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Abstract

Autonomous agents that respond intelligentlyin dynamic,
complex environments need to be both reactive and delib-
erative. Reactive systems have traditionally fared better
than deliberative planers in such environments, but are
often hard to code and inflexible. To fill in some of
these gaps, we propose a hybrid system that exploits the
strengths of both reactive and deliberative systems. We
demonstrate how our system controls a simulated house-
hold robot and compare our system to a purely reactive
one in this domain.

1. Introduction

The typical household is a challenging environment for
a robot, partly because of the presence of other agents.
The robot must sense and respond to the other agents as
it completes its task. In addition, other agents may move
furniture and create new cleaning tasks; this leads to a
less structured environment, for example, than a nuclear
power plant or a road-following task. Thus it will be im-
possible to pre-program a vacuuming and cleaning robot
to perform “blind”, without sensing the environment and
monitoring the progress of tasks. Some of the changes in
the environment will demand reactive responses from the
robot, such as interrupting a less important task to pick up
a piece of trash. Thus a vacuuming robot must be flexible
enough in its design to respond intelligently to a changing
set of goals as well as a changing environment.

Such a robot needs to display a range of capabili-
ties not typically found in a single system. Deliberative
systems that embody powerful techniques for reasoning
about actions and their consequences often fail to guaran-
tee a timely response in time-critical situations [6]. Also,
reactive systems that respond well in time-critical situa-
tions typically do not provide a reasonable response in

situations unforeseen by the designer [5].

Reactive systems have traditionally been more suc-
cessful than deliberative ones in controlling agents in
dynamic domains, like a typical household. Building a
reactive system, however, can be a complex and time-
consuming endeavor because of the need to pre-code all
of the behaviors of the system for all foreseeable circum-
stances. An efficient reactive system is also likely to
have a narrow area of applicability, for instance a specific
house and task set. Deliberative systems are best suited
to long-term, off-line planning — effective for static en-
vironments, but not for controlling an autonomous agent
operating in a dynamic environment. However, deliber-
ative systems are often more robust to varying domains
and sets of interacting goals because they employ some
form of forward projection.

We have designed a hybrid reactive-deliberative sys-
tem in an attempt to combine these complementary sets
of capabilities, and use it to control a simulated vacuum-
ing robot. In this paper, we compare the performance of
the hybrid system with a purely reactive one hand-coded
for the same domain. Although the performance of the
hybrid system is inferior, we demonstrate that it is close
enough to be an attractive option because of its flexibility.

2. The Architecture

2.1. The Component Systems: Hap & Prodigy

The Hap system is designed to execute plans for achiev-
ing multiple, prioritized goals. It is related to Firby’s
RAPs [8]. Hap starts with a set of pre-defined goals and
hand-coded plans for achieving those goals. The hand-
coded plans are designed to allow Hap to respond to its
environment in a timely manner. Hap also allows for
demons that dynamically create new goals in appropriate



situations. If such a goal has a higher priority than the
other active goals, execution of the current plan is inter-
rupted in favor of a plan to achieve the new goal. Hap will
attempt to resume its previous plan once it has handled
this unexpected event. More details about Hap can be
found in [13].

Prodigy 4.0 is a classical deliberative planner that uses
means-ends search to create plans from descriptions of
operators, given initial and goal state descriptions. Goal
statements as well as the preconditions of operators may
be arbitrary expressions of first-order logic, involving ex-
istential and universal quantification. Prodigy’s planning
involves a number of choice-points, such as choosing
a goal to work on or an operator to use, and Prodigy
uses control rules to represent information about which
choices to make. More details about Prodigy can be found
in [2].

A classical planner may take an arbitrary amount of
time to complete its task; this is unacceptable for an agent
that may require a rapid response. For this reason, we
have modified Prodigy to be an instance of an anytime
planner [4]. This means that the planner can be inter-
rupted at any moment before it completes its task, and
will return a portion of a complete plan that will allow
the agent to take some actions. This has been done such
that the planner is changed only minimally, allowing us to
make use of the large body of work on classical planning
systems, such as abstraction [12], machine learning to im-
prove planning performance [14, 7, 10] and derivational
analogy [16, 11]. More details about the anytime planner
can be found in [3].

2.2. Integration

Hap is designed to react quickly and intelligently in a
dynamic environment by using stored behaviors when
possible. Prodigy is designed to plan for sets of goals that
may interact, and to learn to plan more effectively. We
integrate these two systems so as to retain the strengths
of each, giving primary control of the agent to Hap.

