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Abstract

Many problems in formal verification of digital hardware circuits and
other finite-state systems are naturally expressed in the language of quan-
tified boolean formulas (QBF). The first two parts of this thesis proposal
present techniques that advance the state-of-the-art in solving such QBF
problems, thereby enabling the verification of more complex hardware de-
signs. The third part proposes a new technique for software verification
using a solver for QBF with free variables.

Traditionally, QBF solvers have required that their input formulas
be transformed into a special form known as prenex CNF . However,
although prenex CNF has the benefit of being simple, it is now recognized
that transformation to this form can be detrimental to advanced solvers
because it obscures features of the input formula that could be useful
to the solver. We present two contributions to the development of non-
prenex, non-CNF solvers. First, we reformulate clause/cube learning, an
important technique in prenex solvers, and we extend it to non-prenex
instances. Second, we introduce a propagation technique using ghost
literals that exploits the structure of a non-CNF instance in a manner
that is symmetric between the universal and existential variables.

The second part of this thesis proposal discusses an approach to QBF
using Counterexample-Guided Abstraction Refinement (CEGAR). The
approach recursively solves QBF instances with multiple quantifier alter-
nations. Experimental results show that the CEGAR-based solver out-
performs existing types of solvers on many publicly-available benchmark
families. In addition, we present a method of combining the CEGAR
technique with DPLL-based solvers and show that it improves the DPLL
solver in many instances.

The third part of this thesis proposal presents a method for auto-
matically inferring universally quantified loop invariants for programs
with dynamically allocated heap data structures. Our technique works
by computing an overapproximation of the set of reachable states via a
fixed-point procedure. We target a small dynamically typed intermedi-
ate language. Sets of states are described by formulas in a fragment of
first-order logic augmented with transitive closure; the fragment includes
equality, uninterpreted functions, and total order. We introduce an ab-
straction function that summarizes the heap memory, returning a formula
of bounded size. Summarization of memory locations is based, in part,
on how they can be reached from the program variables. The inferred
invariants can be used to verify the absence of failed assertions and other
run-time errors.
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Chapter 1

Introduction

Many problems in formal verification (among other areas) are naturally expressed

in the language of Quantified Boolean Formulas (QBF). QBF is an extension of

propositional logic in which boolean variables can be quantified. Syntactically, we

consider QBF formulas described by the following grammar:

Φ ::= True | False | x | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | ∃x Φ | ∀x Φ

Additionally, to simplify matters, we disallow formulas such as ∃x.∃x.Φ in which

one binding of a variable shadows another.

A literal is a variable or its negation. We represent an assignment to boolean

variables by a set of literals, as follows: An assignment π assigns x true iff x ∈ π, and

an assignment π assigns x false iff ¬x ∈ π. We write “π(`)” to denote the value (true,

false, or undef) that π assigns to `, as follows: π(`) = true if ` ∈ π, π(`) = false if

¬` ∈ π, and π(`) = undef otherwise. For any variable x, we treat ¬¬x as equivalent

to x. An assignment may not include both a variable and its negation.

Definition 1 (Reduction). The reduction of a formula f under an assignment

π, denoted by “f |π”, is constructed from f as follows: For each variable x which

is assigned a value by π, we delete the quantifier of x (if any) and replace each

occurrence of x with its assigned value. E.g., if π = {e1}, then [∃e1.∀u2. (e1∧u2)]|π =

[∀u2. (true ∧ u2)]. Formally:

`|π =

π(`) if π(`) 6= undef

` if π(`) = undef

(f1 ∧ ... ∧ fn)|π = (f1|π) ∧ ... ∧ (fn|π)

(f1 ∨ ... ∨ fn)|π = (f1|π) ∨ ... ∨ (fn|π)

(∃x.f)|π =

f |π if π(x) 6= undef

∃x.(f |π) if π(x) = undef

(∀x.f)|π =

f |π if π(x) 6= undef

∀x.(f |π) if π(x) = undef

1
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Semantically, boolean quantifiers are defined as follows:

• Universal quantifier: ∀x.Φ = Φ|{x} ∧ Φ|{¬x}

• Existential quantifier: ∃x.Φ = Φ|{x} ∨ Φ|{¬x}
A QBF instance is closed iff every occurrence of every variable is bound by a quan-

tifier. In the next two chapter, we will only consider closed instances.

A boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,

where a clause is a disjunction of literals. Whenever convenient, a CNF formula is

treated as a set of clauses.

Given two literals x and y, we say that x is upstream of y iff the scope of the

quantifier of x contains the quantifier of y. If a literal x is upstream of another literal

y, then y is downstream of x.

For a literal `, var(`) denotes the variable in `, i.e. var(¬x) = var(x) = x.

1.1 QBF as a Two-Player Game

It is helpful to view QBF as a game between two players, Player ∃ and Player ∀. We

make the following definitions:

� The existentially quantified variables are owned by Player ∃.
� The universally quantified variables are owned by Player ∀.

Informally, the game formulation goes as follows. Throughout the course of the game,

the two players assign values to the variables that they own. The order in which the

players assign variables is the quantification order of the variables. On each turn

of the game, the owner of an outermost-quantified unassigned variable assigns it a

value. The goal of Player ∃ is to make the formula true, and the goal of Player ∀ is

to make the formula false.

Definition 2 (Winning under an assignment).

� Player ∃ wins a formula f under π iff f |π is true.

� Player ∀ wins a formula f under π iff f |π is false.

