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ABSTRACT

The dynamic marketplace in online advertising calls for rank-
ing systems that are optimized to consistently promote and
capitalize better performing ads. The streaming nature of
online data inevitably makes an advertising system choose
between maximizing its expected revenue according to its
current knowledge in short term (exploitation) and trying
to learn more about the unknown to improve its knowledge
(exploration), since the latter might increase its revenue in
the future. The exploitation and exploration (EE) tradeoff
has been extensively studied in the reinforcement learning
community, however, not been paid much attention in on-
line advertising until recently. In this paper, we develop two
novel EE strategies for online advertising. Specifically, our
methods can adaptively balance the two aspects of EE by
automatically learning the optimal tradeoff and incorporat-
ing confidence metrics of historical performance. Within a
deliberately designed offline simulation framework we apply
our algorithms to an industry leading performance based
contextual advertising system and conduct extensive evalu-
ations with real online event log data. The experimental re-
sults and detailed analysis reveal several important findings
of the EE behaviors in online advertising and demonstrate
that our algorithms perform superiorly in terms of ad reach
and click-through-rate (CTR).
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1. INTRODUCTION

In the advertising industry, an ongoing shift in spend-
ing from traditional media to the Internet has been widely
observed during the past decade. Since 2006, the year-over-
year growth of Internet advertising spending has eclipsed
other conventional media such as newspaper. As marketers
realize that online spending is more effective at influencing
consumers and delivering more measurable results, nowa-
days online advertising has become a major business. Based
on a recent study by Interactive Advertising Bureau, online
advertising revenue in the first half of 2009 reached over 10.9
billion US dollars [4].

A significant part of this market consists of ads delivery
distributed through three main advertising channels: dis-
play ads, sponsored search and contextual advertising. In
this paper, we focus on contextual advertising that refers to
the placement of ads within the content of a generic Web
page for a user, but the ideas illustrated here are gener-
ally applicable to other distribution channels as well. In
contextual advertising, usually there is a commercial inter-
mediary, called ad-network, in charge of optimizing the ad
selection with a three-fold goal of increasing revenue (shared
between publishers and ad-network), improving return-on-
investment of advertisers, and enhancing user experience.

One of the most prevalent pricing models for contextual
advertising is that advertisers pay a certain amount for ev-
ery click on an ad (cost-per-click or CPC). There are also
other models: cost-per-impression where advertisers pay for
the number of exposures of an ad, and cost-per-action where
advertisers pay only if an ad leads to a sale or a similar trans-
action. In the CPC model, the revenue of an ad-network is
crucially dependent on the click-through-rate (CTR) that
can be viewed as the probability that an end-user would
click on an ad when shown on a Web page.

From the perspective of ad-networks, it is always prefer-
able to show ads with high expected revenue, which depends
on both ad CTR and its bid in the CPC model. Unfortu-
nately, ad CTRs cannot be known a priori, and thus many
ad-networks’ ranking systems use historical CTRs instead.
This approach is usually referred to as performance based
or click feedback model. However, this kind of systems are
likely to suffer from the Matthew effect (the rich get richer
and the poor get poorer) in the long run. The ads with large
numbers of impressions and high CTRs are usually the top
candidates for displaying. Therefore they will get even more
impressions (and sometimes clicks) in the future. On the
other hand, the ads with low impressions and potentially
high CTRs might unluckily have few or no clicks, and thus



are considered inferior performers due to the bogus histor-
ical CTRs associated with the sparse data. Their chances
for future exposure will be even slimmer regardless of their
true CTRs. This is especially bad news for a fast changing
marketplace where we constantly have new ads joining every
hour. In an exploitation only system, these newcomers are
not as competent as the established good performers, and it
would be difficult for them to catch up. In the long term,
most impressions will go to a small set of ads. In general,
this trend is not desirable as it could cause serious problems:

1. Keeping showing the same ads repeatedly to the same
users easily leads to user fatigue. That is widely con-
sidered as very unpleasant user experience and could
result in a drop in clicks [7].

2. Either over-exposing ads of the same advertisers in a
short period or under-exposing in a long period can
severely hurt economic efficiency for both advertisers
and ad-network operators. Some advertisers will quickly
burn out their budgets while others cannot spend their
planned ad dollars due to the lack of exposure.

In order to address these issues, an ideal way is to exploit
those established good ads for short-term capitalization, and
at the same time explore the unknown (or less known) ad
space to discover potentially better ads for the long term.
This is a typical tradeoff between exploitation and explo-
ration (EE), frequently studied with the multi-armed bandit
problem in reinforcement learning [12, 13]. More specifically,
our dilemma can be viewed as a variation of the multi-armed
bandit problem, defined as iteratively choosing one out of
multiple actions and receiving a reward drawn from a dis-
tribution associated with this action. The goal is to find the
optimal action sequence that maximizes the accumulated re-
wards. In the scenario of contextual advertising, we select a
small number of ads for each page view and receive a user
feedback (click or non-click) as reward.

