
New Algorithms for the Spaced Seeds

Xin Gao1, Shuai Cheng Li1, and Yinan Lu?1,2

1 David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 6P7
2 College of Computer Science and Tecnology of Jilin University

10 Qianwei Road, Changchun, Jilin Province, China 130012
{x4gao, scli}@cs.uwaterloo.ca, luyinan@email.jlu.edu.cn

Abstract. The best known algorithm computes the sensitivity of a given
spaced seed on a random region with running time O((M +L)|B|), where
M is the length of the seed, L is the length of the random region, and
|B| is the size of seed-compatible-suffix set, which is exponential to the
number of 0’s in the seed. We developed two algorithms to improve this
running time: the first one improves the running time to O(|B′|2ML),
where B′ is a subset of B; the second one improves the running time to
O((M |B|)2.236log(L/M)), which will be much smaller than the original
running time when L is large. We also developed a Monte Carlo algo-
rithm which can guarantee to quickly find a near optimal seed with high
probability.

keyword: homology search, spaced seed, bioinformatics.

1 Introduction

The goal of homology search is to find similar segments or local alignments be-
tween biological molecular sequences. Under the framework of match, mismatch,
and gap scores, the Smith-Waterman algorithm guarantees to find the global op-
timal solution. However, the running time of the Smith-Waterman algorithm is
too large to be used on real genome data.

Many programs have been developed to speed up the homology search, such
as FASTA [11], BLAST [1, 2, 16, 14], MUMmer [8], QUASAR [5], and Pattern-
Hunter [12, 9]. BLAST (Basic Local Alignment Search Tool) is the most widely
used program to do homology search. The basic idea of BLAST is that by using
a length 11 seed, which requires that two sequences have locally 11 consecutive
matches, local matches can be found, and a reasonably good alignment can be
then generated by extending those local matches. However, Li et al [12] found
that the homology search sensitivity can be largely improved if long “gapped”
seeds are used instead of short “exact” seeds. PatternHunter is developed based
on long “gapped” seeds. PatternHunter applies a dynamic programming (DP)

? To whom correspondence should be addressed

based algorithm to compute the hit probability of a given seed. We refer the
algorithm to compute the sensitivity of a seed in PatternHunter as the PH al-
gorithm.

The running time of the PH algorithm is dominated by the product of the
length of random region and the size of seed-compatible-suffix set. In [9], Li et
al proved that computing the hit probability of multiple seeds is NP-hard. In
[10], Li et al further proved that computing hit probability of a single seed in a
uniform homologous region is NP-hard.

The problems of computing the sensitivity of a given spaced seed and finding
the most sensitive pattern have been studied for a long time. Choi and Zhang
and coworkers [7, 13] studied the problem of calculating sensitivity for spaced
seeds from computational complexity point of view, and proposed an efficient
heuristic algorithm for identifying optimal spaced seeds. Choi et al. [6] found
that an optimal seed on one sequence similarity level may not be optimal on
another similarity level. Yang et al. [15] proposed algorithms for finding optimal
single and multiple spaced seeds. Brejova et al. [3] studied the problem of finding
optimal seeds for sequences generated by a Hidden Markov model. Brown [4]
formulated choosing multiple seeds as an integer programming problem, and
gave a heuristic algorithm. So far, the PH algorithm is still the best running time
algorithm for calculating sensitivity of a given spaced seed. And most algorithms
for finding the optimal seed can not give any guarantee on the performance.

Here, we develop two algorithms to improve the PH algorithm for some cases.
The first algorithm improves the PH algorithm when the size of seed-compatible-
suffix set is large, while the second algorithm improves PH algorithm when the
region length is large. We further develop a Monte Carlo algorithm which can
guarantee to quickly find the optimal seed with high probability.

2 Preliminaries

2.1 Notations and Definitions

The notations are largely followed from those in [9].
Denote the i-th letter of a string s as s[i − 1]. The length of s is denoted

as |s|. A spaced seed a is a string over alphabet {1, 0}. Denote M = |a|. For a
spaced seed a, we require a[0] = 1 and a[M − 1] = 1. The number of 1’s in a is
called the weight of a, here denoted as W . A 1 position in a means “required
match”, while a 0 in a means “do not care”.

