
15-122: Principles of Imperative Computation,

Spring 2011

Assignment 4: Data Structure Design,

Memory Layout, and Amortization

William Lovas (wlovas@cs) Bill Zorn

Out: Thursday, February 24, 2011
Due: Thursday, March 3, 2011

(Written part: before lecture,
Programming part: 11:59 pm)

1 Written: Potpourri (20 points)

The written portion of this week’s homework will give you some practice working
with amortized analysis, memory management, debugging, and recursion. You can
either type up your solutions or write them neatly by hand, and you should submit
your work in class on the due date just before lecture begins. Please remember to
staple your written homework before submission.

1.1 Amortized Analysis

We can implement a queue using two stacks, an in stack and an out stack.

• An empty queue is one where both the in stack and the out stack are empty.

• To enqueue an element, simply push it onto the in stack.

• To dequeue an element, pop one from the out stack—but if the out stack is
empty, first reverse the contents of the in stack onto the out stack.

Exercise 1 (6 pts). Consider the run-time complexity of the enq and deq operations
for such a queue.

(a) Howmany stack operations are needed, in the worst case, for a single enq or deq
operation on a queue of size n?

1

(b) How many stack operations are needed, in the worst case, for a sequence of k
enq or deq operations, starting from an empty queue? Use amortized analysis to
justify your answer.

1.2 Memory Management

Constant factors can influence the memory efficiency of data structures and algo-
rithms, even if the asymptotic complexity is the same. For example, a stack can be
internally implemented in multiple ways without changing the interface functions
you use to manipulate it. The implementation we saw in class uses linked lists:

struct list_stack {

struct list_node* top;

struct list_node* bottom;

};

struct list_node {

elem data;

struct list_node* next;

};

Another possible implementation uses unbounded arrays instead:

struct uba_stack {

struct ubarray * U;

};

struct ubarray {

int limit; /* limit > 0 */

int size; /* 0 <= size && size <= limit */

elem[] elems; /* \length(elems) == limit */

};

Assume for the moment that both stack implementations store characters as their
data elements: typedef char elem has been defined previously in the code. Recall
that in C0, a char is represented using 8 bits, a pointer is represented using 64 bits,
and an int is represented using 32 bits. An array of characters of size n takes exactly
8n + 64 bits—8n for the characters and 32 bits each for two ints: one to record the
length of the array and one to record the size of its elements. The size of a struct is
the sum of the sizes of its elements.

Exercise 2 (4 pts). Consider some program that uses a stack of characters. If the pro-
gram can allocate only 1 MB (220 bytes, or 8× 220 bits) of memory for this stack, what
is the maximum number of characters that it can store using a struct list_stack?
How about using a struct uba_stack? (Show your work.)

2

1.3 Debugging

The following helper function is intended to take a structure cell containing a stack
of strings and print it out, along with some general identifying information about it.
You may assume that the code compiles, that type elem is defined as string, and
that stacks are implemented using linked lists as in lecture.

typedef struct wordcell * cell;

struct wordcell {

int ID;

int size;

stack words;

};

bool is_cell(cell W) {

if (W == NULL) return false;

if (! (0 <= W->ID && W->ID < 1000)) return false;

return (W->words == NULL && W->size == 0)

|| (is_stack(W->words) && stack_size(W->words) == W->size);

}

void printcell(cell W)

//@requires is_cell(W);

{

print("Cell: "); printint(W->ID); print("\n");

print("size: "); printint(W->size); print("\n");

list place = W->words->top;

while (place != W->words->bottom) {

println(place->data);

place = place->next;

}

}

Exercise 3 (4 pts).

(a) Devise a test case that causes printcell to segmentation fault. You may write
out this case as a short main() function. Assume that the program is compiled
with the -d flag, and that a contract failure is different from a segmentation fault.
Hint: What are all the ways a segmentation fault can occur in a C0 program?

