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Although protein structure prediction has made great progress in recent years, a protein19
model derived from automated prediction methods is subject to various errors. As meth-
ods for structure prediction develop, a continuing problem is how to evaluate the quality21
of a protein model, especially to identify some well-predicted regions of the model, so
that the structural biology community can benefit from the automated structure pre-23
diction. It is also important to identify badly-predicted regions in a model so that some
refinement measurements can be applied to it. We present two complementary tech-25
niques, FragQA and PosQA, to accurately predict local quality of a sequence–structure
(i.e. sequence–template) alignment generated by comparative modeling (i.e. homology27
modeling and threading). FragQA and PosQA predict local quality from two different
perspectives. Different from existing methods, FragQA directly predicts cRMSD between29
a continuously aligned fragment determined by an alignment and the corresponding frag-
ment in the native structure, while PosQA predicts the quality of an individual aligned31
position. Both FragQA and PosQA use an SVM (Support Vector Machine) regression
method to perform prediction using similar information extracted from a single given33
alignment. Experimental results demonstrate that FragQA performs well on predicting
local fragment quality, and PosQA outperforms two top-notch methods, ProQres and35
ProQprof. Our results indicate that (1) local quality can be predicted well; (2) local
sequence evolutionary information (i.e. sequence similarity) is the major factor in pre-37
dicting local quality; and (3) structural information such as solvent accessibility and
secondary structure helps to improve the prediction performance.39
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1. Introduction1

The biennial CASP (Critical Assessment of Structure Prediction)1–4 events have
demonstrated that the three-dimensional structures of many new target proteins3

can be predicted at a reasonable resolution, although in most cases, the predicted
models are still not accurate enough for functional study. In particular, comparative5

modeling methods can generate reasonably good models for approximately 70% of
target proteins in recent CASP events. Even for those free modeling (FM) targets,7

a structural model generated by protein threading usually contains some good local
regions, although the overall conformation of the model is incorrect.59

As methods for structure prediction develop, a continuing problem is how to
evaluate the quality of a protein model in details. The challenge is to distinguish11

a good model from a bad one (referred to as global quality assessment), as well as
correctly-predicted residues from badly-predicted ones (referred to as local quality13

assessment). To make automated structure prediction really useful for the structural
biology community, a reliable model quality evaluation program is indispensable15

when hundreds of models are predicted for a single target protein.
Global quality prediction has been an active research topic for two decades.6–3517

This kind of programs can be used to pick up the best few models from a bunch of
models generated by different structure prediction programs, which enables struc-19

ture biologists to focus on the most native-like models. However, a structural model
is not able to provide enough information for functional study if it has a bad21

quality.36

A common practice taken by some human predictors or consensus-based auto-23

matic predictors to further improve the accuracy of the structure prediction is to
identify correctly-predicted regions from each structural model and then assemble25

them together to obtain a better overall model for the target protein; for example,
TASSER5 and 3D-SHOTGUN37 are two such top-scoring methods. This kind of27

refinement methods often perform better than the classical threading-based protein
structure prediction methods. The key factor underlying the success of these refine-29

ment methods is identifying the correctly-predicted regions in a structural model.
Besides being used to examine and improve the accuracy of a protein model, local31

quality prediction methods can also be used to recognize functional residues in a
protein model.38,3933

Local quality assessment methods are either structure-based32,34,40–44 or
alignment-based.36,38,45–47 ERRAT42 is a program that uses only structural infor-35

mation. This program employs a Gaussian error function based on the statistics
of non-bonded interactions to predict incorrect regions in a protein model. Such37

methods can recognize incorrect structural regions which obviously deviate from
their natives. There are also some programs using alignment information to predict39

local quality. Tress et al. developed a method to evaluate local quality of a given
alignment and tested the method on alignments generated by five comparative-41

modeling methods.38 The results indicate that an alignment position with a high
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profile-derived alignment score often has good quality. Wallner et al. developed four1

neural network-based methods, i.e. ProQres, ProQprof, ProQlocal and Pcons-local,
to identify correct regions in a protein model, using either structural information3

or alignment information.36 ProQres uses only structural information in a protein
model, while ProQprof uses alignment information such as profile-profile scores,5

information scores, and gap penalty. ProQlocal combines ProQres and ProQprof
together to achieve a better performance. Pcons-local is a consensus-based local7

quality predictor, taking as input protein models generated by different structure-
prediction programs. These four methods evaluate local quality by comparing the9

sequence alignments used to build the models with the optimal structure align-
ments. However, to make local quality assessment methods really useful for struc-11

ture prediction and refinement approaches, it is crucial to assess the real quality
of regions of the structural models. Meanwhile, it is also important to evaluate the13

single position quality, so that local refinement strategies can be applied to.
In this paper, we present two complementary methods, FragQA and PosQA, to15

accurately predict local quality of a sequence-structure alignment. Distinguishing
itself from previous methods, FragQA directly predicts the quality of an ungapped17

region in the alignment. The quality is measured using the cRMSD (i.e. Cα-based
RMSD) between two fragments corresponding to the ungapped region: one is the19

native structure of the region and the other one is the predicted model. Note that
the quality measurement used here is “absolute” quality, which is independent of21

the optimal structure alignment. Furthermore, statistical significance is introduced
to improve FragQA’s performance. As opposed to cRMSD, statistical significance23

can cancel out the impact of region length. Some preliminary results of FragQA
have been discussed in Ref. 46. Complementary to FragQA, our recently developed25