One classical solution to the multi-armed bandit prob-
lem is the e-greedy strategy [12]. With probability 1-¢, this
algorithm chooses the best action based on current knowl-
edge; and with probability €, it chooses any other action
uniformly. The parameter e essentially controls the trade-
off between exploitation and exploration. One disadvantage
of this algorithm is that the optimal e value is difficult to
decide in advance. Moreover, we may need to dynamically
adjust the EE tradeoff at different stages of the experiment.
This concern can be addressed by a slightly different strat-
egy called e-decreasing [12], where the value of € decreases
as the experiment processes. In other words, this algorithm
focuses more on exploration at the beginning and gradually
shifts to exploitation at the end.

Compared to the standard multi-armed bandit problem
with a fixed set of possible actions, we face a fast changing
marketplace in contextual advertising. Old ads may expire
and new ads may emerge everyday. Therefore it may not
be desirable to monotonically decrease the effort on explo-
ration as the e-decreasing strategy does. Instead, we want
to adaptively balance the tradeoff between exploitation and
exploration in response to the data change. In this paper
we propose two novel approaches that achieve this goal.

In the first method, we extend the e-greedy strategy by
updating the value of € dynamically (not necessarily decreas-
ing). At each iteration, we run a sampling procedure to se-
lect a new € from a finite set of candidates. The probabilities

associated with the candidates are initialized uniformly and
updated with the Exponentiated Gradient (EG) algorithm
[9]. As shown in Section 4, this updating rule increases the
probability of being chosen for a candidate if it leads to a
user click.

In the second method, we improve a different aspect of the
e-greedy algorithm, namely the random exploration strat-
egy. As we mention before, the marketplace in contextual
advertising can change rapidly, and different ads have very
different histories. Some old ads have already been shown
many times while new ones have few or no impressions. As
a result, it is not desirable to explore ads in a random way
because it will waste opportunities on the established bad
performers. Instead, we only want to explore the ads that
might lead to higher revenue in the long run, i.e., ads with
bogus poor performance due to sparse data or even no his-
tory. To address this, we introduce an impression based
confidence metric and use it to decide which ads need to
be explored. This confidence metric also serves as a dy-
namic switch between exploitation and exploration. When
the confidence increases to a certain level, some exploration
opportunities will be automatically shifted to exploitation.

In this paper, we set up an offline simulation framework
from real event logs in an industry leading performance
based contextual advertising system, and evaluate the short-
term and long-term impacts of EE on the system perfor-
mance. The experiment results demonstrate that our pro-
posed methods can greatly improve the ad reach and empir-
ical CTR. Compared to an exploitation only baseline, both
EE algorithms increase the ad reach by more than 25%.
While the dynamic e-greedy algorithm with Exponentiated
Gradient converges to a slightly lower CTR than its best fix-
value counterpart, its fast convergence rate makes it more
competent in a real system. Furthermore, the confidence-
based algorithm improves CTR almost by half over the base-
line and about 20% over other EE algorithms.

2. RELATED WORK

The exploitation and exploration tradeoff was first for-
mally studied in reinforcement learning in 1980’s, and later
flourished in other fields of machine learning [12, 13]. Very
frequently used in reinforcement learning to study the EE
tradeoff, the multi-armed bandit problem (also sometimes
called K-armed bandit) was originally described by Robbins
[11]. Agarwal et al. recently applied this technique to max-
imize total clicks on a Web content module [1]. Langford et
al. extended this problem to the case where there is some
side information that helps to make a better decision [10].
They called the new setting “contextual bandit problem”; in-
troduced the epoch-greedy algorithm and derived its regret
bound.

The confidence-based approach proposed in this paper is
partially inspired by the UCB algorithm [2] that ranks the
actions based on the combination of estimated rewards and
their confidence intervals. However, given the large number
of ads to be selected, the number of impressions received
by each ad is usually small, leading to an inaccurate esti-
mation of confidence intervals and consequently the limited
performance of the standard UCB algorithm. Thus, unlike
the UCB algorithm that is a deterministic strategy in choos-
ing actions, the proposed confidence-based EE algorithm is a
hybrid approach that combines UCB with the e-greedy algo-
rithm. By introducing randomness into the UCB algorithm,



we alleviate the trouble in estimating confidence intervals
and achieve more reliable performance.

Another closely related area to the discussion in this pa-
per is the click feedback system in online advertising. Click
feedback has a relatively long history in the nascent online
advertising industry. As early as in 2002, Google Inc. in-
corporated click feedback into its sponsored search system—
AdWords [3]. In more recent years, similar ideas are adopted
into other distribution channels of online advertising as well.
For example, Chakrabarti et al. described a contextually ad-
vertising system that combines ad relevance with historical
impression and click information through a logistic regres-
sion model [6]. The performance-based contextual advertis-
ing system in this paper roughly shares the same idea.

3. CLICK FEEDBACK MODEL

In this section, we briefly describe a click feedback model
(CFB), an approach that predicts future ad CTRs based on
their past performance.