(b) Change printcell so that this case does not cause a segmentation fault. The
specification function is_cell is correct—do not change it! Hint: Your change
should not affect more than a few lines.

3

1.4 Recursion

Exercise 4 (6 pts). Recursive functions can be used to construct data structures
of recursive type, like linked lists. For the following exercise, you may assume
a function int list_length(struct list_node* L) which has the property that
list_length(NULL) == 0 and a list_cons function which adds one element to the
front of a linked list.

struct list_node* list_cons(elem x, struct list_node* xs)

//@ensures list_length(\result) == list_length(xs) + 1;

{

struct list_node* res = alloc(struct list_node);

res->data = x; res->next = xs;

return res;

}

(a) Write a recursive function matching the following specification:

struct list_node* from(int start, int end)

//@requires start <= end;

//@ensures list_length(\result) == end - start;

;

The result of a call like from(1, n) should be a list containing the numbers from
1 to n − 1 in order, terminated by a NULL pointer:

1 2 n-1. . .

(For this problem, the type elem is defined to be int.)

(b) Prove that if the pre-condition holds, the returned result satisfies the post-
condition. When reasoning inside the body of a function f , if you know that
the pre-condition of a recursive call to f holds before the call, you may assume
the post-condition of that call holds after the call.

4

2 Programming: Implementing a Text Editor (30 points)

In the programming portion of this week’s assignment, you’ll practice a bit of data
structure design by implementing the core data structure for a text editor: the edit
buffer. Using contracts to guide your coding is a major theme, so be sure to read the
specifications carefully—you’ll thank yourself later!

You should submit your code electronically by 11:59 pmon the duedate. Detailed
submission instructions can be found below.

Starter code. Download the file hw4-starter.zip from the course website. It
contains definitions of the edit buffer data structures (gapbuf.c0 and tbuf.c0) and
some code for visualizing them (visuals.c0), which you may find useful for testing
your implementation.

Compiling and running. Compile and test your code using either cc0 or coin.
Don’t forget to include the -d switch to enable dynamic checking of contracts!

Fordetails onhowwewill compile your code, see thefile COMPILING.txt included
in the starter code. Warning: You will lose credit if your code does not compile.

Submitting. Once you’ve completed some files, you can submit them by running
the command

handin -a hw4 <file1>.c0 ... <fileN>.c0

You can submit files asmany times as you like and in any order. Whenwe grade your
assignment, we will consider the most recent version of each file submitted before
the due date. If you get any errors while trying to submit your code, you should
contact the course staff immediately.

The submission verifier framework for this assignment will check only that your
code compiles: you are responsible for testing your code thoroughly!

Annotations. Be sure to include appropriate //@requires,//@ensures,//@assert,
and //@loop invariant annotations in your program. You shouldwrite these as you
are writing the code rather than after you’re done: documenting your code as you go
along will help you reason about what it should be doing, and thus help you write
code that is both clearer andmore correct. Annotations are part of your score for the

programming problems; you will not receive maximum credit if your annotations

are weak or missing.

Style. Strive to write code with good style: indent every line of a block to the same
level, use descriptive variable names, keep lines to 80 characters or fewer, document
your code with comments, etc. We will read your code when we grade it, and
good style is sure to earn our good graces. Feel free to ask on the course bboard
(academic.cs.15-122) if you’re unsure of what constitutes good style.

5

2.1 Text Buffer Primer

A text buffer is an abstract data type for representing the contents of a text editor’s edit
buffer. In this assignment, you will explore several possible representations of a text
buffer, eventually settling on one that strikes a nice balance between space efficiency
and time efficiency.