PosQA predicts the quality of an individual aligned position in a given alignment.
The single position quality is measured using a normalized cRMSD described in27

Ref. 36. FragQA and PosQA utilize only information in a single alignment. Struc-
tural information in the alignment-derived protein model is not directly used. How-29

ever, in calculating features from an alignment, we use structural information in
the template.31

2. Results

2.1. Problem description33

This paper studies the following two problems:

(1) Given a sequence-structure alignment, what is the quality of an ungapped35

region in this alignment? The quality is defined as the cRMSD between the
native and the predicted local structures of the ungapped region, denoted as37

“cRMSD of an ungapped region”, after they are optimally superimposed. Note
that the two local structures are superimposed without taking into considera-39

tion other parts of the alignment. The alignment is cut into ungapped regions
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at gap positions. Thus, the fragments studied here are different from the fixed-1

length fragments studied in Refs. 45 and 47. FragQA is developed to solve this
problem.3

(2) Given a sequence-structure alignment, what is the quality of a single aligned
position in this alignment? To measure the quality of a single position, we opti-5

mally superimpose the predicted structural model, derived from this alignment,
and the native structure, and then calculate cRMSD at each position to mea-7

sure its quality. The final quality measure is normalized cRMSD as described in
Ref. 36. More specifically, let Di and di denote the normalized cRMSD and the9

original cRMSD at position i, respectively. Then Di is defined as 1/(1 + (di)
2

(d0)2
)

where d0 is set to
√

5 according to Ref. 36. Different from the quality measure11

of an ungapped region, the single-point quality depends on the superimposi-
tion between the whole predicted model and its native structure. PosQA is13

developed to solve this problem.

2.2. FragQA training15

Training and test data. Choosing good training and test data is one of the
key steps in objectively evaluating the performance of a machine-learning method.17

FragQA and PosQA are tested on several threading methods, such as RAPTOR,48

PROSPECT-II,49 and GenTHREADER.50 The results are similar. In this paper,19

we only show the results on alignments generated by RAPTOR default threading
algorithm. The training and test data are from the CASP7 event. As suggested by21

Fasnacht et al.,45 CASP dataset is the most practical and challenging set, which
covers a very broad range of types of target proteins and local errors. There are23

104 target proteins in CASP7 while 92 of them were considered as valid targets and
were used for final assessment by CASP7 assessors. Ninety-one target proteins are25

left after we removed redundancy at 40% sequence identity level using CD-HIT.51

Only T0346 is removed because it shares 71% sequence identity with T0290. To27

do a cross validation, the 91 target proteins are randomly divided into four sets.
Top 10 alignments generated by RAPTOR are considered for each target protein.29

If one target protein belongs to a set, then all of its 10 alignments belong to this
set. Each alignment is cut into a set of ungapped regions with cutting points being31

at the gap positions. The ungapped regions containing less than five residues are
not considered in our experiments. Table 1 shows the statistics on the four sets. It33

is clear that the four datasets are very similar.

Training. SVM-light52 with RBF (radial basis function) kernel is used to train35

FragQA. The parameter gamma in the RBF kernel function is trained using the
leave-one-out error estimation method. Other parameters are set to their default37

values or calculated automatically by SVM-light. Experimental results indicate that
the RBF kernel with its gamma parameter set to 0.2 can yield the best training39

performance. Other kernel functions such as linear kernel and polynomial kernel
are also tested, but they cannot yield as good performance as the RBF kernel.41
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Table 1. Statistics of ungapped regions on the four datasets.

Set Name # of proteins # of fragments Average cRMSD Deviation

1 23 1347 2.93 Å 1.50 Å
2 22 1108 2.57 Å 1.46 Å
3 23 1519 2.86 Å 1.47 Å
4 23 1461 2.73 Å 1.49 Å

Columns 2–5 show the number of target proteins, the number of fragments, the
average quality in terms of cRMSD of the fragments, and the standard deviation of
cRMSD of each set, respectively.

A four-fold cross validation is applied. Each time three of the four datasets are1
used as the training set, and the other one is used for testing.

2.3. Performance of FragQA3

After studying the relative importance of eight features (see Sec. 4 for the descrip-
tion of the features), which will be discussed later, the following features are encoded5
into FragQA: (1) length of the ungapped region, (2) Z-score of the whole alignment,
(3) mutation score of the region, (4) environmental fitness score of the region, and7
(5) secondary structure score of the region.