The basic idea is to collect performance history of page ad
pairs to estimate CTRs in contextual advertising. There are
two types of events that we are interested in. The first one
is impression, which refers to the showing of an ad on a Web
page. Its frequency generally obeys the power-law distribu-
tion, where a small set of popular pages and ads account for a
large fraction of the traffic while the overwhelming counter-
parts have very rare frequency individually. Another event
is click, which corresponds to the action that a user clicks
on an ad. Our estimation of CTR is simply the ratio of the
number of clicks to the number of impressions in a certain
time period.

In the CFB model, we keep historical counts of impres-
sions and clicks for each page ad pair at multiple levels of
granularity. For example, on the page side, the top level
is a publisher, followed by domain and page URL. On the
ad side, each advertiser account usually consists of multiple
ad groups and each ad group is a set of closely related ads.
The reason for introducing such hierarchies is because the
impressions and clicks at the (page URL, ad) level are very
rare for the majority of page ad pairs. Therefore consider-
ing aggregations at higher levels reduces the variance and
provides more reliable estimation of CTR.

For each page ad aggregation, the historical counts are
updated everyday in order to estimate CTRs from the most
recent events. Note that if the total number of impressions
for a particular aggregation is less than a threshold, it will
be considered too sparse to provide reliable estimation. The
corresponding CTR is set to a default value instead, such
as the overall CTR for all page ad pairs. Finally, we calcu-
late a CFB score by combining the historical CTRs from all
aggregations.

As most feedback-based approaches, the CTR estimation
in the CFB model is usually more reliable for page ad pairs
with large numbers of impressions and less so for the ones
with little or no history. For example, consider the follow-
ing three ads to be shown on a given page. The first one
has 100,000 impressions and 100 clicks. The second one also
has 100,000 impressions but only 1 click. The third one is
relatively new with 10 impressions and no clicks. There is
almost no doubt that the first ad should be ranked higher
than the second. The question is how to deal with the third
one. If we rank the ads strictly based on historical CTRs,
the third ad will have the lowest rank. That is obviously not

a wise solution considering that the second one is a known
bad performer. With an estimation method that compen-
sates CTR based on the actual numbers of impressions and
clicks, the third ad may be ranked higher than the second
one but not the first one. This strategy may still be cursed
by the Matthew effect with the drawbacks we discussed in
Section 1, i.e., advertiser budgets are not spent efficiently,
ad-network loses high capitalization of missing ads, publish-
ers get less yield because not all the ads in the marketplace
participate in the auction, and user experience is hurt as
well due to user fatigue of seeing the same ads again and
again.

4. EXPLOITATION AND EXPLORATION

From the discussion in Section 3, we can see that the CTR
estimation in the CFB model may not accurately reflect the
true performance of a page ad pair, especially when they
have a small number of impressions. To resolve this prob-
lem, we propose to use a stochastic, rather than determinis-
tic, approach in ad selection. More specifically, given a page
and a list of ads ranked by CFB scores, we believe that the
ads ranked near the top generally have better performance
than ads near the bottom. However, considering the inac-
curacy in the CFB model as we elaborate above, we want
to give some opportunities to ads with low ranks to be se-
lected for exposing. How to determine an optimal strategy
is essentially an exploitation and exploration (EE) problem.
In the rest of this section, we present two EE approaches
that follow the e-greedy strategy but dynamically control
the tradeoff between exploitation and exploration. The first
method uses Exponentiated Gradient to learn the optimal
value of parameter ¢, and the second one takes impression
history into consideration and only explores ads with few or
no impressions.

4.1 The e-greedy Algorithm with EG Update

The e-greedy algorithm uses a simple random strategy to
overcome the problems identified in the CFB ranking model.
In Algorithm 1, we describe a variation of the standard e-
greedy method that is more suitable for our application.
First we divide the ranking list into two parts. The first
part consists of r ads with the highest CFB scores and will
be reserved for exploitation. This step is introduced mainly
for the business interests as it protects the revenue from
dramatically dropping in the short term. For the second
part, we further divide it into two lists with high-rank and
low-rank ads. In general, we deem the high-rank ads signif-
icantly better than the low-rank ads for a given Web page.
The parameter ¢ specifies the size of the low-rank list, which
consists of the ads that can participate in exploration. These
two lists are then merged together with a sampling proce-
dure that follows [8], where the probability of choosing ads
from the low-rank list is e.

One problem with the e-greedy algorithm is how to decide
the optimal €, a critical tradeoff parameter between exploita-
tion and exploration. Instead of specifying ¢ manually, we
iteratively update this quantity by the Exponentiated Gra-
dient (EG) algorithm. First we assume that we have a finite

number of candidate values for ¢, denoted by (e1,--- ,er).
Our goal is to learn the optimal e from this set. To this
end, we introduce p = (p1,---,pr), where p; stands for

the probability of using €; in the e-greedy algorithm. These
probabilities are initialized to be 1/T at the beginning and



then iteratively updated through trials. More specifically,
we use a set of weights w = (w1, --- ,wr) to keep track of
the performance of each ¢; and update them using the EG
algorithm. The basic idea is to increase w; if we receive a
click from using ¢,;. Finally, we calculate p by normalizing
w with smoothing. The detailed algorithm is shown in Al-
gorithm 2. Here I [2] is the indictor function. Parameters
[ and 7 are smoothing factors in weight updating. & is a
regularization factor to handle singular w;.