A text buffer may be visualized as a sequence of characters with a distinguished
cursor position. For instance, we might write “ab|cdef” for a text buffer containing
the characters a through f with the cursor between the b and the c. Text buffers may
allow a variety of editing operations to be performed on them; for the purposes of
this assignment, we’ll consider text buffers that implement four operations: move
forward a character, move backward a character, insert a character, and delete a
character.

typedef struct tbuf * tbuf;

void forward_char(tbuf B);

void backward_char(tbuf B);

void insert_char(tbuf B, char c);

void delete_char(tbuf B);

If B refers to a text buffer representing ab|cdef, the effect of each of these operations
can be illustrated by the following examples:

operation B after operation

forward_char(B) abc|def

backward_char(B) a|bcdef

insert_char(B, ’X’) abX|cdef

delete_char(B) a|cdef

Your goal by the end of the assignment is to implement these operations based on a
representation of a text buffer as a doubly-linked list of gap buffers.

2.2 Gap Buffers (gapbuf.c0)

One typical data structureused to implement an edit buffer is agap buffer. Agapbuffer
is a generalization of an unbounded array: whereas an unbounded array allows for
efficient addition and deletion of elements from the end only, a gap buffer allows
efficient addition and deletion of elements from a gap somewhere in the middle. In
addition, the gap buffer offers efficient operations to move the gap to the left and to
the right.

A gap buffer is represented in memory by an array of elements stored along with
its size (limit) and two integers representing the beginning (inclusive, gap start) and
end (exclusive, gap end) of the gap (see Figure 1).

6

8 2 5

'g' 'a' 'p' 'p' 'y'

0 1 2 3 4 5 6 7

limit buffer gap_
start

 gap_
end

(gap_start) (gap_end) (limit)

Figure 1: A gap buffer in memory.

typedef struct gapbuf * gapbuf;

struct gapbuf {

int limit; /* limit > 0 */

char[] buffer; /* \length(buffer) == limit */

int gap_start; /* 0 <= gap_start */

int gap_end; /* <= gap_end <= limit */

};

A valid gap buffer is non-NULL, has a strictly positive limit which correctly describes
the size of its array, and has a gap start and gap end which are valid for the array.

Task 1 (3 pts). Implement a specification function bool is_gapbuf(gapbuf G) for-
malizing the gap buffer data structure invariants.

For the case of a gap buffer representing an edit buffer, the elements are characters,
and we can visualize the gap buffer as a string of characters with a gap in themiddle:

the s[..]pace race

The above represents a gap buffer of size 16 containing the string “the space race”,
with the gap situated between the “s” and the “p” in “space”. To delete a character,
we simply expand the gap:

the [...]pace race

To move the gap, we copy a character across it:

the p[...]ace race

To insert a character, we write it into the gap, shrinking it by one:

the pe[..]ace race

7

The gap can be at the left end of the buffer,

[...]mineshaft gap

or at the right end of the buffer,

minecraft gap[...]

and a buffer can be empty,

[................]

or it can be full,

mind the ga[]p sir

Task 2 (2 pts). Implement the following utility functions on gap buffers:

Function: Returns true iff...
bool gapbuf_empty(gapbuf G) the gap buffer is empty
bool gapbuf_full(gapbuf G) the gap buffer is full
bool gapbuf_at_left(gapbuf G) the gap is at the left end of the buffer
bool gapbuf_at_right(gapbuf G) the gap is at the right end of the buffer

Task 3 (5 pts). Implement the following interface functions for manipulating gap
buffers:

gapbuf gapbuf_new(int limit) Create a new gapbuf of size limit
void gapbuf_forward(gapbuf G) Move the gap forward, to the right
void gapbuf_backward(gapbuf G) Move the gap backward, to the left
void gapbuf_insert(gapbuf G, char c) Insert the character c before the gap
void gapbuf_delete(gapbuf G) Delete the character before the gap

If an operation cannot be performed (e.g.,moving the gap backwardwhen it’s already
at the left end), it should leave the gap buffer unchanged.

All functions should require and ensure the data structure invariants. Further-
more, the gap buffer returned by gapbuf_new should be empty. Use these facts to
help you write your code, and document them with appropriate assertions.