2.3.1. Prediction error and correlation coefficient of FragQA9

To the best of our knowledge, FragQA is the first method to directly predict the
quality of fragments that are automatically determined by the sequence–structure11
alignments rather than fragments with fixed length. Thus, there is no existing
method for us to compare with. The prediction error is defined as the absolute13
difference between the predicted cRMSD value and the real one. Table 2 lists the

Table 2. Prediction accuracy and correlation coefficient of FragQA.

cRMSD Test Set 1 Test Set 2 Test Set 3 Test Set 4 Ave. Fraction (%)

≤ 1 Å 1.36 1.57 1.41 1.54 14
≤ 2 Å 1.11 1.28 1.08 1.18 42
≤ 3 Å 1.00 1.16 0.94 1.04 69
≤ 4 Å 1.03 1.12 0.97 1.04 85
≤ 5 Å 1.12 1.14 1.06 1.09 92
≤ 6 Å 1.20 1.19 1.16 1.20 95
≤ 7 Å 1.33 1.26 1.22 1.25 97
≤ 8 Å 1.41 1.32 1.29 1.31 98
≤ 9 Å 1.48 1.36 1.37 1.36 99
≤ 10 Å 1.57 1.39 1.41 1.41 99

Correlation 0.51 0.46 0.50 0.48 —
coefficient

Column 1 lists different cRMSD thresholds. Columns 2–5 list prediction errors of FragQA
under different cRMSD thresholds on the four test sets. Column 6 lists average fraction of
fragments with real cRMSD under such thresholds.
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average prediction errors of FragQA, under different cRMSD thresholds on the1

four test sets, together with the average fraction of fragments with real cRMSD
under such thresholds, and the correlation coefficient between the predicted and3

real cRMSD by FragQA on the four test sets. As shown in this table, the prediction
error of FragQA ranges from 0.9 Å to 1.6 Å. The smallest error of FragQA happens5

when cRMSD threshold is set to 3 Å, which means FragQA is most accurate when
dealing with fragments with cRMSD smaller than 3 Å to the native. However, when7

the real cRMSD is very small (≤ 1 Å), the prediction error tends to be big. In other
words, it is hard to obtain an accurate prediction when cRMSD is very small. As9

indicated in Table 2, the correlation coefficient between the predicted cRMSD by
FragQA and the real cRMSD is about 0.5 for each test set.11

2.3.2. Feature selection for FragQA

It is important to detect which features are closely relevant to the prediction capa-13
bility of FragQA since unrelated features may introduce extra noise. The importance
of each feature is investigated by excluding it from the entire feature set, training15
a new FragQA, and then testing the performance of this new predictor. Thus, the
performance resulting from different sets of features can be compared, and the17
important features can be detected.

Table 3 lists the sensitivity and specificity of FragQA with different sets of fea-19
tures under different cRMSD thresholds on test set 1. The results are similar on
the other test sets. There is no obvious difference among different sets of features21
when cRMSD threshold is larger than 3.75 Å. As shown in this table, if the aligned
region length is removed, the performance of FragQA will drop obviously, except for23
cRMSD threshold larger than 2.75 Å, the sensitivity of FragQA without fragment

Table 3. Sensitivity and specificity of FragQA with different feature sets.

cRMSD All No Len No Sz No Sm No Se No Sc No Sss No SeqId No Seq

≤ 1 Å 12/19 0/0 4/10 9/17 11/16 13/32 13/17 12/18 12/18
≤ 1.25 Å 16/28 1/22 8/20 15/27 14/22 22/43 18/27 16/28 15/28
≤ 1.5 Å 25/42 4/23 16/37 19/35 22/36 27/49 26/41 25/42 25/41
≤ 1.75 Å 35/52 12/41 27/51 27/46 29/47 34/57 36/51 34/52 35/52
≤ 2 Å 42/59 21/48 38/58 35/53 39/57 48/65 42/56 43/60 42/59
≤ 2.25 Å 50/64 42/56 52/64 46/60 48/62 58/68 51/63 51/64 51/64
≤ 2.5 Å 62/72 61/63 64/70 55/66 56/69 65/73 63/70 62/72 62/72
≤ 2.75 Å 70/78 74/67 73/75 65/73 67/76 74/78 71/77 69/78 69/77

≤ 3 Å 76/79 82/70 79/77 74/77 75/80 81/79 77/79 76/79 76/79
≤ 3.25 Å 83/82 90/75 86/80 82/81 80/83 85/82 84/80 83/82 83/82
≤ 3.5 Å 88/86 94/79 90/84 88/83 84/85 89/86 89/84 88/86 88/86