Hap keeps the tree of goals and plans that the agent is
pursuing up to date. When there are stored plans available
or there is a strict time constraint, Hap will usually act
in a pre-programmed way. When Hap has extra time to
act or there is no stored plan to handle the current situa-
tion, Hap may call Prodigy. Planning is not distinguished
from anything else Hap does, so the conditions under
which Prodigy is called are contained in the pre-defined
Hap productions. This allows the agent builder to create
agents that vary along the spectrum between deliberation
and reaction as desired. The call to Prodigy includes a

predefined subset of the agent’s goals for Prodigy to work
on and a time bound, so that the agent does not lose re-
activity even though planning would otherwise take an
arbitrary amount of time to complete.

Since Prodigy reasons about the effects of its actions
in the future, it can produce plans that will achieve a
number of goals simultaneously, even if they interact in
unexpected ways, and contend for the same resources. A
pre-programmed approach may fail or produce less effi-
cient behaviour because of these interactions. Prodigy is
given a time bound and uses anytime planning techniques
to produce the best plan it can within the allowed time.
The goals passed to Prodigy are prioritized so that if it
cannot solve all the goals in time it will solve the ones
with higher priorities.

The integration works, in part, because the commu-
nication between Hap and Prodigy takes place at an ap-
propriate level of abstraction, both of state and operators.
Like other researchers [9, 15], we have used an abstraction
boundary between the reactive and deliberative compo-
nents of our architecture.

Deliberative planners typically assume a static or near-
static world. While this allows the planner to construct a
plan, in a dynamic domain this plan will frequently fail
because some of its underlying assumptions have become
false since the plan was constructed. This is one of the
primary reasons deliberative planners have been unsuc-
cessful as agent architectures. We can improve the quality
of the plans by making the planner plan in a more static
state. We accomplish this by providing the planner with
an abstraction of the state that includes the more static
elements and allowing it to plan in that state.

Prodigy uses the abstract state to generate an abstract
plan, that is, a plan that is a sequence of Hap subgoals
rather than a set of concrete actions. Hap uses its set
of stored reactive plans to execute these subgoals in the
dynamic world. Hap is able to fill in the dynamic details
that Prodigy did not plan for. Also, Hap will often have
numerous alternative plans for achieving a subgoal, so a
single Prodigy plan can generate very different behavior
depending on the current state of the world.

3. Mr. Fixit, a Household Robot

We have designed and built a simulated household
robot agent, Mr. Fixit, using this architecture. Mr. Fixit
lives in a simulated environment built with the Oz system
[1]. Figure 1 gives a rough layout of the environment
that Mr. Fixit inhabits. Many of the details of the world,
which includes over 80 objects, have been left out as they
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Figure 1: Rough layout of the simulated household robot environment

Player:  *BREAK  China-Cup
Fixit:      *GO-TO  Sunroom

[Plan: Goal: (and (recharge)
                                  (thrown-out-trash))
            Time limit: 1 second
            Plan: ((goto recharger)
                        (recharge)
                        (goto cup)
                        (get cup)
                        (goto trash-can)
                        (put cup trash-can))]

Fixit:      *GO-TO  Bedroom
                *GO-TO  Closet
                *RECHARGE
                *GO-TO  Bedroom
                *TAKE  China-Cup
                *GO-TO  Sunroom
                *GO-TO  Spare-Room
                *PUT  China-Cup in Trash-Can

[Plan: Goal: (clean-dining-room)
             Time limit: 1 second
             Plan: ((goto dining-room)
                         (vacuum dining-room))]

Fixit:      *GO-TO  Sunroom
                *GO-TO  Dining-Room
Player:  *GO-TO  Sunroom
Fixit:      *VACUUM  Dining-Room
Player:  *GO-TO  Dining-Room
Fixit:      *SAY  "Hello."  to  Player
Player:  *BREAK  Jar

[Plan: Goal: (and (clean-dining-room)
                                  (thrown-out-trash))
             Time limit: 1 second
             Plan: ((goto jar)
                         (get jar)
                         (goto trash-can)
                         (put jar in trash-can)
                         (goto dining-room)
                         (vacuum dining-room))]

Fixit:      *TAKE  Jar

[Plan: Goal: (and (clean-dining-room)
                                  (thrown-out-trash)
                                  (recharge))
             Time limit: 0.5 seconds
             Plan: ((goto recharger)
                         (recharge))]
                         
                *GO-TO  Sunroom
                *GO-TO  Bedroom
Player:  *GO-TO  Sunroom
Fixit:      *GO-TO  Closet
                *RECHARGE

[Plan: Goal: (and (clean-dining-room)
                                  (thrown-out-trash))
            Time limit: 1 second
            Plan: ((goto trash-can)
                        (put jar trash-can)
                        (goto dining-room)
                        (vacuum dining-room))]

