
a biological process suggests. Similarly, common molecular
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function and cellular location are assumed to not necessa-
rily be co-expressed. On the other hand, biological processes
may have reasonably high-correlated gene expression level.
Several previous studies [7, 2] also share this observation.

2 MATERIALS
In all experiments conducted in this paper, we use the gene
expression data collection described in [5], available on-line
at http://genome-www.stanford.edu/yeast_stress/data.shtml.
The data represent the normalized, background-corrected log2
values of the Red/Green ratios measured on the DNA microar-
rays. All missing values in the dataset are estimated by us using
KNNimpute [16] with 17 nearest neighbors under Euclidean
distance metric. In total, we utilize the gene expression data
of 6,152 genes under 173 experimental conditions.

We take the annotations in the SGD database distributed on
February 15, 2006, and for consistent consideration, the DAG
structure of the Gene Ontology is directly constructed from
the ontology definitions on February 15, 2006. For simplicity,
we do not distinguish “is_a” and “part_of” relationships. We
assume that the annotations also follow the “true path rule”,
that is, if a gene is annotated at a node, it is implicitly annotated
at all nodes in the pathway from this node all the way up to
its top-level parent(s).

The term GO:0000004 (biological process unknown) was
removed since it is not a real annotation. Many GO nodes have
no genes or only a few genes associated with them. It is often
the case that these nodes are not well studied. For simplicity,
only the biological process GO terms associated with more
than 10 genes in the above dataset are considered. In this way,
we end up with 725 GO terms. In comparison with previous
studies (e.g., [17]), we study the problem in a much larger
scale (725 vs. 48 GO terms).

3 METHODS
We propose a Bayesian framework to conduct annotation
inference in GO from gene expression data. Unlike the pre-
vious methods, the framework explicitly incorporates the
knowledge about the structures of the gene taxonomy into
consideration by assuming that genes that are closer in GO
have similar expression data. Thus, we not only offer a new
way to infer gene annotations in GO, but validate the assump-
tion indirectly by comparing it with other models which do
not take such an assumption. The DAG structures of GO and
the fact that a gene may have multiple most specific annota-
tions make it possible that there are generally multiple paths
from the root to a gene’s most specific annotation(s). Traditio-
nal data-driven clustering techniques do not respect either the
GO structure or multiple annotations, and we need a model
that take both into account.

In our framework, we associate a probabilistic distribu-
tion over gene expression profiles with each node in GO. On
one hand, we want to learn a good model at each node to

fit the associated data. One the other hand, to observe the
GO hierarchical structures, the distribution distance between
neighboring nodes should be small, more exactly, the distri-
butions with neighboring nodes should be close. Instead of
the ad-hoc distance metrics used in hierarchical clustering,
a natural choice of distance measure between distributions is
the Kullback-Leibler (KL) divergence, as used in the probabi-
listic abstraction hierarchies (PAH) model [14]. Unlike in our
framework in which the “true path rule” of annotations is fol-
lowed, the PAH model generates a data points only fromone
leaf node of a hierarchy. There is a trade-off between fitting
individual distributions and making neighboring node close in
distribution. We introduce a penalty factorλ for distance bet-
ween distributions of neighboring nodes, and treat the distance
penalty as a prior of the hierarchy. Notation used in the model
is shown in Table 1.

Our model also share some insight of Bayesian Hierar-
chical Clustering (BHC) [6], which constructs a binary-
tree-structured hierarchy using Bayesian hypothesis testing,
without specifying a distance metric. The BHC model also
generates data points at every node in the path from the most
specific cluster to the root. However, any data point, in the
BHC model, is only allowed to be associated with onlyone
leaf cluster.

The PAH model mainly focuses on learn a better tree-
structured hierarchy instead of incorporating an existing
DAG-structured hierarchy like GO. For the purpose of infer-
ring gene annotations, our framework is more flexible than the
original PAH model in that we can ask multiple annotations
at arbitrary levels instead of one annotation at the leaf node
level. More importantly, our framework defines a probabilistic
model of the data which allows us to ask questions like how
well the GO structures match the gene expression data. It can
also be used to calculate the probability of a gene belonging to
any node in the DAG structures. When we have more evidence
on other genes that share the similar expression profile of the
test gene, we are able to infer more specific annotation(s) for
it; otherwise, only less specific annotation(s) are possible.

A relatively general GO term might be the most specific
annotation only for a few genes that may have very different
gene expression profiles, as reported in [11]. By allowing a
gene’s expression value to be generated at all nodes in the
pathway from its most specific annotation to the root, our
model naturally avoids the danger of overfitting and focuses
on all genes having corresponding annotations.