A homologous region R with length L is defined as a binary string, in which
a 1 means a match and a 0 means a mismatch. In this paper, we only focus on
random homologous regions with uniform distribution. That is, Pr(R[i] = 1) =
p, 0 ≤ i ≤ L−1, where p is referred to as similarity level of R. For a spaced seed
a and a homologous region R, if there ∃ j, 0 ≤ j ≤ L−M , such that whenever
a[i] = 1, we have R[j + i] = 1, then we say that a hits region R.

This paper studies the following two problems:

1. Seed Sensitivity: Given a spaced seed a, and a homologous region R ,
what is the probability of a hitting R? This probability is referred to as the
sensitivity of this seed on the region R. We just call it sensitivity of R if the
context is clear.

2. Optimal Seed: Given a seed length M and weight W , and a homologous
region R with similarity level p, what is the seed with the highest sensitivity?
A seed with the highest sensitivity is called an optimal seed.

2.2 Reviews of the PatternHunter Algorithm for Seed Sensitivity

Li et al [9] developed a dynamic programming based algorithm to compute the
sensitivity of a given seed.

For a seed a of length M and weight W , we call a string b compatible with
a if b[|b| − j] = 1 whenever a[|a| − j] = 1 for 0 < j ≤ min{|a|, |b|}. Suppose the
random region R has length L, and similarity level p. For a binary string b, let
f(i, b) be the probability that seed a hits region R[0 : i − 1] which has b as the
suffix of R[0 : i − 1]. Generally, we are only interested in the case 0 ≤ |b| ≤ M .
There are two cases: 1) the position before b has value 0; and 2) the position
before b has value 1. Thus, f(i, b) can be recursively expressed as:

f(i, b) = (1− p)f(i, 0b) + pf(i, 1b) (1)

This will generate a O(L2M) dynamic programming algorithm because length
of b is at most M . However, since the only case seed a can hit the “tail” of a
region R is that the suffix of the region R is compatible with seed a, instead
of considering all possible suffixes, they only consider those suffixes which are
compatible with a.

Define B to be the set of binary strings that are not hit by a but compatible
with a. Let B(x) denote the longest proper prefix of x that is in B. The PH
algorithm thus uses the following recursion function:

f(i, b) = (1− p)f(i− |b|+ |b′|, 0b′) + pf(i, 1b) 0b′ = B(0b). (2)

It is clear that any entry in the dynamic programming table depends on two
previously computed entries. Therefore, PH algorithm has to consider all the
possible b ∈ B for each i, 0 ≤ i ≤ L− 1. The size of B is bounded by M2M−W .
The running time is thus O((M + L)M2M−W). However, the size of B can be
reduced.

In this paper, we improve the PH algorithm from two perspectives:

– Instead of considering all possible suffixes b ∈ B, we consider only a small
subset of B, which will result in an algorithm with a better running time
when |B| is large. That is, following the similar idea applied by PH algorithm,
we further reduce the number of suffixes needed.

– We reduce the factor L in the running time of PH algorithm to log L, which
will generate an algorithm with much better running time when L is large.

3 Suffix-recursion-tree Algorithm

3.1 Algorithmic Details

The basic idea of our suffix-recursion-tree (SRT) algorithm is that if we pre-
compute more steps of the recursion function Eq. 2 instead of only one step, we
may have a small suffix set B′, s.t. any suffix b ∈ B′ is a recursive function of
only these suffixes from B′, which has the size much smaller than B. Recall that
the sensitivity is stored in entry (L, ε). Thus, we require ε in B′. The SRT of a
spaced seed is a tree with root node being labeled as ε, and each node of the tree
is labeled with b ∈ B. The label of the left child of any node b′ is B(0b′), where
B(0b′) is the longest prefix of 0b′ that belongs to B; and the label of the right
child of b′ is 1b′. If 1b′ is comparable with a and have the same length as seed a,
then 1b′ is “hit” by the seed a, and the corresponding node is labeled as “hit”.
The SRT is built by a depth first search. A node is a leaf only if 1) b is labeled
as a “hit”, or 2) the label b has been occurred before. Fig.1 shows an example
of the SRT of the spaced seed 1101011.

Fig. 1. An Illustration of Suffix-recursion-tree of seed 1101011.