Fixit:      *GO-TO  Bedroom
                *GO-TO  Spare-Room
                *PUT  Jar  in  Trash-Can
                *GO-TO  Sunroom
                *SAY  "Hello."  to  Player
                *GO-TO  Dining-Room
                *VACUUM  Dining-Room

Figure 2: Sample trace of the household robot



Time bound (seconds)

Number of goals

0.25 0.50 1.00 2.00
1 0.90 0.98 1.00 1.00
2 0.80 0.96 1.00 1.00
4 0.38 0.52 1.00 1.00
8 0.13 0.16 0.62 1.00

Table 1: Average proportion of goals solved.

are unimportant for the behaviors described here. The
player is a human user that is also interacting with the
simulation.

The robot has a number of important goals that de-
fine its behavior. They are, from most to least important:
recharge battery when low, clean up broken objects, greet
the player, vacuum dirty rooms, and roam the house look-
ing for tasks to perform. Mr. Fixit keeps a simple model
of the world, but given his limited sensing abilities and
the existence of an unpredictable user in the world, his
model will often be incomplete or incorrect.

Figure 2 shows a trace of a run of this simulation,
which has been edited for brevity and clarity. The trace
begins with Mr. Fixit in the spare room performing rounds
while the Player is in the bedroom. The player breaks the
cup. Fixit notices the broken cup at the same time that
his battery needs recharging. Prodigy is notified of the
two goals and is able to find a plan to solve them both
within one second. Fixit executes the plan without any
problems. During the execution of the plan Fixit goes
by the Player twice without stopping for the traditional
greeting. This is because the current plan being executed
has a higher priority than greeting the user.

Once the two goals are accomplished, Fixit notifies
Prodigy of a goal to clean the dining room, which is
planned for successfully. During the execution of this
plan, the player enters the dining room and is greeted
because vacuuming is a low priority goal. Despite the
warm greeting, the Player decides to break the jar. Fixit
notices this and plans to clean up the mess and then return
to vacuuming. While cleaning up the broken jar, Fixit’s
battery again gets low. The three pending goals are sent
to Prodigy along with a half second time limit. Prodigy
is able to solve only the goal to recharge in this amount
of time and Fixit executes that plan successfully. Once
that is done, Fixit calls Prodigy to replan for the other two
goals and executes them.

3.1. Discussion

One of our main concerns in building an agent like Mr.
Fixit is how quickly Prodigy is able to plan for goals in the
domain. If Prodigy isn’t given enough time to generate

plans for even single goals, then the agent is going to be
stuck. On the other hand, if we know that Prodigy is going
to generally be given more than enough time to achieve
some subset of goals, then there are tradeoffs in speed vs.
plan interleaving. For example, say Fixit knows about
2 broken objects that need to be thrown out. If Prodigy
only has time to solve one of the goals, it will return a
plan that may be sub-optimal with respect to solving both
goals.

We tested Prodigy’s ability to solve goals quickly in
this domain by giving it problems to solve with varying
numbers of goals and varying time bounds. The results
of the test are reproduced in table 1. When Prodigy is
given a 2 second time bound, it can always solve the goal
conjunct in this relatively simple domain, making the
anytime planning redundant. With smaller time bounds,
Prodigy is only able to solve for a proper subset of the
goals. If Prodigy only returned complete solutions Hap
wouldn’t get any useful information in these time-critical
cases.

This information can be used to guide the design of the
domain specification given to Prodigy. If we know that
Prodigy will often only have 0.25 or 0.5 seconds with
which to work, we will want to generate simple serial
plans. If the domain allows Prodigy to take 2 or more
seconds, we can write control rules for Prodigy that will
produce more efficient plans but that will usually take
longer before completely planning for any single goal.

4. Experiments: Deliberative
�

Reactive vs.
Reactive

We used the household robot domain as a testing ground
for our architecture. We have already discussed some
of the obvious benefits to using a deliberative planner as
part of an agent architecture, but if the architecture doesn’t
perform well, these benefits may be overshadowed. To
evaluate our architecture we decided to test it against a
purely reactive agent. This agent was written entirely in
Hap and was designed specifically for this domain. In
general, the hand-coded plans were similar to the ones
that Prodigy generated, but we also added specific inter-
leaved plans for throwing out multiple pieces of garbage.



We did not expect the hybrid agent to do quite as well
as the reactive agent, but if our architecture could come
close, then we can reap the benefits of using a delibera-
tive architecture without concern for losing reactivity or
performance efficiency.