2
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Chapter 2

Game-State Learning and Ghost

Literals in QBF

2.1 Introduction

Traditionally, QBF solvers have used conjunctive normal form (CNF). Although CNF

works well for SAT solvers, it hinders the work of QBF solvers by impeding the ability

to detect and learn from satisfying assignments. In fact, a family of problems that

are trivially satisfiable in negation-normal form (NNF) were experimentally found to

require exponential time (in the problem size) for existing CNF solvers [40].

Various techniques have been proposed for avoiding the drawbacks of a CNF

encoding. Zhang et al. have investigated dual CNF-DNF representations in which a

boolean formula is transformed into a combination of an equi-satisfiable CNF formula

and an equi-tautological DNF [40]. Sabharwal et al. have developed a QBF modeling

approach based a game-theoretic view of QBF [34]. Ansotegui et al. have investigated

the use of indicator variables [1]. These approaches all help to alleviate the problems

of a pure CNF encoding, but we argue that a fully non-clausal approach can lead

to even greater improvements, especially for instances produced from deeply-nested

circuits.

In addition to combined CNF-DNF techniques, fully non-clausal techniques have

recently been investigated. A prenex circuit-based DPLL solver with “don’t care”

reasoning and clause/cube learning has been developed by Goultiaeva et al. [17]. A

non-prenex NNF-based DPLL solver with dependency-directed (non-chronological)

backtracking, but without learning, was developed by Egly, Seidl, and Woltran [11].

Non-clausal techniques using symbolic quantifier expansion (rather than DPLL)

have been developed by Lonsing and Biere [28] and by Pigorsch and Scholl [31].

3
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Giunchiglia et al. have developed a technique for mini-scoping quantifiers (pushing

quantifiers inward so as to minimize their scope) [15]. Non-clausal representations

have also been investigated in the context of SAT solvers [13, 18, 39].

Most existing DPLL-based QBF solvers perform clause/cube learning. However,

traditional clause/cube learning was designed for prenex QBF instances, and it is

not optimal for (or even directly applicable to) non-prenex QBF instances. We

reformulate clause/cube learning and extend it to the non-prenex case. Additionally,

we develop a new propagation technique using ghost literals. Experimental results

indicate that our approach can beat other state-of-the-art solvers on fixed-point

computation instances of the type found in the tipfixpoint benchmark family.

2.2 Preliminaries

In this chapter, we assume that existentially quantified variables have the form ei

and universally quantified have the form ui, where i is a positive integer. We la-

bel each conjunction and disjunction of the input QBF with a gate variable of the

form gi, as illustrated in Figure 2.1. The conjunction/disjunction labelled gi, to-

gether with its quantifier prefix (if any), is labelled with the primed gate variable

g′i, as illustrated in Figure 2.1. As indicated in the abstract grammar, each labelled

conjunction/disjunction may have any number of conjuncts/disjuncts.

∃e10

[
[∃e11 ∀u21

g1︷ ︸︸ ︷
(e10 ∧ e11 ∧ u21) ]︸ ︷︷ ︸
g′1

∧ [∀u22 ∃e30

g2︷ ︸︸ ︷
(e10 ∧ u22 ∧ e30) ]︸ ︷︷ ︸
g′2

]

Figure 2.1: Example QBF instance with gate labels.

The term “gate variable” arises from the circuit representation of a propositional

formula, in which a gate variable labels a logic gate.

Let “Φin” denote the formula that the QBF solver is given as input. We impose

the following restriction on Φin: Every variable in Φin must be quantified exactly

once, and no variable may occur free (i.e., outside the scope of its quantifier). The

variables that occur in Φin are said to be input variables. An input assignment is

an assignment in which every assigned variable is an input variable (as opposed to a

gate variable). We say that a gate literal g is upstream of an input literal y iff every

variable that occurs in the subformula g is upstream of y.

4
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For non-prenex instances, we say that each quantifier-prefixed subformula (e.g.,

g′1 and g′2 in Figure 2.1) is a subgame. It may happen that two or more variables

are quantified outermost; e.g., in Figure 2.1 on page 4, after e10 is assigned a value,

both e11 and u22 are quantified outermost. In this case, two subgames have become

independent of each other; they may be played in parallel.

2.3 Symbolic Game States

In this section, we introduce game-state learning, a reformulation of clause/cube

learning. For prenex instances, the game-state formulation is isomorphic to clause/cube

learning; the differences are merely cosmetic. However, the game-state formulation

is more convenient to extend to the non-prenex case.

To motivate the notation of game-state learning, we start by reviewing certain

aspects of clause learning. Suppose the input formula Φin is a prenex CNF QBF

whose first clause is (e1 ∨ e3 ∨ u4 ∨ e5). Under an assignment π, if all the literals in

the clause are false, then clearly Φin|π is false. Moreover, if, under π, all the clause’s

existential literals are assigned false and none of the clause’s universal literals are

assigned true (i.e., they may either be assigned false or be unassigned), then Φin|π
is false, since the universal player can win by making all the universal literals in the

clause false.

As shown in [41], when the QBF clause learning algorithm is applied to

∃e1∃e3∀u4∃e5∃e7. (e1 ∨ e3 ∨ u4 ∨ e5) ∧ (e1 ∨ ¬e3 ∨ ¬u4 ∨ e7) ∧ ...

it can yield the tautological learned clause (e1∨u4∨¬u4∨e5∨e7). Although counter-

intuitive, this learned clause can be interpreted in the same way as a non-tautological

clause: Under an assignment π, if all the clause’s existential literals are assigned false

and none of the clause’s universal literals are assigned true, then Φin|π is false.