2.3 Doubly-Linked Lists (tbuf.c0)

Another data structure that could be used to represent an edit buffer is a doubly-linked
list. We have seen singly-linked lists used to represent stacks and queues—sequences
of nodes, each node containing some data and a pointer to the next node—but such a
structure cannot provide constant time insertions or deletion in themiddle of the list.
The nodes of a doubly-linked list contain a data field just like those of a singly-linked
list, but in contrast, the doubly-linked nodes contain two pointers: one to the next
element (next) and one to the previous (prev).

8

start point end

'a' !b!

prev data next prev data next prev data next prev data next

Figure 2: An editable sequence as a doubly-linked list in memory.

An editable sequence is represented in memory by a doubly-linked list and three
pointers: one to the start of the sequence, one to the end of the sequence, and one
to the distinguished point node where updates may take place (see Figure 2). We
employ our usual trick of terminating the list with “dummy” nodes whose contents
we never inspect.

typedef struct dll * dll;

struct dll {

elem data;

dll next;

dll prev;

};

typedef struct tbuf * tbuf;

struct tbuf {

dll start;

dll point;

dll end;

};

We can visualize awell-formed doubly-linked list as the sequence of its data elements
with terminator nodes at the end and one distinguished element.

** <--> ’a’ <--> ’b’ <--> **

For now, we do not concern ourselves with the type of the data elements: basic
doubly-linked list functions are agnostic to it anyway.

The key invariant in awell-formed doubly-linked list is that the next links proceed
from the start node to the end node, passing point node along the way, and that the

9

prev links mirror the next links. Additionally, we require that the point be a distinct
node from both the start and the end nodes, i.e., that the list be non-empty.1

Task 4 (3 pts). Write a specification function bool is_linked(tbuf B) formalizing
the linking invariants on a doubly-linked list text buffer. (You are not required to
check for circularity, but you may find it useful to do so.)

Task 5 (3 pts). Implement the following utility functions on doubly-linked text
buffers:

Function: Returns true iff...

bool tbuf_at_left(tbuf B) the point is at the far left end
bool tbuf_at_right(tbuf B) the point is at the far right end

and the following interface functions for manipulating doubly-linked text buffers:

void tbuf_forward(tbuf B) Move the point forward, to the right
void tbuf_backward(tbuf B) Move the point backward, to the left
void tbuf_delete_point(tbuf B) Remove the point node from the list

As above, if an operation cannot be performed, it should leave the text buffer un-
changed. When deleting the point, the new point may be either to the right or to the
left of the old one.

These functions should require and preserve the linking invariant you wrote
above, and you should both document this fact and use it to help write the code. (Be
especially careful when implementing deletion!)

2.4 Putting It Together (tbuf.c0)

While either gapbuffers ordoubly-linked lists of characters couldbeused to represent
an edit buffer—and your implementations could easily be extended to implement
the general edit buffer interface—neither strategy is particularly realistic. One large
edit buffer requires the entire file contents to be stored in a single, contiguous block
of memory, which can be difficult for large files, and furthermore, although all oper-
ations are amortized constant time, long pauses could still hamper interactivity. A
doubly-linked list of single characters, while offering truly constant-time operations
and allowing the file to be split across several chunks of memory, involves far too
much space overhead at two pointers per character.

Instead, a more realistic strategy is to combine the two ideas by implementing a
doubly-linked list of fixed-size gap buffers. The contents of a text buffer represented
in this way is simply the concatenation of the contents of its requisite gap buffers, in
order from the start to the end. When a gap buffer is full, we can split it in two:

1And of course, for any of these to hold, several pointers must be non-NULL!