As shown in Fig.1, there are only three suffixes that recur more than once,
ε, 011, 01111. Thus, B′ = {ε, 011, 01111}. Note that the depth of the suffix-
recursion-tree is M . For any node in the tree, it depends on its left child with
probability (1 − p), while p on its right child, if the children exist. Each path
from a node v to its ancestor u represents the probability that u depends on
v. Thus, f(i, ε) can be expressed only by those circled entries. Similarly, we can
get a recursive relation for each internal node v on all the leaves of the subtree
rooted at v. The dependency of b on all b′ ∈ B′ is thus presented in the sub-tree
rooted at b, and the depth of the sub-tree rooted at b is at most M − 1. Thus,

by building this SRT, a set of new recursion functions can be found that only
depends on a small suffix set B′.

By applying dynamic programming on this new recursion function, we have a
new algorithm for computing the sensitivity of a single spaced seed on a random
region. First, we construct the SRT for a given seed. Second, we deduce the
recurrence relations. Third, we do a dynamic programming based on this set of
new recurrence relations. Lastly we output the sensitivity.

Algorithm SRT-DP

Input Seed a, similarity level p, and region length L.
Output Sensitivilty of seed a on a random region of length L at similarity level p.

1. Construct the SRT of the seed a, and build set B′

2. Deduce all the recursive equations for every b′ ∈ B′.
3. For i ← 0 . . . L
4. For b′ ∈ B′ with decreasing lengths
5. Compute f(i, b′) by the recursive equations from Step 2.
6. Output f(L, ε)

Fig. 2. Algorithm SRT-DP

Theorem 1. Let a be a spaced seed and R be a random region. Algorithm SRT-
DP computes Pr(a hits R) in O(|B′|2ML+ |B|) time, where M is the length of
seed a, and B′ is the suffix subset determined by the suffix-recursion-tree of seed
a.

Proof. The correctness of the algorithm comes from the discussion before the
theorem. Line 1 can be done by depth first search. Since each node is determined
by its two direct children from Eq. 2, and once the node is traversed, the depth
first search will stop if the node recurs somewhere else, the running time is thus
O(|B|). Line 2 can be done in O(|B|), which is the size of the tree. After pre-
computing, line 3 to line 5 takes O(|B′|2ML) running time because for each
entry in the dynamic programming table, it depends on at most M |B′| entries.
Therefore, the total running time for the algorithm SRT-DP is O(|B′|2ML+|B|)

ut

3.2 A Concrete Example

In this section, we will give a concrete example to show our algorithm has a
much better running time than the PH algorithm on some cases. First, we prove
the following results.

Lemma 1. Any suffix b ∈ B′ of any spaced seed can be either ε or a binary
string starting with 0. That is, any b ∈ B′ can not start with 1.

Proof. By contradiction. Suppose there is a b ∈ B′ that starts with 1, i.e. b = 1b′.
That means 1) b has occurred more than once, and 2) b′ is a suffix in B, and b′

is the parent of b. Considering any two places where b occurs, at each place, b′ is
the parent of b. Thus, b′ has also occurred at least twice in the suffix-recursion
tree. For the definition of the suffix-recursion tree, the tree should stop at one
b′, which contradicts with b is a child of this b′.

Therefore, any suffix b ∈ B′ can be either ε or a binary string starting with
0. ut

Recall that the running time of PH algorithm is O((M + L)|B|), in which
|B| can be as large as O(M2M−W). From lemma 1, we know B′ is a subset of
B, the size of which is much smaller than B, because all suffixes starting with
1 in B will not be in B′. Furthermore, we construct a simple example illustrate
that the algorithm SRT-DP is much better than PH algorithm. Better examples
are available, but it is out of the scope.

10 11 · · · 11︸ ︷︷ ︸
m3+(m−1) 1′s

0 · · · 11 · · · 11︸ ︷︷ ︸
m3+1 1′s

0 11 · · · 11︸ ︷︷ ︸
m3 1′s

(3)

For a seed as shown in Eq. 3, there are m 0’s in a. The size of B for this case
is:

|B| = m3 + 2 + (m3 + 1)× 2 + 4 + · · ·+ (m3 + m− 1)× 2m−1 + 2m + 2m

=
m∑

i=1

2i +
m−1∑
i=0

m32i +
m−1∑
i=0

i2i + 2m

= (2m+1 − 2) + m3(2m − 1) + (m2m − 2m+1 + 2) + 2m

= (m3 + m + 1)2m −m3

Lemma 2. Any suffix b ∈ B′ of our seed a can be either ε or a binary string
starting with 0 and followed by 1’s and at most one 0.