Learned cubes are similar: Under an assignment π, if all the cube’s universal liter-

als are assigned true and none of the cube’s existential literals are assigned false, then

Φin|π is true. With game-state learning, we explicitly separate the “must be true” lit-

erals from the “may be either true or unassigned” literals. (For non-prenex instances,

the division is more complicated than just existential-vs-universal.) Instead of writ-

ing a cube (e1 ∨ u2 ∨ ¬e3), we will write a game-state sequent 〈{u2}, {e1,¬e3}〉 |=
(∃ wins Φin).

5
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Definition 3. A symbolic game state is a tuple 〈Lnow, Lfut〉, where Lnow is a set of

literals and Lfut is a set of input literals. 〈Lnow, Lfut〉 symbolically represents (or

matches) exactly those input assignments under which:

1. every literal in Lnow reduces to true, and

2. no literal in Lfut is assigned false — i.e., for every literal ` in Lfut, either ` is

already true or ` has not yet been assigned a value (and therefore may become

true in the future).

For example, consider again the QBF instance in Figure 2.1 on page 4. The as-

signment {¬e10} matches both 〈{¬g′1}, ∅〉 and 〈{¬g′1}, {u21,¬u21}〉 (because ¬e10

implies ¬g′1), but not 〈{¬g′1}, {e10}〉. No assignment matches 〈{¬e10}, {e10}〉.

Definition 4 (Winning under a game state). We say that player P wins a

formula f under a game state GS, written “GS |= (P wins f)”, iff P wins f under

all assignments that match GS. Additionally, we say that P loses f under GS, written

“GS |= (P loses f)”, iff the opponent of P wins f under GS.

For example, for the QBF instance in Figure 2.1:

� Neither player wins g′1 under the game state 〈∅,∅〉, because Player ∀ loses

under the matching assignment {e10, e11, u21} and Player ∃ loses under the

matching assignment {¬e10}.
� Player ∀ wins g′1 under 〈∅, {¬u21}〉. For example, under the assignment π= {e11},
g′1|π is [∀u21 (e10 ∧ true ∧ u21)], which evaluates to false.

� Player ∃ wins g′1 under 〈{u21}, {e10, e11}〉.
In our solver, instead of learning clauses or cubes, we maintain a game-state database

with sequents of the form GS |= (P wins g′i). It turns out that whenever we learn

a new game-state sequent for a prenex instance, the literals owned by the winner

all go in Lfut, and the literals owned by the loser and the gate literals go in Lnow.

The relationship between learned game-state sequents and learned clauses/cubes

(for prenex instances) is as follows. 〈Lnow, Lfut〉 |= (∀ wins Φin) is equivalent to the

learned clause [¬`1∨...∨¬`n] where {`1, ..., `n} = Lnow∪Lfut (where Lnow contains the

loser/gate literals and Lfut contains the winner literals). This equivalence is easily

verified using the interpretation of learned clauses developed on the previous page.

Likewise, 〈Lnow, Lfut〉 |= (∃ wins Φin) is equivalent to the learned cube [`1 ∧ ... ∧ `n]

where {`1, ..., `n} = Lnow ∪ Lfut.

6
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Proposition 1. If 〈Lnow ∪{`}, Lfut〉 |= (P wins f), and ` is owned by Player P and

the quantifier of ` is inside f , then 〈Lnow, Lfut ∪ {`}〉 |= (P wins f), provided that

¬` /∈ Lfut.

For example, consider the QBF instance ∀u1.∃e2. (u1 ⊕ e2), where “u1 ⊕ e2” means

“(u1 ∧ ¬e2) ∨ (¬u1 ∧ e2)”. If Player ∃ wins under 〈{u1,¬e2},∅〉, then Proposition 1

tells us that Player ∃ wins under 〈{u1}, {¬e2}〉.

2.4 Algorithm

An overview of the top-level solver algorithm is provided in Figure 2.2. Initially, the

current assignment CurAsgn is empty. For non-prenex instances, we may temporarily

target in on a subgame of the input formula Φin and ignore the rest; the subgame

being targetted is recorded in the TargFmla global variable. On each iteration of

the main loop, we first test to see if we know who wins TargFmla under the current

assignment. There are two cases:

� If the winner of TargFmla is unknown, then we call DecideLit, which picks

an unassigned input variable (from the first available quantifier block in the

prefix of TargFmla) and assigns it a value in CurAsgn. If there are no more

unassigned variables in the quantifier prefix of the current TargFmla, then

we pick a new TargFmla from among the unassigned immediate subformulas

of TargFmla and try again. After adding a new literal to CurAsgn, we call

Propagate to perform boolean constraint propagation (BCP).

� If the winner is known, then we call LearnNewGS to learn a new game-state

sequent, adding it to the database. If the new game-state sequent reveals

that Φin evaluates to a value v under the empty assignment, then we return

v as our final answer. Otherwise, we backtrack. We follow the well-known

non-chronological backtracking technique, with the addition that we must also

undo changes to TargFmla as appropriate. (That is, if we backtrack to the

beginning of the kth decision level, then we must restore TargFmla to the

value that it held at the beginning of the kth decision level. For this purpose,

we maintain an array UndoTarg that maps each decision level to the value of

TargFmla to be restored.) After backtracking, the newly-learned game-state

sequent will force a literal, so we call Propagate to perform BCP. (Is a literal

forced even when we leave a subgame b by restoring an old value of TargFmla

during backtracking? Yes; ghosts of b are forced.)