Column 1 lists different thresholds. Column 2 lists the sensitivity/specificity of FragQA with all
features. Starting from column 3, each column lists the sensitivity/specificity when one feature is
removed. Len: region length, Sz : Z-score, Sm: mutation score, Se: environmental fitness score, Sc:
contact capacity score, Sss: secondary structure score, SeqId: sequence identity, and Seq: other
sequential features. All values are percentiles.
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length is a little higher than that with all the features. This complies with a fact1

that cRMSD itself is closely related to the length of an ungapped region. Removing
mutation score or the overall Z-score will also have an obvious reduction on the3

performance of FragQA, except for cRMSD larger than 2.25 Å, where removing
Z-score will increase the sensitivity slightly and have no obvious influence on the5

specificity. This also makes sense: mutation score measures the sequence similarity
in the aligned region, and Z-score evaluates the overall quality of the alignment. An7

alignment with good overall quality often contains good aligned regions. However,
when the overall quality of an alignment is poor (Z-score is low), the fragments9

can be either good or bad. In such case, Z-score will not be an influential factor
any more. Removing environmental fitness score will decrease both the sensitiv-11

ity and the specificity. Surprisingly, removing contact capacity score will increase
both the sensitivity and the specificity. This implies that contact score is a noisy13

feature. On the other hand, removing secondary structure score will decrease the
specificity but increase the sensitivity slightly. Removing any other features, such as15

sequence identity feature and other sequential features, does not obviously deterio-
rate either the sensitivity or the specificity. Thus, the final version of FragQA uses17

the following features: (1) aligned region length, (2) overall alignment Z-score, (3)
mutation score, (4) environmental fitness score, and (5) secondary structure score.19

Meanwhile, mutation score, Z-score, and the region length are the most important
factors in quality prediction.21

2.3.3. Statistical significance

The cRMSD between the predicted structure of an ungapped region and its native23

is closely relevant to the length of the region. Thus, a five-residue ungapped region
with 3 Å cRMSD may not be better than a 15-residue region with 4 Å cRMSD. To25

better evaluate the quality of a region, the statistical significance of its cRMSD is
calculated to reduce the bias introduced by region length. To calculate statistical27

significance, statistical distribution of cRMSD for a given region length is empiri-
cally calculated as follows. For a given region length, 10,000 pairs of fragments of29

this length are randomly sampled from PDB30, and their pairwise cRMSDs are
calculated. PDB30 is a subset of PDB (the Protein Data Bank),53 in which any31

two proteins share no more than 30% sequence identity. As shown in Fig. 1(a),
the mean of cRMSD increases clearly with respect to the length, but the standard33

deviation increases much more slowly. The cRMSD distribution looks like a normal
distribution. Figure 1(b) shows the statistical distribution of cRMSD calculated35

from 10,000 randomly sampled pairs of fragments with length 10. Fragments with
different length give similar distributions. For a given ungapped region with length37

l and (real or predicted) cRMSD r, its statistical significance (denoted as StatSig)
is calculated as follows:39

StatSig =
#random pairs of length l with cRMSD ≥ r

10,000
. (1)
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Fig. 1. (a) Mean (circled solid line) and standard deviation (point dotted line) of cRMSD for
random region sets with length from 5 residues to 50 residues. (b) The statistical distribution of
cRMSD calculated from 10,000 randomly sampled pairs of fragments with length 10. (c) FragQA’s
sensitivity (circle solid line) and specificity (cross dotted line) in terms of statistical significance
on test set 1. Please see Sec. 2.3.3 for the definitions of sensitivity and specificity.

Thus, the smaller the cRMSD is, the larger its statistical significance is.1

The sensitivity and specificity of FragQA in terms of statistical significance
are calculated in a way similar to that calculated in terms of cRMSD. For each3

statistical significance threshold varying from 0 to 1, the sensitivity is defined as
the percentage of ungapped regions with real statistical significance larger than5

or equal to the threshold, that also have predicted values larger than or equal
to the threshold. The specificity is defined as the percentage of ungapped regions7

with predicted significance larger than or equal to the threshold, that have real
statistical significance better than or equal to the threshold. Figure 1(c) illustrates9

the sensitivity and specificity of FragQA in terms of statistical significance on test
set 1. Results are similar on the other three sets. As shown in this figure, when11
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statistical significance is 0.8 (about 81% of fragments in our test sets have such1

values), both the sensitivity and specificity are around 90%. Even when statistical
significance threshold is 1 (about 48% of fragments in our test sets have this value),3

the sensitivity is 78%, and the specificity is 88%.
We also studied the prediction error of FragQA in terms of statistical signifi-5

cance. As shown in Table 4, the prediction error decreases quickly from 0.26 to 0.05
when the statistical significance threshold increases from 0 to 1. When the thresh-7

old is 0.9, the prediction error is approximately 0.12. This indicates that FragQA
is able to predict the statistical significance well when the ungapped region has a9

good quality. By contrast, FragQA is not able to accurately predict cRMSD when
it is small because a small cRMSD does not imply a high-quality region. This11

result also shows that statistical significance is a better measure than cRMSD.
All the test alignments are further divided into three classes, “high-quality” align-13

ments, “medium-quality” alignments, and “low-quality” alignments, based on their
Z-scores (calculated by RAPTOR) at cutting points 0.33 and 0.66. A “high-quality”,15

“medium-quality”, and “low-quality” alignment has Z-score at least 0.66, between
0.33 and 0.66, and less than 0.33, respectively. Table 4 indicates that different sets17

have different prediction errors. The underlying reason may be that different sets
have different distributions of ungapped regions under a given threshold.19

On the other hand, the correlation coefficient of FragQA on each set in terms of
statistical significance is higher than 0.60. This means that statistical significance21
is probably a better way to measure the quality of a fragment.