We learn the individual distributions at each node by
maximum likelihood estimation and simultaneously make
distributions at close node close (smaller KL divergence in
this paper). So we want to maximize thatP (GO|Data) ∝
P (Data|GO)P (GO).

Or equivalently,
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Table 1. Notation used in this paper

SYMBOL DESCRIPTION
G number of genes that have annotations in GO
N number of nodes in the GO hierarchy
D number of experimental conditions
E all edges in the GO hierarchy
Mn model (distribution) associated with thenth

node in the GO hierarchy
Gn number of genes having annotations in noden
Sn set of nodes that are neighbors of noden
|Sn| number of nodes that are neighbors of noden
eg expression of geneg under all experiments
ag node(s) with the most specific annotation(s)

of geneg
gn number of genes at noden
λ penalty factor for distribution distance
ρ a distance measure between the distribution

of two nodes (using symmetric KLdistance)
GO M1,M2, ...,MN

Data e1, e2, ..., eG

J = logP (Data|GO) + logP (GO)

=
G∑

g=1

logP (eg|Mag
)−

∑
(i,j)∈E

λρ(Mi,Mj)

Next we define the concrete distribution at each nodeMi

and the distance measureρ. The dataset is aG × D matrix
which encodes the expression level measurements ofG dif-
ferent genes underD different experimental conditions. For
our purpose, we need a continuous distribution over<D.
A basic choice is a multivariate Gaussian with a diagonal
covariance matrix,P (ei|Mj) =

∏D
k=1 P (eik|Mjk) where

Mjk = Normal(µjk, σ2
jk)

We take ρ as symmetric KL divergence, that is,
ρ(Mi,Mj) = KL(Mi,Mj)+KL(Mj ,Mi)

2 . It is not hard to show
that

KL(Mi,Mj) =
D∑

k=1

(log

√
σ2

jk

σ2
ik

+

σ4
ik + σ2

ikµ2
ik − σ2

ikσ2
jk − 2σ2

ikµikµjk + σ2
ikµ2

jk

2σ2
ikσ2

jk

)

ρ(Mi,Mj) =
KL(Mi,Mj) + KL(Mj ,Mi)

2

=
D∑

k=1

(
(σ2

ik − σ2
jk)2 + (σ2

ik + σ2
jk)(µik − µjk)2

4σ2
ikσ2

jk

)

If we assume that all Gaussian components have the equal
varianceσ2, we can further simplify the above formula and
get:

ρ(Mi,Mj) = KL(Mi,Mj)+KL(Mj ,Mi)
2 =

∑D
k=1

(µik−µjk)2

2σ2

It is very satisfying to see thatJ is concave. To estimate the
parameters of the above model, we can simply use maximum
likelihood estimation by taking derivatives ofJ with respect
to the parameters of the distributions at each node, due to the
convexity of−J . Iteratively, we can optimize the parameters
of eachMi given other parameters in a round robin fashion
until convergence. The convexity of−J guarantees that the
global maximum of J can be obtained. In each iteration, the
computation only involves the genes atMi, andρ for Mi and
its direct neighbors (parents and children). Parameters can be
updated as follows:

µid =

∑Gi

j=1 ejd + λ
∑

k∈Si
(σ2

id + σ2
kd)µkd/2σ2

kd

Gi + λ
∑

k∈Si
(σ2

id + σ2
kd)/2σ2

kd

σ2
id =

√
G2

i + 2λ
∑

k∈Si
Aid/σ2

kd −Gi

λ
∑

k∈Si
1/σ2

kd

Where, Aid = λ
∑

k∈Si
(σ2

kd + (µid − µkd)2)/2 +∑Gi

j=1(ejd−µid)2. If we assume that allσ2
id equal an unknown

constant, the above formulae could be substantially simplified.

µid =

∑Gi

j=1 ejd + λ
∑

k∈Si
µkd

Gi + λ|Si|
As shown above, all update equations are in close form,

which makes the model inference highly efficient. In the non-
parametrickNN framework, to predict a gene’s annotation,
its distances to all genes need to be calculated. In our new fra-
mework, no matter how many genes there are in the training
set, only limited GO terms need to be visited for prediction.
More importantly, annotation prediction can be conducted in
an efficient batch fashion.

To address the uneven regularity in the hierarchy, we want
to introduce a prior to make Bayesian prediction by getting
a posterior distribution of a gene belonging to a node in the
hierarchy. In the paper, the prior we adopt is the normalized
counts of genes at each node in the hierarchy, with Laplace
smoothing, that is, the prior probability that a gene belongs to
a nodei is P (Mi) = Gi+1PN

i=1 Gi+N
. To predict the annotations

of unknown genes, we can easily get the posterior probability
that it belongs to any node in the GO hierarchy,P (Mi|ej) ∝
P (ej |Mi)P (Mi). To make predictions, we can either select
the nodes with highest posterior probability (topN in Table 2)
or with posterior probabilities larger than a given threshold
(Threshold in Table 2).