7
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func Solve() {

CurAsgn = ∅;

TargFmla = Φin;

while (true) {

while (the winner of TargFmla under CurAsgn is unknown) {

DecideLit(); // Picks new TargFmla if necessary.
Propagate();

}

GS = LearnNewGS();

if (TargFmla ==Φin and ∅ matches GS) return winner;
Backtrack to the earliest point at which GS will force a literal;
Propagate();

}
}

}

Figure 2.2: Overview of top-level solver algorithm.

2.4.1 Ghost Literals

Goultiaeva et al. [17] introduce a powerful propagation technique for QBF that sig-

nificantly improves on existing QBF solvers on a variety of benchmarks. With their

technique, if the solver notices that a gate literal g must be true in order for the exis-

tential player to win, then g becomes forced. However, this technique is asymmetric

between the existential and universal players. A gate literal g is forced if it is needed

for the existential player to win, but not if it is needed for the universal player to win.

We adapt this technique so that the universal variables benefit from the same prop-

agation technique as do the existential variables and so that the learning procedure

for satisfying assignments is just as powerful as for falsifying assignments.

In a prenex solver, for each gate variable g, we would introduce two ghost vari-

ables, g〈∀〉 for Player ∀ and g〈∃〉 for Player ∃. A ghost literal g〈P 〉 would be forced

whenever we detect that Player P cannot win unless g is made true.

For our non-prenex solver, we need to consider subgames (quantifier-prefixed

subformulas, such as g′1 and g′2 in Figure 2.1). We introduce ghost variables of the

form g〈∀, b〉 and g〈∃, b〉 where b is a subgame which contains g as a subformula.

A ghost literal g〈P, b〉 becomes forced when we detect that Player P cannot win

subgame b without g being true. For example, consider the below QBF instance

8
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(where g1 is some propositional formula involving e1, u2, and e3):

∃e1 ∀u2 ∃e3 ∀u4. [[∀u5. g1 ∨ u5]︸ ︷︷ ︸
g′2

∧u4] ∨ [∀u6. ¬g1 ∨ u6]︸ ︷︷ ︸
g′3

Under the empty assignment, g1〈∃, g′2〉 is forced (because Player ∃ cannot win g′2
under ∅ unless g1 is true) and likewise ¬g1〈∃, g′3〉 is forced.

2.4.2 Propagation and Learning

The algorithms for propagation and learning are adapted from the existing techniques

for DPLL solvers (e.g., [42]). Details are presented in [24].

2.5 Experimental Results

We implemented the ideas in this chapter in a solver which we call GhostQ. In our ex-

perimental results, GhostQ always did at least as well as CirQit and it outperformed

Qube on the k, tipdiam, and tipfixpoint families.

We ran GhostQ on the non-CNF instances from QBFLIB on 2.66 GHz machine

with a timeout of 300 seconds. For comparison we show the results for CirQit

published in [17] (which were conducted on a 2.8 GHz machine with a timeout of

1200 seconds). (CirQit is not publicly available.) As shown in Table 2.1, GhostQ

performs better CirQit on every benchmark family except consistency. The ring

and semaphore families consist of prenex instances. The other families are non-

prenex, so our solver took advantage of its ability to perform non-prenex game-state

learning. During testing of our solver, it was noted that non-prenex learning was

especially helpful on the dme family.1

We compared GhostQ to the state-of-the-art solvers Qube 6.6 [15], Quantor

3.0 [4], and sKizzo 0.8.2 [3]. We ran these solvers on the QBFLIB QBFEVAL 2007

benchmarks [30] on a 2.66 GHz machine, with a time limit of 60 seconds and a mem-

ory limit of 1 GB. The results are shown in Tables 2.2 and 2.3. We also show the

results for AIGsolve published in [31], but these numbers are not directly comparable

because they were obtained on a different machine and with a timeout of 600 s.

1The dme family instances were originally given in prenex form, but we pushed the quantifiers
inward as a preprocessing step. The unprenexing time was about 0.8 seconds per instance and is
included in our solver’s total time shown in the table.

9
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Table 2.1: Comparison between GhostQ and CirQit.

Family inst. GhostQ CirQit

Seidl 150 150 (1606 s) 147 (2281 s)
assertion 120 12 (141 s) 3 (1 s)
consistency 10 0 (0 s) 0 (0 s)
counter 45 40 (370 s) 39 (1315 s)
dme 11 11 (13 s) 10 (15 s)
possibility 120 14 (274 s) 10 (1707 s)
ring 20 18 (28 s) 15 (60 s)
semaphore 16 16 (4 s) 16 (7 s)

Total 492 261 (2435 s) 240 (5389 s)

Table 2.2: Comparison between GhostQ and Qube.

Family inst. GhostQ Qube

bbox-01x 450 171 (133 s) 341 (1192 s)
bbox design 28 19 (256 s) 28 (15 s)
bmc 132 43 (266 s) 49 (239 s)
k 61 42 (355 s) 13 (55 s)
s 10 10 (1 s) 10 (5 s)
tipdiam 85 72 (143 s) 60 (235 s)
tipfixpoint 196 165 (503 s) 100 (543 s)
sort net 53 0 (0 s) 19 (176 s)
all other 121 9 (38 s) 23 (227 s)

Total 1136 531 (1695 s) 643 (2687 s)

Table 2.3: Comparison between GhostQ and Non-DPLL Solvers.
Timeout 60 s Timeout 600 s

Family inst. GhostQ Quantor sKizzo GhostQ AIGsolve

bbox-01x 450 171 130 166 178 173
bbox design 28 19 0 0 22 23
bmc 132 43 106 83 51 30
k 61 42 37 47 51 56
s 10 10 8 8 10 10
tipdiam 85 72 23 35 72 77
tipfixpoint 196 165 8 25 170 133
sort net 53 0 27 1 0 0
all other 121 9 49 31 17 35

Total 1136 531 388 396 571 537

In Tables 1–2, we give the number of instances solved and the time needed to solve
them. (Times shown do not include time spent trying to solve instances where the
solver timed out.) In Table 3, we give the number of instances solved.