2.4. PosQA training23

PosQA uses the same data source as FragQA to train and test the SVM model.
The only difference is that a data entry in FragQA is an ungapped region while a25
data entry in PosQA is a single aligned position. If a residue in the target protein

Table 4. Prediction errors of FragQA in terms of statistical significance.

StatSig Whole High-quality Medium-quality Low-quality

≥ 0 0.26 0.21 0.25 0.28
≥ 0.1 0.23 0.20 0.23 0.25
≥ 0.2 0.21 0.19 0.21 0.22
≥ 0.3 0.19 0.16 0.18 0.20
≥ 0.4 0.17 0.14 0.17 0.18
≥ 0.5 0.15 0.12 0.16 0.16
≥ 0.6 0.14 0.10 0.15 0.14
≥ 0.7 0.13 0.08 0.14 0.14
≥ 0.8 0.12 0.08 0.14 0.13
≥ 0.9 0.12 0.08 0.14 0.13
= 1.0 0.05 0.03 0.04 0.08

Column 1 lists different significance thresholds. Column 2 lists the overall pre-
diction errors of FragQA. Columns 3–5 are the prediction errors on the three
classes of alignments: “high-quality”, “medium-quality”, and “low-quality”.
Please see the text for the definition of these three classes.
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is aligned to a gap, the quality of this position is set to zero, and this residue is not1

used for training or test. The whole CASP7 dataset is also divided into four sets
as in FragQA. In summary, there are 26 432, 27 018, 26 982, and 26 831 entries in3

the four sets, respectively. Their average normalized cRMSD values, Di’s, are 0.57,
0.51, 0.52 and 0.54, respectively.5

The SVM-light software52 is also applied to train PosQA with the RBF kernel,
following almost the same procedure that trains FragQA. The objective values7

in the SVM regression training are Di values. Experimental results indicate that
PosQA yields the best performance when the RBF kernel function is used with9

gamma being 0.3. After selecting features by adopting the similar approach used
by FragQA, PosQA encodes the following features: (1) overall alignment Z-score, (2)11

mutation score, (3) environmental fitness score, and (4) secondary structure score.
Again, contact capacity score has no contribution to the performance of PosQA,13

and is thus not encoded in PosQA.

2.5. Performance of PosQA15

2.5.1. Prediction error of PosQA

We compared the prediction error of PosQA, ProQres, and ProQprof, which is17
defined as the average absolute difference between the predicted Di and its real
value. Table 5 shows the prediction errors above different Di thresholds. As shown19
in this table, the overall prediction errors for PosQA, ProQres, and ProQprof range
from 0.13 to 0.29, 0.14 to 0.41, and 0.15 to 0.40, respectively. This implies that the21
overall prediction accuracy of PosQA is better than that of ProQres and ProQprof.
When Di increases, the overall prediction errors of PosQA decrease clearly, while23
the lowest errors of ProQres and ProQprof happen when Di threshold is 0.6. Recall

Table 5. Comparison of prediction errors of PosQA, ProQres, and ProQprof.

Whole High-quality Medium-quality Low-quality

Di PQA PQr PQp PQA PQr PQp PQA PQr PQp PQA PQr PQp

≥ 0 0.29 0.41 0.40 0.27 0.36 0.44 0.29 0.47 0.54 0.29 0.41 0.20
≥ 0.1 0.28 0.31 0.35 0.27 0.26 0.32 0.29 0.31 0.36 0.29 0.39 0.37
≥ 0.2 0.26 0.26 0.29 0.25 0.22 0.27 0.26 0.26 0.30 0.29 0.31 0.30
≥ 0.3 0.23 0.22 0.24 0.21 0.19 0.23 0.22 0.22 0.26 0.27 0.25 0.24
≥ 0.4 0.22 0.18 0.20 0.20 0.16 0.19 0.21 0.18 0.22 0.25 0.22 0.20
≥ 0.5 0.21 0.16 0.17 0.18 0.14 0.15 0.20 0.15 0.18 0.23 0.19 0.18
≥ 0.6 0.19 0.14 0.15 0.16 0.13 0.12 0.19 0.13 0.15 0.20 0.18 0.19
≥ 0.7 0.17 0.15 0.15 0.15 0.12 0.10 0.15 0.12 0.14 0.21 0.21 0.24
≥ 0.8 0.15 0.16 0.17 0.14 0.14 0.10 0.10 0.14 0.13 0.20 0.22 0.29
≥ 0.9 0.13 0.19 0.19 0.13 0.17 0.13 0.12 0.17 0.13 0.24 0.25 0.33

Column 1 lists different Di thresholds. Columns 2–13 list the prediction errors of PosQA (denoted
as PQA), ProQres (denoted as PQr), and ProQprof (denoted as PQp) on the whole set, “high-
quality” alignments, “medium-quality” alignments, and “low-quality” alignments, respectively.
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that a large Di indicates a high-quality position. This means that PosQA predicts1

the well-aligned positions better than ProQres and ProQprof.
All the test alignments are also divided into three classes: “high-quality” align-3

ments, “medium-quality” alignments, and “low-quality” alignments, based on their
Z-scores (calculated by RAPTOR) at cutting points 0.33 and 0.66. Table 5 shows5

the prediction errors of PosQA, ProQres, and ProQprof on the three classes of align-
ments. It is clear that different sets have different prediction errors, which means7