The domain described in section 3 was modified as
follows: (1) We changed the procedure for throwing out
garbage so that the robot first had to get a bag out of a
cabinet in the kitchen, then put the trash in the bag, then
put the bag in a trash bin in the sunroom; (2) A second
robot, the Destructo2000 was added to the environment.
This robot would generate cups and break them on the
floor with some probability that we could control; (3) A
(slightly unrealistic) phone was placed in the bedroom.
With a 10% chance the phone would ring during any turn
it was off the hook. If the robot hadn’t answered the
previous call, it was lost. Until another call came in, the
previous caller would keep ringing; (4) All the rooms
started in need of vacuuming and didn’t become dirty
again once vacuumed. (5) The player was removed from
the simulation; (6) The new goal priority ordering was
(from most to least important): recharge battery, answer
phone, throw out trash, vacuum rooms.

The phone and the battery created occasional inter-
rupts in behavior that were kept constant over every run.
We were able to control how dynamic the environment
was by changing the chance that the Destructo2000 would
drop a cup. We ran both the hybrid and pure reactive
robots with this chance at 5%, 8%, and 10%. We also ran
the hybrid system at 3%.

The planner in the hybrid system had a 3 second time
bound. We feel this was reasonable because, although a
household robot might stand a longer delay without losing
reactivity, its world model is also likely to be more com-
plicated. Although we didn’t do as complete an analysis
of this version of the domain as was described in section
3.1, some informal experiments showed that the plans re-
quired to handle the new trash procedure required enough
time that 3 seconds was not enough to consistently create
interleaved plans for throwing out garbage. Because of
this, the hybrid agent always generated serialized plans
for throwing out trash. These were sub-optimal plans, but
Prodigy was always able to solve at least one goal in the
allotted time.

Figure 3 graphs how well the hybrid robot did in
keeping up with the Destructo2000. It’s fairly clear that
at 5%, 8%, and 10%, Mr. Fixit is falling further and
further behind but at 3% he is able to keep up. The purely
reactive agent that we created had hand-coded plans for
throwing out multiple pieces of trash simultaneously, and
tuned to the layout of the building. Because of this we

expected the reactive agent to perform better on this task.
Our expectations were realized and figure 4 shows how at
10% the reactive agent is falling behind, but at both 8%
and 5% the robot seems able to keep up.

The relative performances of the two systems in pick-
ing up cups was expected. That the hybrid system fared
as well as it did on this task is reassuring. Admittedly, this
is still a relatively simple domain so differences in perfor-
mance will tend to be small, but at the same time moving
to more complex domains will make it even harder for
builders of reactive agents to create a complete and effi-
cient set of behaviors for all situations.

A somewhat surprising result was how well the hybrid
system did on the other tasks it was given. First, both
agents performed at 100% on battery recharging, which
was the most important goal the agent was given. Second,
the hybrid agent was able to answer the phone at a rate of
78% as compared to 61% for the reactive agent. Third, at
cleaning rooms, the hybrid agent was able to do almost
as well as the reactive agent in the 10% domain and
even slightly better in the 5% domain. This is shown in
figure 5. We expect that the hybrid system outperforming
the reactive system on these tasks is either a matter of
a limited data set (10 runs for each robot-environment
pair) or a product of the logistics of this domain and not
attributable to our architecture.

Each time cycle in the simulations with the reactive
agent took 9.2 seconds. This includes both agents, the
physical world simulation, and the data gathering. When
we changed to a hybrid system, this increased to 9.7
seconds. So on average, the hybrid agent only took 0.5
seconds longer to choose an action than the reactive agent.

5. Conclusions

This preliminary version of the architecture can be im-
proved in several obvious places. For example, our cur-
rent model of anytime planning only gives credit to states
that solve one or more top-level goals. If no goal can
be completely solved within the time bound, the planner
will be unable to suggest an action. The planner is unable
to make use of partial plans built during previous calls
from Hap, and we have not yet investigated the impact of
Prodigy’s machine learning capabilities on this task.

The hybrid architecture we built provides power to
agent builders which will be useful in designing agents
for a variety of domain types. In highly dynamic domains
where quick action is vital, the agent builder can put
reactive behavior to deal with most situations into Hap
and design the Prodigy system to return quickly. This
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Figure 3: Hybrid robot cleaning up cups.
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Figure 4: Pure reactive robot cleaning up cups.
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Figure 5: Robots vacuuming rooms.

will often be at the expense of plan quality because the
interactions between goals will not be explored. In more
stable domains, Prodigy can be given more time to create
efficient plans. In fact, in some situations it might be the
case that Prodigy is able to solve some resource critical
problem that a reactive system might not solve at all.
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