10
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For the CNF benchmarks, we wrote a script to reverse-engineer the QDIMACS

file to circuit form and convert it to our solver’s input format. (This is similar to

the technique in [31], but we also looked for “if-then-else” gates of the form g =

(x ? y : z).) Of the four other solvers shown in Tables 2.2 and 2.3, Qube is the only

other DPLL-based solver, so it is most similar to our solver. Our experimental results

show that GhostQ does better than Qube on the tipdiam and tipfixpoint families

(which concern diameter and fixpoint calculations for model checking problems on

the TIP benchmarks) and on the k family.

The use of ghost literals can help GhostQ in two ways: (1) By treating the gate

literals specially instead of treating them as belonging to the existential player, we

can more readily detect satisfactions and we can learn more powerful cubes; (2) By

using universal ghost literals, we have a more powerful propagation procedure for the

universal input literals. (We did not perform unprenexing on any of the originally-

CNF benchmarks, so our use of game-state learning doesn’t improve performance

here.) To further investigate, we turned off downward propagation of universal ghost

literals; on most families the effect was negligible, but on tipfixpoint we solved

only 149 instances instead of 165.

2.6 Conclusion

In this chapter, we have made two contributions. First, we have introduced the

concept of symbolic game states and used this concept to reformulate clause/cube

learning and extend it to the non-prenex case. Using game states, we have also

been able to reformulate the techniques for conflict/satisfaction analysis, BCP, and

non-chronological backtracking. In all cases, we give a unified presentation which is

applicable to both the existential and universal players, instead of using separate ter-

minology and notation for the two players. Further, game states are ‘well-behaved’

theoretically, in that we no longer need learn and store tautological clauses (or contra-

dictory cubes). Our second contribution is introducing the concept of ghost literals,

allowing us to improve upon the propagation technique introduced in [17] by elim-

inating the asymmetry between the players so that the technique can reduce the

search space for both the universal and existential players (instead of only the ex-

istential player). Experiments show that our techniques work particularly well on

certain benchmarks related to formal verification. For future work, it may be worth-

while to investigate whether the ideas of dynamic partitioning [36] can be extended

to allow dynamic unprenexing.
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Chapter 3

Counterexample-Guided

Abstraction Refinement (CEGAR)

in QBF

3.1 Introduction

A number of approaches have been proposed for QBF, including (Q)DPLL (e.g.,

[16]), expansion [2, 4, 28], and Skolemization [3]. This chapter presents a new ap-

proach by M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke [19]. It employs

Counterexample-Guided Abstraction Refinement (CEGAR) [8] to gradually expand

the input formula. The CEGAR approach differs from traditional expansion-based

solvers in how the expansion is performed. For a quantifier block of n variables,

traditional expansion-based solvers perform up to n expansions (one for each vari-

able), and the formula grows exponentially with the number of expansions performed

(in the worst case). In contrast, the CEGAR approach performs up to 2n partial

expansions (one for each possible assignment to all n variables), but the formula

grows only linearly with the number of partial expansions performed. In practice,

often only a relatively small number of partial expansions are needed, allowing the

CEGAR approach to solve instances on which traditional expansion-based solvers

run out of memory.

3.2 Preliminaries

We write “Q̄” to denote “∀” (if Q is “∃”) or “∃” (if Q is “∀”).

13
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We write “moves(X)” to denote the set of assignments to the variables X.

A winning move for X in a QBF QX.Φ is an assignment τ ∈ moves(X) such

that Φ|τ is true (if Q is ∃) or Φ|τ is false (if Q is ∀).
The function SAT(φ) represents a call to a SAT solver on a propositional formula φ.

The function returns a satisfying assignment for φ, if such exists, and returns NULL

otherwise.

A formula is in strictly alternating prenex form iff no two adjacent quantifier

blocks have the same quantifier type (existential or universal). In this chapter, we

assume that the input formula is in strictly alternating prenex form.

3.3 Recursive CEGAR-based Algorithm

In previous work, a CEGAR approach was used to solve quantified boolean formulas

with 2 levels of quantifiers [20]. Here we present a generalization that applies to

formulas with any number of quantifier alternations.

The basic idea is as follows. Consider a QBF instance ∃X. ∀Y.Φ. If Y has

only a few variables, we can fully expand ∀Y.Φ by taking the conjunction over all

assignments:

∀Y.Φ ⇔
∧

µ∈moves(Y )

(
Φ|µ
)

= (Φ|µ1) ∧ ... ∧ (Φ|µn)

where {µ1, ..., µn} = moves(Y ). But what if there are many variables in Y ? It turns

out that, in many instances that arise in practice, only a small number of assignments

(moves) need to be considered. Accordingly, we use a partial expansion defined as

follows:

Definition 5 (Partial Expansion). Let ω be a subset of moves(Y ).

The partial expansion of ∃Y. Φ over ω is the formula
∨
µ∈ω Φ|µ.