4 RELATED WORK
There have been quite a few research works in gene func-
tion inference using computational methods. For example, a
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learning technique based on rough sets [9, 7] is used to learn
simple rules for GO terms for genes of unknown function.
Their model allows learning and classification of multiple
biological process roles for each gene and can predict par-
ticipation of genes in a biological process even though the
genes of this class exhibit a wide variety of gene expression
profiles including inverse co-regulation.

The rule-based method performed well on some temporal
data which, however, are not nearly as common as stationary
data. Many other works for stationary data include: [2] uses
BLAST and mutual information to perform statistical tests
and to provide accurate categorization; predicting human pro-
tein functions has been reported [8] using supervised learning
methods (support vector machines); Supervised neural net-
works [10] andk nearest neighbors [17] are also presented
in function annotation; some work in visualizing GO-based
clustering of gene expression data [1]; and so on.

Among the above methods, theksNN method [17] gives
the best performance in inferring gene annotations in the lite-
rature. It first identifiesk nearest neighbors of the gene to be
annotated, and then calculate a representative score for each
candidate GO term, which is a measurement of the taxonomy
similarity between the GO term in consideration and the group
of annotated nodes. Finally,m classes with highest represen-
tative scores are selected to be the gene’s annotations. Two
different taxonomy similarity measures are explored: PK-TS
[12] and SB-TS [17]. In all ofksNN experiments we conduct
for comparison in this paper, we use the experimental setting
recommended in [17] (SB-TS,k = 20 andm = 3).

However, all the methods discussed here work for very limi-
ted number of GO terms, ranging from a few to dozens of
nodes, corresponding to level 2 and 3 in the GO hierarchy. In
this paper, we study the problem in a much larger scale, 725
GO terms and up to level 19 in the hierarchy.

5 EXPERIMENTAL RESULTS
Our method was evaluated on a data set provided by Gasch
et al.[5]. Traditional accuracy measure is not appropriate here
since a gene may have several correct annotations/predictions.
Also, because of the existence of the ontology taxonomy, the
basic precision/recall is not particularly good for our task,
either. A prediction is possible to be partially correct, and
taxonomy similarity (e.g., [12]) has to be incorporated into the
measurement. We adopt the criteria in [11] shown as follows:

Let Ag be the set of annotations of a geneg and Pg be
the corresponding set of predictions forg. We saya ' p if
annotationa and predictionp are on the same branch in the
hierarchy;a � p if a ' p anda is closer to the root thanp in
the hierarchy. Depth(a) is defined as the length of the shortest
path from the root toa. We also define:

d(a, p) =
{

Depth(p)/Depth(a) if p � a
0 otherwise

Table 2. Annotation inference performance on SGD

Measures Bayesian (topN) Bayesian (Threshold)ksNN
RA 0.7652 0.7768 0.7998
RP 0.5676 0.6165 0.6335
DA 0.4967 0.4944 0.5084
DP 0.4392 0.4696 0.4773

RAg is the ratio of annotations of a gene which get predicted
(similar to recall).RAg = |MAg|/|Ag|, whereMAg = {a ∈
Ag|p ∈ Pg, a ' p}.

RPg is the ratio of correct predictions (similar to precision).
RPg = |MPg|/|Pg|, whereMPg = {p ∈ Pg|a ∈ Ag, p '
a}.

DAg gives the average relative depth of the best prediction
for each annotation, indicating how detailed annotations are
predicted.DAg =

∑
a∈Ag

maxp∈Pg
d(a, p)/|MAg|.

DPg gives the average relative depth of each prediction
compared to the closet annotation, indicating the coherence
of predictions.DPg =

∑
p∈Pg

maxa∈Agd(a, p)/|MPg|.
Under leave-1-out cross-validation, we report averageRA,

RP , DA, and DP for all left out genes. The results are
compared to theksNN method [17] in Table 2.

As shown in Table 2, the results for the new framework are
not as good as the ones for theksNN method, but the results
are still very competitive compared to other methods such as
rule-based methods and neural networks. More importantly,
our framework is much more computationally efficient than
ksNN and other methods. From the results above, we can
conclude that genes having close annotations to each other in
GO are not necessarily more similar in expression data than
genes are further away, thus possibly the gene expression data
at a node can be modeled by a multi-modal distributions (e.g.,
mixture of Gaussians). We discuss possible improvements in
detail in Section 7.