Proof. From lemma 1, we know that the only possible suffix b ∈ B′ of seed a can
be either ε or a binary string starting with 0. By contradiction, suppose there is
a suffix b ∈ B′ which starts with 0 and followed by at least two 0’s.

From the definition of B′, b should be compatible with the seed a. Thus, the
0’s in b which follows the first 0 have to be matched to some 0’s in a.

a : 10 · · · 11 · · · 11 011 · · · 11 011 · · · 11011 · · · 11 011 · · · 11
1 2

b : 011 · · · 11 011 · · · 11111 · · · 11 011 · · · 11

Recall that any suffix b ∈ B′ is generated by taking the longest compatible
prefix of some 0b′. Thus, b in the above figure is the result of cutting the tail of
some binary string. Thus, there are two different pairs of 0’s in a, which have the
same distance between each other. Suppose the first pair of 0’s (position 1 and po-
sition 2 in seed a) contains region 11 · · · 11︸ ︷︷ ︸

l1+(n1−1) 1′s

0 11 · · · 11︸ ︷︷ ︸
l1+(n1−2) 1′s

0 · · · 11 · · · 11︸ ︷︷ ︸
l1+1 1′s

0 11 · · · 11︸ ︷︷ ︸
l1 1′s

,

and the second pair of 0’s (position 1 and position 2 in suffix b) contains region

which corresponds to the region 11 · · · 11︸ ︷︷ ︸
l2+(n2−1) 1′s

0 11 · · · 11︸ ︷︷ ︸
l2+(n2−2) 1′s

0 · · · 11 · · · 11︸ ︷︷ ︸
l2+1 1′s

0 11 · · · 11︸ ︷︷ ︸
l2 1′s

in seed a. Note here n1 ≤ m and n2 ≤ m. Since the distances between these two
pairs are the same. We have

l1+(l1+1)+· · ·+(l1+n1−1)+(n1−1) = l2+(l2+1)+· · ·+(l2+n2−1)+(n2−1)

From this equation, we have

(2l1 + n1 + 1)n1 = (2l2 + n2 + 1)n2

2(l1n1 − l2n2) = (n2 + 1)n2 − (n1 + 1)n1

From the construction of the seed a, for any i, we have li = m3 + j, where
0 ≤ j ≤ m − 1. If n1 and n2 are different, without loss of generality, assume
n1 > n2. Let n1 = n2 + h, where h ≥ 1. The left part of the above equation is
then:

2(l1n1 − l2n2)
= 2[(m3 + j1)(n2 + h)− (m3 + j2)n2]
= 2[m3h + j1(n2 + h)− j2n2]
≥ 2(m3h−m2)
≥ m3 (when m ≥ 2)

Thus, the absolute value of the left part of the above equation is at least m3,
while the right part is at most m2. Thus, n1 = n2, and l1 = l2. This contradicts
to the assumption that these two regions are different.

Therefore, any suffix b ∈ B′ of seed a can be either ε or a binary region
starting with 0 and followed by 1’s and at most one 0.

ut
Combining lemma 1 and lemma 2, the number of suffixes b ∈ B′ for seed a

is at most:
m +

(
m
2

)
= O(m2)

In this seed a, the total length M is m4 + m2

2 + m
2 + 1

Therefore, the total running time for the algorithm SRT-DP is O(|B′|2ML+
|B|) = O(m8L + m32m), while the running time for PH algorithm is O((M +
L)|B|) = O(m72m + Lm32m). The dominant term here is L or 2m. Thus, the
SRT-DP algorithm is much faster than PH algorithm because it is the sum of
the two dominant terms instead of the product of them.

4 Block-matrix Algorithm

Now, we develop another algorithm to solve the problem of calculating the sen-
sitivity of a given seed, which mainly handle the case when the length of the
homology region is long.

Recall Eq. 2, in which 0b′ is the longest prefix of 0b in B. Any entry in the
dynamic programming table depends on only two previously computed entries.