The partial expansion of ∀Y. Φ over ω is the formula
∧
µ∈ω Φ|µ.

The partial expansion of QY.Φ is considered an abstraction of QY.Φ. It represents

a handicap on player Q in the sense that player Q is allowed to play only those moves

in ω rather than any move in moves(Y ). Thus, if Q wins a partial expansion of QY.Φ,

then Q also wins QY.Φ:

•
((∧

µ∈ω Φ|µ
)
⇔ false

)
⇒
((∧

µ∈moves(Y ) Φ|µ
)
⇔ false

)
•
((∨

µ∈ω Φ|µ
)
⇔ true

)
⇒
((∨

µ∈moves(Y ) Φ|µ
)
⇔ true

)
14
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Algorithm 1: Basic recursive CEGAR algorithm for QBF

1 Function Solve (QX. Q̄Y. Φ)

2 /* Return value: A winning assignment for X if there is one, NULL otherwise.
3 begin
4 if (Y = ∅) then return

(
Q=∃ ? SAT(φ) : SAT(¬φ)

)
5 ω := ∅
6 while true do

7 α :=

{
∃X.

∧
µ∈ω Φ|µ if Q̄= ∀

∀X.
∨
µ∈ω Φ|µ if Q̄= ∃

8 cand := Solve(Prenex(α)) // find a candidate solution
9 if cand = NULL then return NULL

10 Remove from cand any variables not in X
11 cex := Solve(Q̄Y.Φ|cand) // find a counterexample
12 if cex = NULL then return cand
13 ω := ω ∪ {cex}
14 end

15 end

To solve QX. Q̄Y. Φ, we start with a coarse partial assignment and gradually refine

it until we find an answer. At a high level, the algorithm is as follows:

1. Initialize ω such that ω ⊆ moves(Y ). (Specifically, we use ω = ∅.)

2. Let α be the partial expansion of Q̄Y. Φ over ω.

3. Try to find cand ∈ moves(X) such that Player Q wins α|cand .

4. If no such assignment, we’re done: Player Q̄ wins QX.Q̄Y.Φ.

5. Try to find cex ∈ moves(Y ) such that Player Q̄ wins (Φ|cand)|cex .

6. If no such assignment, we’re done: Player Q wins QX.Q̄Y.Φ.

7. Let ω := ω ∪{cex} and go back to Step 2.

The details of this algorithm are fleshed out in Algorithm 1.

3.3.1 Improving Recursive CEGAR-based Algorithm

Note that Algorithm 1 requires prenexing α. This is harmful because it loses infor-

mation about dependencies among variables. Algorithm 2 avoids this prenexing by

using the concept of a multi-game:

Definition 6 (multi-game). A multi-game is denoted by QX.{Φ1, . . . ,Φn} where

each Φi is a prenex QBF starting with Q̄ or has no quantifiers. The free variables of

each Φi must be in X and all Φi have the same number of quantifier blocks. We refer

15
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Algorithm 2: RAReQS: Recursive Abstraction Refinement QBF Solver

1 Function RAReQS (QX. {Φ1, . . . ,Φn})
2 /* Return value: A winning assignment for X if there is one, NULL otherwise.
3 begin
4 if (Φi have no quantifiers) then return Q=∃ ? SAT(

∧
i Φi) : SAT(¬(

∨
i Φ))

α := QX. {}
5 while true do
6 cand := RAReQS(α) // find a candidate solution
7 if cand = NULL then return NULL
8 Remove from cand any variables not in X.
9 for i := 1 to n do cex i := RAReQS(Φi|cand) // find a counterexample

10 if cex i = NULL for all i ∈ {1..n} then return cand
11 let l ∈ {1..n} be such that cex l 6= NULL
12 α := Refine(α, Φl, cex l)

13 end

14 end

15

Refine is defined as follows:

Refine
(
QX.{Ψ1, . . . ,Ψn}, Q̄Y QX1.Ψ, µ

)
= QXX ′1.{Ψ1, . . . ,Ψn,Ψ

′|µ}
where X ′1 are fresh duplicates of X1, and Ψ′ is Ψ with X1 replaced by X ′1

Refine
(
QX.{Ψ1, . . . ,Ψn}, Q̄Y. ψ, µ

)
= QX.{Ψ1, . . . ,Ψn, ψ|µ}

where ψ is a propositional formula (where no duplicates are needed)

to the formulas Φi as subgames and QX as the top-level prefix. A winning move for

a multi-game is an assignment to the variables X such that it is a winning move for

each of the formulas QX. Φi.

3.4 CEGAR as a learning technique in DPLL

The previous section shows that CEGAR can give rise to a complete and sound al-

gorithm for QBF. In this section we show that CEGAR enables us to extend existing

DPLL solvers with an additional learning technique. To illustrate the basic idea

consider the QBF ∀X. (∃Y. φ) and a situation when the solver assigned values to

variables in X and Y such that φ is satisfied, i.e., the existential player won. This

assignment has two disjoint parts, πcand and πcex, which are assignments to X and Y ,

respectively. Conceptually, πcand corresponds the candidate assignment in RAReQS

and πcex to its counterexample. In this case, the CEGAR-based learning will cor-

respond to disjoining the formula φ|πcex onto φ, resulting in ∀X. (∃Y. φ) ∨ φ|πcex, so

that πcand is avoided in the future.
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Algorithm 3: DPLL Algorithm with CEGAR Learning

1. global πcur = ∅;

2. function dpll_solve(Φin) {

3. while (true) {

4. while (we don’t know who has a winning strategy under πcur) {

5. decide lit(); propagate();

7. }

8. Φin := dpll_learn(Φin);

9. if (we learned who has a winning strategy under ∅) return;

10. if (last decision literal is owned by winner) {

11. Φin := cegar learn(Φin);

12. }

13. backtrack();

14. propagate(); // Learned information will force a literal.
15. }

16. }

The CEGAR learning in DPLL is most naturally described in the context of a

non-prenex, non-clausal solver such as GhostQ [24]. Given an assignment π, such a

solver will tell us that either (1) the existential player wins under π, (2) the universal

player wins under π, or (3) it is not yet known which player wins under π.