10

** <--> splitend[] <--> **

insert ‘s’: ** <--> spli[....] <--> tends[...] <--> **

and when one becomes empty, we can delete it:

** <--> deletio[.] <--> n[........] <--> **

delete: ** <--> deletio[.] <--> **

To move, we use a combination of gap buffer motion and doubly-linked list motion:

** <--> just_a_[.] <--> j[....]ump <--> **

move←: ** <--> just_a_[.] <--> [....]jump <--> **

move←: ** <--> just_a[.]_ <--> [....]jump <--> **

An invariant that arises from this representation is that a text buffer is always
aligned: every gap buffer before the point is non-empty with its gap to the right, and
every gap buffer after the point is non-empty with its gap to the left.

** <--> lawfu[...] <--> l_evil_c[] <--> hao[....]t <--> [.]ic_good <--> **

Additionally, all the gap buffers are themselves well-formed, and they all have the
same size (8 characters in the diagrams here, but you should use 16 for your imple-
mentation).

Task 6 (3 pts). Implement a specification function bool is_aligned(tbuf B) for-
malizing the alignment invariant. Ensure that each gap buffer has size 16.

For a text buffer to be fully well-formed, it must either be the empty text buffer:

** <--> [................] <--> **

or it must be properly linked and aligned and have a non-empty point.

Task 7 (3 pts). Implement the following specification functions on text buffers:

Function: Returns true iff...
bool tbuf_empty(tbuf B) the text buffer is empty
bool is_tbuf(tbuf B) the text buffer satisfies all invariants

and a text buffer constructor:

tbuf tbuf_new() constructs a new, empty text buffer

(Aside: At this point, you might consider re-declaring the tbuf_delete_point
function with a stronger contract: you can now give it a much more precise spec-
ification, and doing so will help you later! Think about what further invariants it
preserves beyond those specified earlier.)

To split a full gap buffer, we have to copy each half of the character data into one
of two new gap buffers, taking special note of where the new gaps should end up.
The following diagrams may help you visualize the intended result:

11

full buffer: abc[]defghABCDEFGH

splits into: abc[........]defgh

[........]ABCDEFGH

full buffer: stuvwxyzSTUV[]WXYZ

splits into: stuvwxyz[........]

STUV[........]WXYZ

We can then link the new gap buffers into the doubly-linked list, taking care to
preserve the text buffer invariants.

Task 8 (4 pts). Implement a function tbuf_split_point(tbuf B)which takes a valid
text buffer whose point is full and turns it into a valid text buffer whose point is not
full.

Task 9 (4 pts). Implement the following interface functions for manipulating text
buffers:

void forward_char(tbuf B) Move the cursor forward, to the right
void backward_char(tbuf B) Move the cursor backward, to the left
void insert_char(tbuf B, char c) Insert the character c before the cursor
void delete_char(tbuf B) Delete the character before the cursor

If an operation cannot be performed (e.g., moving the point backward when it’s
already at the left end), it should leave the text buffer unchanged.

After you’ve completed your text buffer implementation and tested it thoroughly,
you can try it out interactively by compiling against e0.c0 from the starter code, a
comically minimalist text editor front-end called E0. Enjoy the hard-won fruits of
your careful programming labor!

2.5 Judges’ Prize: Extending the Editor

Extend the E0 editor implementation with some interesting features. A few sug-
gestions, to pique your imagination: a better display algorithm, a better splitting
algorithm, line motion, more editing commands, copy and paste—be creative! Feel
free to extend the data structures in any way necessary to support your changes
effectively. Submit your modified implementation as files named judges-*.c0 and
include a judges-README file explaining your work. The coolest extension—both in
terms of the interactive editing experience and the supporting data structures and
algorithms—will receive a prize!

12

	Written: Potpourri (20 points)
	Amortized Analysis
	Memory Management
	Debugging
	Recursion

	Programming: Implementing a Text Editor (30 points)
	Text Buffer Primer
	Gap Buffers (gapbuf.c0)
	Doubly-Linked Lists (tbuf.c0)
	Putting It Together (tbuf.c0)
	Judges' Prize: Extending the Editor