Fig. 3. An Illustration

For any b ∈ B, |b| − |b′| is bounded by M . Thus, if we divide random region R
into blocks, each of which has length M , all entries in one block will only depend
on entries from itself or entries from another block. Fig. 3 shows an illustration
of dividing region R into blocks.

For any entry in block 1, it depends on two previously computed entries in
block 1. Thus, all entries in block 1 can be pre-computed by only using entries
from itself. For an entry in block 2, it depends on only two entries, one of which
must be in the same column as this entry in the same block (corresponding to
f(i, 1b)). For the other dependent entry, there are two cases: 1) the entry is also
in block 2 (as point C in Fig.3); and 2) the entry is in block 1 (as point A in
Fig.3). In either case, the entry has been computed already. Let F (i, j) denote
the dependency relationship of block i on block j and i. From previous discussion,
we can easily compute F (1, 1) and F (2, 1). Thus, for any entry in block 3, we
can consider block 3 as block 2, and block 2 as block 1, then use F (2, 1) on the
entry. Clearly, F (3, 2) is the same as F (2, 1). If we further substitute any entry
in block 2 used in F (3, 2) by its F (2, 1) relationship, we can have a dependency
relationship between any entry in block 3 and entries in block 1 and block 3, i.e.
F (3, 1). For any entry in block 5, we can apply F (3, 1) twice, which will result
in F (5, 1). Generally speaking, assume L = (1 + 2r)M , we can apply this idea
to reduce the region length dimension of the dynamic programming, L, to log L
by using the algorithm shown in Fig.4.

We now analyze the running time of this algorithm. Line 1 is just for illustra-
tion purpose, in practice, we don’t need to divide R into blocks, instead we just
need to compute [i/M] + 1 for a given index i; line 2, 3, and 4 can be done in
O(M |B|); line 5 can be done in O(M |B|) because each entry in block 2 depends
on only 2 other entries from block 1 or block 2.

Theorem 2. The Block-matrix Algorithm has a running time O((M |B|)2.236

log(L/M)).

Proof. If an entry in block (1+2i) depends only on previously computed entries
in the same block, the algorithm takes O(M |B|) running time. Thus, we can
assume an entry in block (1+2i) depends on entries in block (1+2i−1) by using
previously computed F (1 + 2i−1, 1). Let ai, i = 1 . . . M |B| denote all entries
in block 1 with the condition that an entry with smaller line index is indexed
before any entry with larger line index, and an entry with smaller column index

Block-matrix Algorithm

Input Seed a, similarity level p, and region length L.
Output Sensitivilty of seed a on a random region R of length L at similarity level p.

1. Divide length L into blocks, each of which has length M . Index these blocks
as block 1, block 2, . . . , block 1 + 2r.

2. For i ← 0 . . . M − 1
3. For b ∈ B with decreasing lengths
4. Compute f(i, b) by the recursive function Eq. 2.
5. Compute F (2, 1).
6. For i ← 1 . . . r
7. Compute F (1 + 2i, 1) by using F (1 + 2i−1, 1).
8. Output f(L, ε)

Fig. 4. Block-matrix Algorithm

is indexed before any entry with larger column index and the same line index.
Let bi, i = 1 . . .M |B| and ci, i = 1 . . .M |B| denote all entries in block (1 + 2i−1)
and (1 + 2i), respectively, with the same indexing rule as ai. Thus, any bj is a
linear combination of all ai, and any ck is a linear combination of all bj . That
means:

bj =
M |B|∑

i=1

wjiai

ck =
M |B|∑

j=1

w′kjbj

Note that F (1 + 2i, 1) is the same as F (1 + 2i−1, 1), because (1 + 2i)− (1 +
2i−1) = (1 + 2i−1)− 1 = 2i−1. Thus, wij = w′ij .

Thus,

ck =
M |B|∑
j=1

wkjbj =
M |B|∑
j=1

wkj

M |B|∑
i=1

wjiai =
M |B|∑
j=1

M |B|∑
i=1

wkjwjiai.

This means that the dependency relationship between any ck and all ai can
be calculated by matrix multiplication. Thus, the running time for line 6 and 7
is bounded by O((M |B|)2.236).