We modify such a solver by inserting a call to a new CEGAR-learning procedure

after performing standard DPLL learning, as shown in Algorithm 3. We write “Φin”

to denote the current input formula, i.e., the input formula enhanced with what the

solver has learned up to now. Both standard DPLL learning and CEGAR learning

are performed by modifying Φin. As shown in Algorithm 3, CEGAR learning is

performed only if the last decision literal is owned by the winner. (The case where

the last decision literal is owned by the losing player corresponds to the conflicts that

take place within the underlying SAT solver in RAReQS.) The details of the DPLL

CEGAR-learning procedure are provided in [19].

3.5 Experimental Results

A prototype of the CEGAR algorithm is implemented in a solver called RAReQS

(Recursive Abstraction Refinement QBF Solver). For the underlying SAT solver,

minisat 2.2 [10] is used. We compared RAReQS to other solvers on the the formal

verification and planning suites of QBF-LIB [32]. Several large and hard families were

sampled with 150 files (terminator, tipfixpoint, Strategic Companies). The
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Figure 3.1: Cactus plot of the overall results

solvers QuBE7.2 [14], Quantor, and Nenofex were chosen for comparison. QuBE7.2

is a state-of-the-art DPLL-based solver; Quantor and Nenofex are expansion-based

solvers. The experimental results were obtained on an Intel Xeon 5160 3GHz. The

time limit was set to 800 seconds and the memory limit to 2GB.

All the instances were preprocessed by the preprocessor bloqqer [5] and instances

solved by the preprocessor alone were excluded from further analysis. An exception

was made for the family Debug where preprocessing turned out to be infeasible and

the family was considered in its unpreprocessed form.

Unlike the other solvers, GhostQ’s input format is not clause-based (QDIMACS)

but it is circuit-based. To enable running GhostQ on the targeted instances, the solver

was prepended with a reverse-engineering front-end. Since this front-end cannot han-

dle bloqqer’s output, GhostQ was run directly on the instances without preprocessing.

The other solvers were run on the preprocessed instances (further preprocessing was

disabled for QuBE7.2).

The relation between solving times and instances is presented by a cactus plot

in Figure 3.1; number of solved instances per family are shown in Table 3.2; a

comparison of RAReQS with other solvers is presented in Table 3.1.

On the considered benchmarks, RAReQS solved the most instances, approxi-

mately 33% more than the second solver QuBE7.2. RAReQS also turned out to be

the best solver for most of the types of the considered instances. Table 3.1 further

shows that for each of the other solvers, there is only a small portion of instances
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GhostQ GhostQ-CEGAR QuBE7.2 Quantor Nenofex

Only RAReQS 1661 1336 998 2436 2564

Only competitor 242 269 46 30 13

Table 3.1: Number of instances solved by RAReQS but not by a competing solver,
and vice versa

that the other solver can solve and RAReQS cannot.

In several families the addition of CEGAR learning to GhostQ worsened its per-

formance. With the exception of Robots2D, however, the performance was worse

only slightly. Overall, GhostQ benefited from the additional CEGAR learning and

in particular for certain families. A family worth noting is irqlkeapclte, where no

instances were solved by any of the solvers except for GhostQ-CEGAR.

3.6 Conclusion

This chapter has presented two novel techniques for solving QBF problems. First,

a CEGAR-driven solver RAReQS has been presented which builds an abstraction

of the given formula by constructing partial expansions. This solver has been ex-

perimentally shown to work very well on a wide variety of bencharmks. Second,

CEGAR has been incorporated into DPLL solvers as an additional learning tech-

nique. While this technique does not take advantage of the full range of CEGAR

learning exploited by RAReQS, it still provides a more powerful learning technique

than standard clause/cube learning, and experimentally it has been shown helpful

for a variety of benchmarks.
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Family Lev. RAReQS GhostQ GhostQ-Cg QuBE7.2 Quantor Nenofex