The regret bound of the Exponentiated Gradient e-greedy
algorithm is revealed by the following theorem.

THEOREM 1. With probability 1 — 6, by running the Ex-
ponentiated Gradient e-greedy algorithm in Algorithm 2 for
choosing € against N Web pages using parameters

In(T'/6) AT K

B=\V"TN =335 "o

we have the following inequality holds

ch - max CO(e)) g 5 VININ(T/3) + 5 L,
<5<
where C(e;) stands for the number of clicks received by using

€ =¢€; and Zf\;l c; computes the number of clicks received
by running Algorithm 2 to choose €.

Proof. The proof follows directly the proof for Theorem 6.10
in [5].

Algorithm 1 The e-greedy algorithm for EE in advertising

1: Input:
{a1,az2, - ,an}: an ad list ranked by CFB scores
r: number of reserved ads
q: number of ads in the low-rank list
e: probability to select ads in the low-rank list

2: Output:
F: A list of ads re-ranked by the EE algorithm
3: F < {a1, - ,a,} {the final ranking list F'}
4: H < {ar41, - ,an—q} {the high-rank ad list H}
5: L < {an—g+1," - ,an}{the low-rank ad list L}
6: repeat
7:  Sample z from Bernoulli(e)
8 if z =0 then
9: Randomly choose an ad a; from L
10: L« L\{ai}, F<FU {al}
11:  else
12: Randomly choose an ad a; from H
13: H¢H\{az}, F<:FU{(Z7,}
14:  end if

15: until H or L is empty
16: F<FUHUL

4.2 Confidence-based Exploration

In addition to the e-greedy algorithm that treats all ads
equally in exploration, we can further introduce a confidence
metric on CFB scores to explore those ads with low confi-
dence only. There are many ways to measure the confidence
of CFB scores, such as the variance of posterior CTR dis-
tribution using Beta-Binomial or Gamma-Poisson models.
In this paper, we simply use an impression-based metric for
illustration. But the algorithm itself is agnostic to the se-
lection of confidence measurements.

Algorithm 2 The e-greedy algorithm with the Exponenti-
ated Gradient update
1: Input (in addition to Algorithm 1):
{€1, -+ ,er}: candidate values for €
B, T and k: parameters for EG
N: number of iterations
2:pp<=1/Tandwy, <1, k=1,---,T
3: for i =1to N do
4:  Sample d from Discrete(pi, - - ,pr)
: Run Algorithm 1 with €4

Receive a click feedback ¢; from the user

5

6

7. wp < wgexp (—T[Cil(kp:kd)—i_ﬁ}),k:1,~~~ , T
8

9

pk<:(1—fﬁ)zT w5 + T,k:l,...7T

: end for

Given a page ad pair < p,a >; and their impressions x;,

we define the confidence for their CFB score as

C(z;) = tanh(),

where tanh is the tangent function and b is the shape param-
eter. With this function, the confidence of CTR estimation
is positively correlated with the number of impressions. In
a special case where a page ad pair does not meet the im-
pression threshold of the CFB model, the confidence is set
to be 0.

The EE algorithm with the confidence metric is outlined
in Algorithm 3. In this algorithm, we have multiple knobs to
control how to explore the ads. Parameters r, ¢ and € are the
same as defined in the e-greedy algorithm. In addition, we
have an impression upper-bound w, which allows us to stop
exploration for ads with too many impressions. Given an ad
list ranked by CFB scores, we first divide it into two parts
as in the e-greedy algorithm. The top ads are always kept
without changing their positions (step 3). For the rest of the
ads, we randomly sample some of them into a promotional
queue based on a probability distribution defined with the
confidence metric (steps 4 to 12). The lower confidence an
ad has, the more likely it will be selected. Note that if the
number of impressions of an ad reaches the upper-bound w,
it will not be considered for promotion. Finally we merge
the promotional queue with the remaining ads (steps 13 to
21), giving additional chances to increase the ranks of ads
in the promotional queue.

Compared to the e-greedy algorithm, we no longer decide
whether to promote an ad based on its position in the origi-
nal ranking list. Instead, we give higher priority to ads with
lower confidence in their CFB scores as these scores are more
likely to be inaccurate.