Z-score is an informative factor for local quality. For all the three classes, the over-
all errors, which correspond to Di ≥ 0, and the errors on high-quality residues,9

which correspond to Di ≥ 0.9, of PosQA are better than those of ProQres and
ProQprof. However, ProQres outperforms the other two methods on both “high-11

quality” and “medium-quality” alignments, whereas PosQA is the best method
on “low-quality” alignments. This makes sense because ProQres and ProQprof13

are both trained on high-quality models and alignments, while PosQA is trained
on the comprehensive set of CASP7 targets, which contains high-quality (HA)15

targets, template-based modeling (TBM) targets, as well as free modeling (FM)
targets.17

2.5.2. Sensitivity and specificity

Receiver Operating Characteristic (ROC) plots are used to evaluate the trade-off19

between the ability of PosQA, ProQres, and ProQprof to correctly identify positive
cases and the number of negative cases that are incorrectly classified. Figure 2 shows21

the ROC curves for PosQA, ProQres, and ProQprof on the four cross-validation test
sets. The discrimination threshold for differentiate positive cases and negative cases23

is set to 4 Å in this figure. PosQA clearly outperforms the other two methods on
all the four test sets. Meanwhile, the ROC curves also show that the performance25

for a method on test sets 1 and 3 is higher than that on test sets 2 and 4, which
reveals that test sets 1 and 3 are easier than test sets 2 and 4 in terms of single27

position quality assessment.
We further evaluated the performance of PosQA, ProQres, and ProQprof on29

“high-quality”, “medium-quality”, and “low-quality” alignment sets. As shown in
Figs. 3(a)–3(c), ProQres outperforms PosQA and ProQprof on “high-quality” align-31

ments, whereas PosQA is the best method on both “medium-quality” and “low-
quality” alignments. It is noteworthy that PosQA performs significantly better than33

both ProQres and ProQprof on “low-quality” alignments. One may argue that the
difference on the performance is the result of the settings of ROC discrimination35

thresholds. Thus, we drew the ROC curves of PosQA with different discrimination
thresholds on test set 1 in Fig. 3(d). Since there is almost no difference between dif-37

ferent curves when false positive rate is higher than 0.4, only the ROC curves with
false positive rate lower than 0.4 are shown. Again, the difference is not obvious39

when different discrimination thresholds are used. Similar observations are found on
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Fig. 2. ROC curves for PosQA, ProQres, and ProQprof on the four test sets. Discrimination
threshold is 4 Å.

the other test sets and on the other two methods. Thus, all ROC curves shown here1

reveal the actual comparisons of the three methods regardless of the discrimination
thresholds.3

2.5.3. Prediction examples of PosQA

In this section, three representative alignments generated by RAPTOR in CASP75

are shown, and the performance of PosQA and ProQres on them is carefully stud-
ied. ProQres has been used for protein structure prediction by its developer, a7

top-ranked group in the CASP events.36 These three alignments are T0346 (target)
versus 1a33 (template), T0323 versus 1dizA, and T0372 versus 1sqhA; the struc-9

tural models derived from these alignments have very different GDT TS54 scores
97.67, 53.69 and 24.75, respectively. For the sake of clearness, only the results of11

PosQA and ProQres are compared here, because ProQprof performs worse than
ProQres on these three alignments. Since PosQA does not predict the quality of13

an unaligned position, to do a fair comparison between PosQA and ProQres, the
average prediction errors for both PosQA and ProQres are calculated on only the15

aligned positions. As shown in Fig. 4, the prediction errors of both PosQA and
ProQres are related to the overall alignment quality. The better the overall quality17
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Fig. 3. (a) ROC curves for PosQA, ProQres, and ProQprof on “high-quality” alignments (Z-
score≤ 0.33). Discrimination threshold 2 Å; (b) ROC curves for PosQA, ProQres, and ProQprof
on “medium-quality” alignments (0.33 < Z-score≤ 0.66). Discrimination threshold 4 Å; (c) ROC
curves for PosQA, ProQres, and ProQprof on “low-quality” alignments (0.66 <Z-score≤ 1.0).
Discrimination threshold 6 Å; (d) ROC curves for PosQA with different discrimination threshold
values on test set 1.

is, the smaller the prediction error is. PosQA performs better than ProQres on all1

these three test cases. The difference between the prediction errors of PosQA and
ProQres is large on “high-quality” and “low-quality” alignments, i.e. T0346 versus3