6 A NEW DISTANCE METRIC FOR GENE
SIMILARITY

TheksNN method has given the best performance, however,
there is still some space to improve within its framework. First,
like all methods in thekNN family, it is very prone to noise.
Particularly, we know gene expression data are indeed very
noisy. Some ways to deal with the noisy essence of the data
can be incorporated to improve the performance. Second, the
uneven regularity in the GO hierarchy makes it difficult to
find a universal value fork good for all test genes. For certain
genes, there are simply not many close genes around them.
Trying to get a fixed number of nearest neighbors not only
increases the already expensive computation, but worsen the
results by adding unnecessary far neighbors as well.

We can certainly adopt a scheme for variablek values accor-
ding to the gene expression profile and the similarity to all
genes in the dataset. For example, we only take the genes
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Table 3. Annotation inference performance on SGD of theksNN method
using different distance metrics

Measures Rank-based Correlation Pearson Correlation
RA 0.8022 0.7998
RP 0.6414 0.6335
DA 0.5110 0.5084
DP 0.4804 0.4773

among thek nearest neighbors of geneg whosek′ nearest
neighbors include geneg, to make sure the selected neighbors
are indeed close to the test gene. We can also consider the
union of thek′ nearest neighbors of thek nearest neighbor
of geneg, to give the algorithm an opportunity to evaluate
relatively not well studied GO terms. However, we will focus
on developing new robust similarity measures in this section,
which is more fundamental and generally applicable to other
problems in the field of bioinformatics.

An extreme value in a gene expression profile may severely
change the score of similarity. The rank-based Top Scoring
Pair (TSP) classifier [15] is a new machine learning technique
which works entirely on relative gene expression values. The
TSP classifier is specifically designed to conduct pair-wise
comparisons between any two gene expression levels, that is,
to classify experiments (tissues). Inspired by the TSP classi-
fier, we introduce a new distance metric for gene similarity as
follows: 1) For each experimental condition, gene expression
values are approximated by the ranks of them under that con-
dition; 2) Calculate the Pearson correlationr between any two
genes in terms of rank profiles (distance =1− r). Obviously,
this metric is (monotonical) transformation invariant, so it can
be calculated directly on raw data, i.e., without normalization,
thus avoids additional noise often introduced in normalization
process. It is also more robust to noise due to the approxi-
mation introduced by ranks. Although it loses some detailed
information about gene expression values, the benefit gai-
ned from reducing the effect of noise is more noticeable and
important. As shown in Table 3, consistently better results
are obtained using the new metric than the original Pearson
correlation.

7 FUTURE WORK
In Section 5, we found out that genes having close annotati-
ons to each other in GO are not necessarily more similar in
expression data than genes are further away. The unimodal
Gaussian distribution assumed at each node is thus a draw-
back. The great efficiency of the framework make it possible
to associate some multi-modal distributions at all nodes. In
particular, mixture of Gaussians seems promising in that it
clearly represents possible clusters of genes at each GO node
while each cluster is still Gaussian distributed as usual.

To GO hierarchy is based on the biological knowledge peo-
ple accumulated in a long history. A particular dataset is only
relevant to some small part of the hierarchy. However, a data-
driven hierarchy can be learned without the knowledge of the
GO hierarchy. Using the techniques in [13], it is possible
to leverage the learned hierarchy into the GO taxonomy in
various ways, e.g., as a prior.

Purely probabilistic clustering methods do not always pro-
duce meaningful clusters. For example, one might wonder
why two different regulated genes are placed in the same clu-
ster, which might imply unknown knowledge about the genes,
but, more often, are meaningless. By incorporating the know-
ledge from the GO structure, we want to ask how “good” a
clustering is.

As described in [5], the experimental conditions in the data-
set we used in this paper are far from independent. But almost
all of the similarity measures treat them without difference.
The simplest modification for that is to change the covariance
matrix of Gaussians to be non-diagonal but it would become
troublesome when mixture of Gaussians is used. Previous
work in biclustering [3] has explicitly studied the dependency
of experimental conditions when building gene clusters. To
our knowledge, there is no gene ontology consistent biclu-
stering algorithm available yet. We plan to introduce some
similar idea into the frame work by examining the experiment
similarity, thus some gene-dependent weighting scheme on
experiments can be implemented.

For the purpose of reducing the influence of noise in gene
expression data, rank-based metric in Section 6 is an right
way to proceed. We plan to combine the ranking idea with
clustering (particularly, in experiments) mentioned above to
do better automatic gene annotation.

8 CONCLUSION
We have presented a new probabilistic framework based on
the GO hierarchy where specific (biological process) anno-
tations of genes are inferred from gene expression data. The
efficiently of the model makes it possible to handle datasets in
a larger scale, with competitive performance. In comparison
with other models, we also verified that genes having close
annotations to each other in GO are not necessarily more simi-
lar in expression data than genes are further away. The new
rank-based gene similarity metric can substantially reduce
the influence of noise, and help achieve better annotation
inference performance.
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