S. EXPERIMENTS

In this section, we describe our experiment design to eval-
uate Algorithms 2 and 3 and present the results. We are
interested in evaluating the long-term effects of EE algo-
rithms, but it takes time to explore the unknown space and
discover new ads with good performance. During such a
long time period, CTR may change significantly even if the
system remains the same. Therefore we cannot simply eval-
uate an EE algorithm by comparing the CTRs of the system
before and after applying it. Due to the restrictions of set-
ting up an isolated environment in the online system, we



Algorithm 3 The Confidence-based EE algorithm for ad-

vertising

1: Input:
A ={a1,az, - ,an}: an ad list ranked by CFB scores
{z1,z2, - ,zn}: the impressions of the above ads

r: number of reserved ads
q: number of ads in the promotional queue
€: probability to select ads in the promotional queue
w: impression upper-bound for exploration
2: Output:
F: A list of ads re-ranked by the EE algorithm
3: F < {a1, - ,a,} {the final ranking list F'}
4: P < {} {the promotional queue P}
5: fori=r+1tondo
6: if z; < w then
7 pi < 1 — tanh(z;/b)
8: else
9: pi <=0
10:  end if
11: end for
12: Sample ¢ ads from {a,41,- -, a,} without replacement
based on (unnormalized) probabilities {pr4+1, - ,pn}
and append the ¢ ads to P
13: repeat
14:  Sample z from Bernoulli(e)
15:  if z =0 then

16: a=POP(A), F<=FU{a}ifa¢ F
17:  else

18: a=POP(P), F<FU{a}lifa¢ F
19:  end if

20: until P or A is empty
21: F«FUPUA

instead introduce an offline simulation framework for more
accurate evaluation. This system is able to mimic emitting
the online events, running the CFB model, as well as setting
up controlled experiment buckets to perform apple-to-apple
comparisons between a pure exploitation baseline and vari-
ous EE algorithms.

5.1 Simulation Framework Design

For the offline simulation system, we generate a data set
from the event logs in an industry leading contextual ad-
vertising serving system within a three-month timeframe.
First we randomly collect 1,000 Web pages. The only re-
quirement is that their impressions need to be in the middle
range. We do not want to use pages that are either too
popular or too unpopular. Then we sample 10,000 ads that
have been shown on any of these pages. For each page ad
pair, we calculate its empirical CTR as the ratio of clicks
to impressions and store it in a table as the ground truth.
Theoretically there are 10,000,000 (page, ad) pairs in our
data set, but most of them have no impressions. Here we
only keep the pairs with impressions greater than 100 to be
statistically meaningful and obtain a ground truth CTR ta-
ble with 64,798 entries. This table is used to mimic user
actions and online system behavior. On average, each page
has about 65 ads with ground truth.

In addition to the ground truth table, we also need to set
up the offline CFB model. There are several simplifications
we adopt in the simulation. First, we only consider two levels
of aggregation: (page URL, ad) and (publisher, ad group),

which are common in click feedback models. Secondly, the
model is initialized from a snapshot of the online CFB tables,
restricting to the pages and ads in our data set. In the
(page URL, ad) table, each entry corresponds to a page ad
pair and consists of three historical statistics: impression,
click and CTR. We use an impression threshold of 100 to
decide whether the CTR is calculated by definition or set to
a default value. The (publisher, ad group) table is created
in a similar way except that each entry corresponds to a
publisher and ad group pair.

Before we run the simulation, the (page URL, ad) table
contains only 17,814 entries with sufficient impressions. Its
coverage is much lower than the ground truth. In other
words, the initial CFB model is unclear about the perfor-
mance of many page ad pairs. However, the (publisher, ad
group) table is not so sparse. Out of 35 publishers and 9,184
ad groups, we have 51,847 pairs with enough impressions in
the CFB table.

After initialization, the CFB model is updated in the fol-
lowing way. For each page ad pair, we first calculate its
CFB score as a linear combination of CTRs from the two
aggregations. Based on this score, we generate a ranking
list and apply an EE algorithm to it. The top ads from the
re-ranked list are then returned for displaying. The num-
bers of impressions for these (page URL, ad) pairs and the
corresponding (publisher, ad group) pairs are increased by
one. As for clicks, we experiment with two different meth-
ods to simulate user behavior, assuming that each Web page
impression can lead to at most one click for each user inter-
action. The first approach is called random feedback. In
this method, when we display a list of ads on a page, the
user views them sequentially from top to bottom. For each
ad, we simulate the user feedback as a Bernoulli trial. The
outcome is either click or non-click, where the probability
of click is the same as the ground truth CTR. Repeat this
process until we obtain a click or exhaust the ad list. The
second approach is called deterministic feedback. Instead of
running a random process to decide whether an ad is clicked
or not, this method calculates the probability of click for
each ad in the display list and awards them with partial
clicks based on their ground truth CTRs. Given a page and
a list of m ads, the probability of click for the ith ad is
calculated as

P(clicki|page, adi,ads, -+ ,adn) = CTR(page,ad;) x
i1
Z(l — CTR(page,ad;))
=1

where CT R(page, ad) is the ground truth CTR for the page
ad pair. While the random feedback method is more realistic
to simulate user actions, the deterministic approach allows
us to analyze the theoretical upper-bounds for different EE
algorithms when true feedbacks are available.