1a33 and T0372 versus 1sqhA, but relatively small on “medium-quality” alignment,
T0323 versus 1dizA. The average prediction errors of PosQA and ProQres are 0.105

and 0.15 for T0346 versus 1a33, respectively, 0.24 and 0.27 for T0323 versus 1dizA,
respectively, and 0.39 and 0.47 for T0372 versus 1sqhA, respectively. It is clear that7

for most residues of these alignments, the prediction errors of PosQA are smaller
than that of ProQres. In particular, ProQres has obviously large prediction errors at9
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Fig. 4. Prediction errors of PosQA and ProQres on three typical alignments generated by RAP-
TOR in the CASP7 event. Since PosQA does not predict the quality at unaligned positions,
the prediction errors at these positions are set to 1. (a) Prediction errors on T0346 versus 1a33
(GDT TS score 97.67). The average errors of PosQA and ProQres are 0.10 and 0.15, respectively.
(b) Prediction errors on T0323 versus 1dizA (GDT TS score 53.69). The average errors of PosQA
and ProQres are 0.24 and 0.27, respectively. (c) Prediction errors on T0372 versus 1sqhA (GDT TS
score 24.75). The average errors of PosQA and ProQres are 0.39 and 0.47, respectively.
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some positions on the “high-quality” alignment between T0346 and 1a33, whereas1

PosQA’s prediction errors are mostly contained within 0.3.

3. Discussion3

FragQA and PosQA predict two different aspects of the local quality of an align-
ment. The cRMSD used in FragQA is calculated without considering other parts of5

an alignment, while the cRMSD used in PosQA depends on the overall alignment
between the structural model and its native. To the best of our knowledge, FragQA7

is the first program that directly predicts the quality of an ungapped region in
an alignment. A potential application of local quality predictors such as FragQA9

and PosQA is that they can be used to identify those high-quality regions in an
alignment. These high-quality regions can often cover a large portion of the target11

protein even if it is a hard target and thus, they can be refolded to obtain a better
structural model for the target protein. For example, Zhang-server55,56 achieved13

an impressive performance in CASP7 and CASP8 by first cutting a threading-
generated alignment into some ungapped regions, and then rearranging the physical15

orientations of these regions. Zhang-server uses all the ungapped regions without
considering their quality. A further improvement over Zhang-server is to first pre-17

dict the “absolute” quality of each region, and then refold only those high-quality
regions to obtain a better structural model. FragQA provides such a powerful tool19

to directly evaluate the fragment quality cut from the alignments, which is inde-
pendent of the optimal superimposition of the two whole structures. Currently,21

both FragQA and PosQA utilize only alignment information in a single alignment,
although some structural information from the template is also taken into consider-23

ation. We plan to further develop these two programs along the following avenues:
(1) combine structural information in a protein model with alignment information;25

and (2) utilize various alignments generated by independent threading programs
so that consensus information can be used to boost the prediction performance.27

As demonstrated in recent CASP events, consensus information from independent
prediction programs can help to improve prediction accuracy.29

Although our experiments use alignments generated by RAPTOR as data
source, both FragQA and PosQA can take alignments generated by other compara-31

tive modeling methods as inputs, since these two predictors are totally independent
of threading methods. Thus, researchers can use these two programs to predict the33

local quality of an alignment generated by their own threading methods. On the
other hand, as demonstrated by feature selection and the experiments, the local35

quality is also related to the overall quality of an alignment. We benchmarked our
predictors using RAPTOR’s results in CASP7, because most CASP7 target proteins37

have low sequence similarity with proteins in RAPTOR’s template database. The
template database used by RAPTOR for CASP7 was generated before any CASP739

target structures were deposited into the PDB database. This can reduce the bias
introduced by template database to its minimum level. Moreover, as suggested in41
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Ref. 45, CASP dataset is the most comprehensive set, which is suitable to evaluate1

the broad range of the performance of our methods.

4. Methods3

4.1. Development of FragQA

Our SVM regression model uses only features extracted from a single sequence-5

template alignment, generated by any comparative modeling program (i.e. homol-
ogy modeling and threading). To exploit the evolutionary information of proteins,7

sequence profiles of both the target protein and the template protein are uti-
lized in calculating features. The sequence profile of the template, denoted by9

PSSMtemplate (position-specific scoring matrix), is generated by PSI-BLAST with
five iterations; PSSMtemplate(i, a) encodes mutation information for amino acid a11

at position i of the template. PSI-BLAST is also applied with five iterations to
generate position-specific frequency matrix, PSFMtarget, for each target protein;13

PSFMtarget(j, b) encodes occurring frequency of amino acid b at position j of the
target. Let A(i) denote the aligned sequence position of template position i, and15

Ttemp denote the set of template positions belonging to an aligned region. We stud-
ied a variety of features extracted from the alignment, and their relative importance17

is studied in Sec. 2.3.2. In summary, the following features are tested in FragQA:

(1) Mutation score. Mutation score measures the sequence similarity between19

the two segments corresponding to an aligned region: one corresponds to the
target protein and the other one corresponds to the template. The mutation21

score (Sm) of a region is calculated as:

Sm =
∑

i∈Ttemp

∑

a

PSFMtarget(A(i), a) × PSSMtemplate(i, a). (2)
23

(2) Environmental fitness score. This score measures how well one target pro-
tein region aligns to the environment where the corresponding template region25

lies in. The environment consists of two types of local structure features.