Therefore, the total running time of Block-matrix algorithm is
O((M |B|)2.236 log(L/M)). ut

It’s not difficult to extend our algorithm when L is not in (1 + 2r)M format.
Recall the running time of PH algorithm is O((M + L)|B|), our Block-matrix
Algorithm can provide a much better running time if L is large.

5 Monte Carlo Algorithm for Finding Optimal Seed

In this section, we propose a Monte Carlo algorithm to solve the optimal seed
problem. Given seed length M , weight W , a random region R of length L with

distribution Pr(R[i] = 1) = p, 0 ≤ i ≤ L − 1, we want to find a seed a of good
enough sensitivity with high probability. The deterministic algorithm for finding
the optimal seed has a running time of O(

(
M
W

)
(M + L)|B|). Here, we provide a

O((k
(

M
W

)
M + t|B|)L) Monte Carlo algorithm that can find a near-optimal seed

with high probability, where k and t are parameters to adjust the errors of the
sensitivity and to control the probability.

The intuition behind our algorithm is that if we randomly generate k binary
regions of length L with similarity level p, the number of hits for a seed a on
these regions will be relevant to the sensitivity of a. The higher the sensitivity
is, the more expected hits are. The outline of the algorithm is displayed in Fig.5.
First, we randomly generate k regions. Then we count the occurrence of each
pattern. If a seed occurs multiple times in a random region, it counts only once.
After that, we select top t patterns with the largest numbers of occurrences.
Lastly, we employ an deterministic algorithm to compute the sensitivity of the
t seeds, and output the seed with the highest sensitivity.

Monte Carlo Algorithm for Finding Optimal Seed

Input Integer M , W , similarity level p, and random region R of length L.
Output A seed a of length M, weight W with the highest sensitivity on R.

1. Randomly generate k binary regions with similarity level p.
2. For each possible binary pattern a′ of length M and weight W .

2.1 Let cnt[a′] be the number of random regions that contain a′.
3. Let C be the set of t patterns with largest cnt values, ties break randomly.
4. Compute the sensitivity of the patterns in C by a deterministic algorithm.
5. Output the pattern with the highest sensitivity in C.

Fig. 5. Monte Carlo Algorithm for Finding Optimal Seed

Theorem 3. The running time for the algorithm in Fig. 5 takes time O((k
(

M
W

)
M+

t|B|)L)

Proof. Step 1 takes O(kL). The running time of step 2 is (kML
(

M
W

)
). The run-

ning time for step 3 is dominated by step 2. Step 4 takes O(t(M + L)|B|) if HP
algorithm is used to compute the sensitivity of a single seed. Thus, the overall
running time is: O((k

(
M
W

)
M + t|B|)L). ut

We further estimate the probability that the Monte Carlo algorithm can
find out the optimal seed. Let so be the sensitivity of an optimal seed on the
random region R, s be the sensitivity of the seed on R found by our Monte Carlo
algorithm. We have the following results:

Theorem 4. The Monte Carlo algorithm ensures so−s ≤ ε with high probability

1− e−
ε2

3(1−ε) kt. If kt ≥ 3(1−ε)
ε2 log 1

σ , the Monte Carlo algorithm can guarantee to
find out an optimal seed with probability 1− σ.

Proof. Define three random variables: C, Co, and X. C is the sum of Ci which
is defined to be the number of hits of a seed found by our algorithm on random
region i, (values can be 0 or 1 with probability 1 − s and s, respectively));
Co is the sum of Coi which is defined to be the number of hits of an optimal
seed on random region i, (values can be 0 or 1 with probability 1 − so and so,
respectively); X is the sum of Xi which is defined to be Ci − Coi + 1, (values
can be 0, 1, 2 with probability (1 − s)so, sso + (1 − s)(1 − so), and s(1 − so),
respectively). Since the number of random regions is k, X > k means the real
number of hits of the optimal seed is smaller than the number of hits of an
arbitrary seed. Let T denote the set of the indices of the top t seeds chosen by
our Monte Carlo algorithm.