Once receiving the user feedback, we update the numbers
of clicks and calculate new CTRs for the affected page ad
pairs. As we mention before, a default CTR is used for those
whose impressions are below the threshold. Note that when
this default value is greater than 0, we are doing implicit ex-
ploration to some extent. In this case, ads with insufficient
impressions may have better chances to be selected than
ads with poor performance on many impressions. Moreover,
when we use 1 as the default value, it can be viewed as
an EE algorithm where exploration always has higher pri-



ority than exploitation until all the ads in the space receive
enough impressions. The simulation procedure for running
EE algorithms is summarized in Algorithm 4.

Algorithm 4 Simulation procedure
1: for i =1to N do
2:  for all pages do
3: Calculate a CFB score for each ad with ground
truth available

4: Retrieve the top n ads ranked by CFB scores

5: Apply the EE algorithm to re-rank ads

6: Return the top m ads for displaying

T Generate a user feedback

8: Update the CFB impression, click and CTR statis-
tics

9: end for

10: end for

We use two metrics to evaluate the performance of an EE
algorithm. The first one is the ad reach of performance his-
tory, measured by the number of entries in the CFB (page
URL, ad) table with sufficient impressions. We believe that
this metric is positively correlated with CTR estimation ac-
curacy. With increased coverage in the CFB model, we are
able to select from a larger pool of potentially good ads for
displaying so as to improve user experience. The second met-
ric is the average expected CTR. We could use the actual
CTR, but it changes abruptly over iterations for the ran-
dom feedback method. The expected CTR for a particular
iteration is the ratio between the total number of expected
clicks and the total number of impressions. The number of
expected clicks for each page ad impression is the same as
the probability of click defined above. Finally, we calculate
the average expected CTR over every 100 iterations.

5.2 Experiment results

In all our experiments, we run the simulation until the ex-
pected CTR converges or the number of iterations reaches
200,000. The results are recorded at 100 iterations apart.
Unless stated otherwise, the number of ads returned by the
CFB model for each page (n) is 10 and the number of ads
selected for display (m) is 3. The default way of generat-
ing user feedback is the random feedback method. Our ex-
periments start with a single-level CFB model using (page
URL, ad) aggregation only. Then we extend it to use two-
level CFB tables for comparison. For all the figures in this
section, we plot 30 to 40 points for a clear demonstration of
the trend. The number of iterations shown for CFB cover-
age may be different from the average expected CTR since
they have different convergence rates.

In the first experiment, we demonstrate the effects of three
different values for the default CTR in the CFB model: 0, 1
and the mean of the initial CTRs. As mentioned before, us-
ing non-zero default CTRs can be considered as an implicit
exploration method. With this experiment, our goal is to
analyze their impacts on the CFB model and further decide
the appropriate value to use when we compare different EE
algorithms.

The evaluation results are presented in Figures 1 and 2.
The horizontal axis is the number of iterations and the ver-
tical axis is the performance metric. As we can see, both the
CFB coverage and the average expected CTR increase as we
use larger default CTRs. With the default CTR being 1, we
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Figure 1: CFB coverage for three default CTRs in
the CFB model.
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Figure 2: Average expected CTR for three default
CTRs in the CFB model.

are able to explore all the ads in the ground truth table and
reach the upper limit of the CFB coverage. However, we
observe a significant drop in the average expected CTR at
the early stage. This is expected since we totally ignore the
historical performance and focus on exploration only. With
more iterations, the CTR gradually converges to a higher
level than the other two settings. These results confirm our
theory that (even implicit) exploration is helpful to discover
more ads with good performance and improve the system
in the long run. On the other hand, we need to disable
such implicit exploration when comparing the explicit EE
algorithms to remove its impact on the performance.

In the second experiment, we evaluate the two EE algo-
rithms described in Section 4. In addition to a pure exploita-
tion baseline, we also compare against the e-greedy and e-
decreasing algorithms. As explained above, the default CTR
in the CFB model is set to be 0 in this experiment. We try to
make the parameters in different algorithms as close as pos-
sible. The number of reserved ads (r) is set to be 1 and the
number of ads in the low-rank list or the promotional queue
(¢) is set to be 4. For the e-greedy algorithm, we experiment
with three parameter values: 0.1, 0.5 and 0.9. While it is
highly unlikely to use an e value greater than 0.5 in a real
system, we still include the results of ¢ = 0.9 for illustration
purpose. For the confidence-based exploration algorithm,
we use the same three € values. Furthermore, its impression
upper-bound for exploration (w) is 1,000 and the tangent
function parameter b is 300.0. For the e-decreasing and Ex-
ponentiated Gradient algorithms, they share the same set of
candidates {e; = 0.05 * ¢ + 0.01,4 = 1,---,10}. While the
EG approach automatically learns the optimal parameter,
e-decreasing starts with the largest value and reduces it by
0.05 every 2,000 iterations until € reaches the smallest value.
As we mentioned before, this algorithm is not suitable for
a dynamic system; we do not intend to spend much effort
tuning the decreasing function but only experiment with a



simple setup. The decreasing rate is determined empirically
based on the CTR convergence rates of other EE algorithms.