(a) Three types of secondary structure are used: α-helix, β-strand, and loop.27

(b) Solvent accessibility: There are three levels: buried (inaccessible), interme-
diate, and accessible. The Equal-Frequency discretization method is used to29

determine boundaries between these three levels. The calculated boundaries
are 7% and 37%.31

Thus, there are nine environment combinations (denoted as env) in total. Define
F (env, a) to be the environment fitness potential for amino acid a and environ-33

ment combination env. F (env, a) is calculated and taken from PROSPECT-
II.49 For more details about F (env, a), please see to Ref. 49. The environment35

fitness score (Se) for an aligned region is then calculated as:

Se =
∑

i∈Ttemp

∑

a

PSFMtarget(A(i), a) × F (envi, a). (3)
37
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(3) Secondary structure score. In addition to the secondary structure infor-1

mation encoded in environmental fitness score, we also use SS(i, A(i)), the
secondary structure difference between position i in template and position3

A(i) in target, to measure the quality of an ungapped region from another
aspect. PSIPRED57 is called to predict the secondary structure of the target5

protein. Let α(j), β(j), and loop(j) denote the predicted confidence levels of
α-helix, β-sheet, and loop at sequence position j, respectively. If the secondary7

structure type at template position i is α-helix, then SS(i, A(i)) =α(A(i)) −
loop(A(i)). If the secondary structure type at template position i is β-sheet,9

then SS(i, A(i)) =β(A(i)) − loop(A(i)). Otherwise, we set SS(i, A(i)) to be 0.
The secondary structure score (Sss) of an ungapped region is calculated as:11

Sss =
∑

i∈Ttemp

SS(i, A(i)). (4)

(4) Contact capacity score. Contact capacity potentials describe the hydropho-13

bic contribution of free energy, measured by the capability of a residue making
a certain number of contacts with other residues in the protein. Two residues15

are in physical contact if the spatial distance between their Cβ atoms (Cα for
glycine) is smaller than 8 Å. Let CC(a, k) denote the contact potential of amino17

acid a having k contacts. CC(a, k) is calculated by statistics on PDB as:

CC(a, k) = − log
N(a, k)N
N(k)N ′(a)

, (5)
19

where N(a, k) is the number of amino acid a with k contacts; N(k) is the
number of residues with k contacts; N ′(a) is the number of amino acid a;21

and N is the total number of residues in PDB. Let C(i) denote the number of
contacts at template position i. The contact capacity score (Sc) is calculated as:23

Sc =
∑

i∈Ttemp

∑

a

PSFMtarget(A(i), a) × CC(a, C(i)). (6)

(5) Aligned region length. The cRMSD between the two fragments of an25

ungapped region is relevant to its length. The longer the ungapped region is,
the more likely larger the cRMSD is.27

(6) Z-score. Z-score measures the overall quality of a sequence-structure align-
ment. An alignment with a good Z-score likely contains more good ungapped29

regions. In this paper, Z-score is the predicted alignment accuracy normalized
by the target protein size, and calculated by Xu’s SVM module.28 Z-score ranges31

from 0 to 1: Z-score equals to 0 means the alignment is likely random, while 1
means it is probably a perfect alignment.33

(7) Sequence identity. The fraction of identical residues in the whole alignment
is used to measure the sequence identity.35

(8) Other sequential features. Three other features are tested: template pro-
tein size, target protein size, and alignment length (i.e. the number of aligned37

positions).
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Meanwhile, mutation score, environmental fitness score, secondary structure score,1

contact capacity score, and aligned region length are specific to the ungapped region;
while Z-score, sequence identity, and other sequential features are for the whole3

sequence-structure alignment.

4.2. Development of PosQA5

Instead of directly using cRMSD between the native Cα position and the predicted
position of a residue, a normalized cRMSD is used as the objective function of7

PosQA. Let Di and di denote the normalized cRMSD and cRMSD at position i,
respectively. Then Di is defined as 1/(1 + (di)

2

(d0)2
) where d0 is set to

√
5 according to9

Ref. 36. Thus, the larger the Di is, the higher the quality of this position is.
PosQA uses almost the same set of features as FragQA. In particular, PosQA11

tests the following information: (1) mutation score, (2) environmental fitness score,
(3) secondary structure score, (4) contact capacity score, and (5) Z-score. The only13

difference between PosQA and FragQA is that the values of the first four features
are calculated at a single position.15

5. Conclusions

This research develops two local quality predictors: FragQA and PosQA, which can17

be used to evaluate the local quality of a given sequence-template alignment from
two different aspects: FragQA directly predicts the “absolute” quality of ungapped19

aligned regions, while PosQA predicts the quality for single aligned positions. Exper-
imental results on the CASP7 dataset demonstrate that both FragQA and PosQA21

can predict the local quality well, especially when the local quality is good. Mean-
while, we conclude that local sequence evolutionary information is the major factor23

in predicting local quality. Other information such as secondary structure and sol-
vent accessibility also helps to improve the prediction accuracy.25
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