Since both so and s lay in [0, 1], we can assume that when k and t are large
enough, our algorithm can find out seeds with so − s < 0.5. Let Ci be random
variable C for seed i. Thus,

Pr(an optimal seed is in top t seeds) = 1− Pr(no optimal seed is in top t seeds)
= 1− Pr(Co is smaller than Ci, i ∈ T)
= 1− ∏

i∈T

Pr(Co is smaller than Ci) (because of independency)

We now compute Pr(Co is smaller than Ci) by Chernoff bounds. For 0 <

δ ≤ 1, Pr(X ≥ (1 + δ)µ) ≤ e−µδ2/3, where X is the sum of independent Poisson
trials, and µ = E[X]. It is obvious that Xi = Ci−Coi +1 is independent Poisson
trials. Thus,

µ = E[X] = k{0× (1− s)s0 + 1× [ss0 + (1− s)(1− so)] + 2× (1− s0)s}
= (1 + s− so)k

Let (1 + δ)µ = k, we get δ = k
µ − 1 = so−s

1+s−so
.

By Chernoff bounds, we have

Pr(Co is smaller than Ci) = Pr(X ≥ k)

≤ e
−(1+s−so)k

(so−s)2

3(1+s−so)2 = e−
(so−s)2

3(1+s−so) k

Let ε = so − s, we have Pr(Co is smaller than Ci) ≤ e−
ε2

3(1−ε) k.
Thus, the probability that our Monte Carlo algorithm guarantees to find out

an optimal seed is:

Pr(an optimal seed is in top t seeds) = 1− ∏
i∈T

Pr(Co is smaller than Ci)

≥ 1− (e−
ε2

3(1−ε) k)t = 1− e−
ε2

3(1−ε) kt

Thus, when k and t increases, the probability increases quickly. If we require
the probability that our Monte Carlo algorithm fails to find out an optimal
seed is smaller than σ, 0 < σ < 1, we can have the requirement on k and t:
kt ≥ 3(1−ε)

ε2 log 1
σ .

ut

Acknowledgements

We are grateful to Dongbo Bu for his thought provoking discussion and com-
ments. This work was supported by the Application Foundation Project of Tech-
nology Development of Jilin Province, Grant 20040531.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment
search tool. J.Mol.Biol., 215:403–410, 1990.

2. S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman.
Gapped blast and psi-blast: a new generation of protein database search programs.
Nucleic Acids Res., 25:3389–3402, 1997.

3. B. Brejova, D. Brown, and T. Vinar. Optimal spaced seeds for hidden markov
models, with application to homologous coding regions. In CPM2003: The 14th
Annual Symposium on Combinatorial Pattern Matching, pages 42–54, Washington,
DC, USA, 2003. IEEE Computer Society.

4. D. Brown. Optimizing multiple seeds for protein homology search. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 2(1):29–38, 2005.

5. S. Burkhardt, A. Crauser, H. Lenhof, E. Rivals, P. Ferragina, and M. Vingron. q-
gram based databse searching using a suffix array. In Third Annual International
Conference on Computational Molecular Biology, pages 11–14, 1999.

6. K. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search. Bioin-
formatics, 20(7):1053–1059, 2004.

7. K. Choi and L. Zhang. Sensitivity analysis and efficient method for identifying
optimal spaced seeds. Journal of Computer and System Sciences, 68:22–40, 2004.

8. A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White, and S. Salzberg.
Alignment of whole genomes. Nucleic Acids Res., 27:2369–2376, 1999.

9. M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter ii: highly sensitive and
fast homology search. JBCB, 2(3):417–439, 2004.

10. M. Li, B. Ma, and L. Zhang. Superiority and complexity of the spaced seeds. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithms (SODA 2006), pages 444–453, 2006.

11. D. Lipman and W. Pearson. Rapid and sensitive protein similarity searches. Sci-
ence, 227:1435–1441, 1985.

12. B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

13. F. Preparata, L. Zhang, and K. Choi. Quick, practical selection of effective seeds
for homology search. JCB, 12(9):1137–1152, 2005.

14. T. Tatusova and T. Madden. Blast 2 sequences - a new tool for comparing protein
and nucleotide sequences. FEMS Microbiol. Lett., 174:247–250, 1999.

15. I. Yang, S. Wang, Y. Chen, and P. Huang. Efficient methods for generating optimal
single and multiple spaced seeds. In BIBE 2004: Proceedings of the 4th IEEE
Symposium on Bioinformatics and Bioengineering, page 411, Washington, DC,
USA, 2004. IEEE Computer Society.

16. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning
dna sequences. J.Comput.Biol., 7:203–214, 2000.