The CFB coverages are plotted in Figure 3. The nota-
tions z-greedy and z-confidence refer to the e-greedy and
confidence-based algorithms with € = x, respectively. Over-
all the EE algorithms have better performance than the
baseline, but for the first 200 iterations, we achieve the
fastest increase in the CFB coverage with pure exploitation.
This is because for some pages, there may be less than 3 ads
with sufficient impressions at the beginning. Therefore some
other ads are selected to fill the remaining spots even when
their impressions are not high enough. One thing to note
is that we apply a stable sorting algorithm when generating
the ranked list based on CFB scores. As a result, we always
use the same set of fillers until their impressions eventually
reach the threshold. Such repeated exposure of a small set
of ads is more effective to increase the CFB coverage in the
short term than the diffused exploration in EE algorithms.
But in the long run, all EE algorithms catch up and improve
the coverage by 25.46% at convergence.

We have several interesting findings regarding the behav-
iors of different EE algorithms. First, they are not able to
reach the upper limit of 64,798 entries due to the restriction
that they are only applied to the top n ads returned by the
CFB model, which is set to be 10 in this experiment. In the
initial CFB table, each page has an average of 1.36 ads with
non-zero CTRs. So it is fairly safe to assume that most ads
outside the top 10 lists have zero CTRs. Because of this
limitation and the stable sorting algorithm used in ranking,
the top 10 lists returned by the initial CFB model essen-
tially define our ad space for exploration with few excep-
tions. Therefore the true upper limit for the CFB coverage
is approximately 27,814 here, which is the sum of the ini-
tial coverage 17,814 and the possible addition of 10,000 new
ads (10 for each page). As we can see, the EE algorithms
converge to a CFB coverage that is close to this limit.

Another observation is that, for the e-greedy algorithm,
there is no obvious correlation between the convergence rate
of CFB coverage and the € value. The fastest one uses an
€ of 0.5 and the slowest one uses 0.9. As we understand, a
larger € value corresponds to more opportunities for explo-
ration and thus should lead to faster convergence of CFB
coverage. The reason why we do not observe such a trend
here is due to data sparseness. As we discuss above, the
average number of ads with non-zero CTRs for each page is
very small. As a result, the CTR difference between high-
rank and low-rank ads is not significant. Most of these ads
have zero CTRs in the CFB table. Since the e-greedy algo-
rithm does not consider confidence of CTR estimation when
creating the high-rank and low-rank lists, we expect them
to have similar distributions over ads with insufficient im-
pressions. In this case, both exploitation and exploration
have similar chances to select ads that do not meet the CFB
threshold, thus favoring exploration more does not necessar-
ily help CFB coverage increase.

On the other hand, the convergence rate of the confidence-
based exploration algorithm is positively correlated with the
e value. This is expected because of the strict distinction
between exploitation and exploration in this method. By
eliminating the randomness in exploitation and favoring ads
with insufficient impressions in exploration, these two phases
serve their own purposes more effectively. As a result, differ-
ent epsilon values lead to very different behaviors. Overall,

using an € of 0.9 achieves the fastest convergence rate among
all EE algorithms and 0.1 is the slowest.

As for the other two algorithms, e-decreasing is very sim-
ilar to 0.5-greedy because it starts with 0.51 and converges
before 1,000 iterations. The Exponentiated Gradient method
effectively learns the optimal e and its convergence rate is
close to the best setting.

The comparison of average expected CTR is shown in Fig-
ure 4. Each point corresponds to the average result of the
previous 100 iterations. For the e-greedy algorithm, the con-
verged CTR increases as € decreases (less exploration). This
is again because the exploration does not take into account
the confidence of CTR estimation. Even after convergence,
the 0.9-greedy algorithm still gives 90% of the opportuni-
ties to ads with low ranks, which significantly decreases its
average expected CTR. While the e-decreasing algorithm
converges to a higher CTR than all e-greedy algorithms, its
overall performance is not as good as 0.1-greedy. Its CTR
drops a lot at the early stage because of more aggressive ex-
ploration but does not converge fast enough to compensate
the loss. On the other hand, the dynamic e-greedy algorithm
with Exponentiated Gradient has the fastest convergence
rate and the highest CTR for the first 2,500 iterations. It
is only after the CFB coverage stabilizes that 0.1-greedy be-
gins to show its advantage. However, in a real system where
the ad space dynamically changes at hourly basis, it is un-
likely for the CFB model to converge. Thus the 0.1-greedy
algorithm will be less effective in this scenario and the EG
method will shine with an adaptively optimized parameter.

With the confidence-based exploration algorithms, we in-
crease CTR by 47.44% over the baseline and 18.20% over all
other EE methods. The improvement comes from a dynamic
tradeoff between exploitation and exploration, controlled by
the confidence of CTR estimation. At the early stage, this
algorithm takes full advantage of exploration without wast-
ing opportunities on established bad ads. As the CFB model
learns more about the true ad performance, the focus gradu-
ally shifts to pure exploitation. As expected, larger € values
(more explorations) correspond to faster convergence. The
overall performance of 0.9 and 0.5 are comparable, while 0.1
is slightly worse. For the same reason we mention above, 0.5
is more desirable in a real system. It increases the CTR fast
enough to adjust to the changes in a dynamic marketplace.

In addition to the random feedback method, we are also
interested in how the EE algorithms perform when true feed-
backs are available with the deterministic approach. In this
way, we are able to analyze their theoretical upper-bounds.
The evaluation results are presented in Figures 5 and 6. As
we can see, the trends are almost identical to the previous
experiment except that they converge to higher average ex-
pected CTRs. Therefore we can conclude from these two
experiments that confidence-based EE performs better than
others no matter we receive partial or full user feedbacks.

For all the above EE experiments, we disable the implicit
exploration by setting the default CTR to be 0. However, if
we compare the best EE algorithm and the baseline with a
default CTR of 1 (extreme exploration), we find that the lat-
ter performs much better in terms of both metrics in the long
run. The EE algorithm achieves an CFB coverage of 24,723
entries and an average expected CTR of 0.0031, while the
baseline has an CFB coverage of 64,798 entries and a CTR
of 0.0048. This does not mean that extreme exploration
is more effective than confidence-based exploration. As we
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Figure 3: CFB coverage for different EE algorithms.
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for the first 1,000 iterations.
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Figure 4: Average expected CTR for different EE
algorithms. The small figure at the top left is a
magnified plot for the first 6,000 iterations.

mention before, the EE algorithm can only explore the top
n (n=10) ads returned by the CFB model while the ex-
treme exploration does not have such restriction. Therefore
the comparison is only fair when we set n to be unlimited.
With this setup, we compare the following two algorithms
again: baseline with non-zero default CTRs and confidence-
based exploration with a zero default CTR. The results are
shown in Figures 7 and 8.

In these two figures, the notation baseline-z refers to the
baseline algorithm with the default CTR set to z and -
confidence is the same as defined before. As we can see, all
the EE algorithms converge to the same CFB coverage as
baseline-1, which is essentially the ground truth coverage.
But in terms of average expected CTR, the EE algorithms
perform much better. Note that after 20,000 iterations, 0.9-
confidence no longer increases its CFB coverage because
it has reached the upper limit. However, its average ex-
pected CTR continues to improve and eventually surpasses
baseline-1. Because of the randomness in the simulated user
feedbacks, the CFB threshold of 100 impressions may not be
enough to guarantee reliable estimation of CTR. Therefore,
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Figure 5: CFB coverage for different EE algorithms
with the deterministic feedback method.
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Figure 6: Average expected CTR for different EE
algorithms with the deterministic feedback method.

even for ads with impressions above this threshold, we can
still benefit from exploration to obtain more accurate CFB
scores to improve the ranking system. On the other hand,
the baseline algorithm stops exploration once the CFB cov-
erage converges and its CTR stabilizes.

Another reason that explicit exploration is more desirable
is because the baseline algorithm with a high default CTR
is not practical in reality. For example, baseline-1 can only
benefit from exploration and improve its CTR after all ads in
the space receive enough impressions. However, this scenario
will never happen as we have new ads joining the system
everyday. Therefore, this algorithm may seem effective in
the simulation, but is not practical in a real system.

In our final experiment, we extend the CFB model to in-
corporate two levels of aggregation. In this case, the CFB
score is simply a linear combination of the two CTR estima-
tions, where we use a weight of 0.7 for the (page URL, ad)
level and 0.3 for the (publisher, ad group) level. In terms
of CFB coverage, all the algorithms exhibit similar trends
to the single-level model. The EE algorithms improve the
coverage by 23.60% over the baseline. Due to space limita-
tion, we leave out this figure here and only present the CTR
comparison in Figure 9.
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As we see, the confidence-based exploration algorithm again
outperforms other approaches. We achieve the highest CTRs
with parameters 0.5 and 0.9, followed by 0.1. One thing to
note is that the absolute values of the converged CTRs are
higher than the single-level model. This is because we ob-
tain more reliable CTR estimation with smoothing from the
higher level aggregation. In addition, exploration is more ef-
fective as every opportunity can potentially benefit multiple
pages and ads from the same publisher and ad group.

6. CONCLUSION AND FUTURE WORK

In this paper, we study the problem of exploitation and
exploration in online advertising and propose two novel ap-
proaches that adaptively balance the tradeoff between them.
In order to evaluate the performance of the proposed algo-
rithms more accurately, we introduce an offline simulation
framework that provides an isolated environment as well as
mimicking the online system and user behaviors. Under this
framework, we compare our algorithms with a pure exploita-
tion baseline and two other standard EE strategies, using an
industry leading performance based contextual advertising
system with real online event data. The experimental results
demonstrate that our algorithms, especially the confidence-
based approach, perform superiorly on the measurement of
ad reach and CTR in various configurations. In the future,
we are going to experiment with more sophisticated confi-
dence measurements such as the variance of posterior CTR
distribution using Beta-Binomial or Gamma-Poisson mod-
els. Another direction is to combine the advantages of the
confidence-based algorithm and a dynamically learned pa-
rameter using the Exponentiated Gradient method.
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