trafficlight-ctlr (1459) 1–287 1459 806 1001 1092 955 863
RobotsD2 (700) 2–2 699 350 271 630 0 30
incrementer-encoder (484) 3–119 483 285 477 284 51 27
blackbox-01X-QBF (320) 2–21 320 138 126 224 3 4
Strat. Comp. (samp.) (150) 1–2 107 12 12 107 18 12
BMC (85) 1–3 73 26 48 37 65 64
Sorting-networks (84) 1–3 72 24 32 45 38 38
blackbox-design (27) 5–9 27 27 27 18 0 0
conformant-planning (23) 1–3 17 7 16 5 13 12
Adder (28) 3–7 11 2 2 4 5 9
Lin. Bitvec. Rank. Fun. (60) 3–3 9 0 0 0 0 0
Ling (8) 1–3 8 6 8 8 8 8
Blocks (7) 3–3 7 6 7 5 7 7
fpu (6) 1–3 6 0 0 6 6 6
RankingFunctions (4) 2–2 3 0 0 3 0 0
Logn (2) 3–3 2 2 2 2 2 2
Mneimneh-Sakallah (163) 1–3 110 148 141 89 3 22
tipfixpoint-sample (150) 1–3 26 128 127 22 5 6
terminator-sample (150) 2–2 98 109 103 9 25 0
tipdiam (121) 1–3 55 99 93 54 21 14
Scholl-Becker (55) 1–29 37 43 40 29 32 27
evader-pursuer (15) 5–19 10 11 8 11 2 2
uclid (3) 4–6 0 2 2 0 0 0
toilet-all (136) 1–1 134 133 131 131 135 133
Counter (58) 1–125 30 14 11 20 33 15
Debug (38) 3–5 3 0 0 0 24 6
circuits (63) 1–3 8 4 5 5 9 8
Gent-Rowley (205) 7–81 52 67 67 70 2 0
jmc-quant (+squaring) (20) 3–9 2 0 0 6 0 2
irqlkeapclte (45) 2–2 0 0 44 0 0 0

total (4669) 3868 2449 2801 2916 1462 1317

Table 3.2: Number of instances solved within 800 seconds by each solver. “Lev”
indicates the number of quantifier blocks (min–max) in the family, post-bloqqer.
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Chapter 4

Inference and Verification of

Program Invariants

4.1 Introduction

A major obstacle to the adoption of verification tools is the manual burden involved in

both writing formal specifications and helping the analyzer prove them. For software

that uses dynamically-allocated heap memory, fully automatic “push-button” static

analyzers typically give many false alarms, and they are often unsound (i.e., they may

fail to detect that a bad state is reachable). A more precise analysis can be obtained

using techniques such as Separation Logic [33] or TVLA [35]. These techniques

are very powerful and can used to verify complex programs. However, they are

not completely automatic; they require the user to supply invariants and/or other

annotations, which is often tedious and requires knowledge of formal methods that

many programmers do not have. Automatic inference of invariants is therefore highly

desirable.

We present an approach for automatically inferring universally quantified prop-

erties about heap data structures. Our approach uses the Abstract Interpretation [9]

framework. Our analyzer annotates each statement of the program with a precon-

dition and a postcondition. Throughout the course of the analysis, the pre-/post-

condition annotations of a statement may be updated. When the analysis is finished,

it is guaranteed that the annotated pre-/post-conditions of each statement are always

satisfied (on statement entry/exit, respectively) in every possible execution trace of

the program.

The annotations may be used for several purposes. First, they can be used to

find likely bugs or to verify that the program is free of certain types of run-time
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errors, such as failed assertions. Given an assertion assert(e) with an annotated

precondition Φ, we verify the implication Φ⇒ e or raise an alarm if the implication

cannot be verified to hold true. A second use of annotated preconditions, in the

case of dynamic languages such as Python/JavaScript/Ruby and object-oriented

languages such as Java, is to generate more optimized bytecode by, e.g., resolving

the types of objects statically rather than dynamically. Third, the annotations be

used to automatically generate documentation that may be useful to programmers.

4.2 Related Work

Recent work in loop-invariant inference [23, 25, 29, 38] has dealt with quantified

loops invariants for arrays and linked lists. In contrast, our proposed technique can

handle more complex data structures, such as binary-search trees. The template-

based invariant generation technique in [38] requires the user to provide a template

(a quantified formula with holes where each hole can be substituted only with a

conjunction of atomic propositions). To express an invariant with disjunctions, a

user has to explicitly specify the disjunctions in template. In contrast, our proposed

technique is completely automatic; it doesn’t require any user annotations.

Jensen et al. [21] have developed a type analysis for JavaScript that is able to

automatically infer the types of variables and detect errors such as accessing a non-

existent field of an object. Their approach is very fast, but it cannot infer relational

properties such as “if n 6= 0 then p 6= null”, so it can produce false alarms if the

program correctness depends on such an invariant. Our technique is slower, but it is

able to infer relational properties.

Separation Logic [33] provides a framework for reasoning about heap data struc-

tures. It provides a separating conjunction operator “∗” with the following semantics:

P ∗Q holds true in a state if the heap can be split into two distinct parts h1 and h2

such that P holds true in h1 and Q holds true in h2. Separation Logic has had much

success in proving programs correct manually and with semi-automated tools, but it

appears difficult to use in a fully-automated tool.

TVLA [6, 26, 35] is a parametric static analyzer that can verify inductive in-

variants of heap data structures. For each program to be analyzed, the user must

specify the relevant instrumentation predicates in first-order logic with transitive

closure. TVLA can verify very complex programs such as a Deutsch-Schorr-Waite

garbage collector [27]. In contrast to TVLA, our technique infers useful heap invari-

ants completely automatically, but it can fail for very complex programs. [TO DO:
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Elaborate]

4.3 Target Language

We consider a tiny dynamically-typed programming language with dictionaries (key-

value mappings) as the sole type of recursive data structure. Our target language

is designed to serve as an intermediate language for analysis; programs written in

languages such as Python or Java can be translated down to it. Dictionaries can be

used straight-forwardly to emulate other data structures such as structs/classes

in languages such as C++ and Java (using the field names or their numeric offsets

as keys to the dictionary) and arrays. In addition, our target language allows every

dictionary to be tagged with a class name when it is allocated.

Figure 4.1 shows the domain of the concrete semantics. A value can be an

integer, a string, the special value nil, or a dict-addr (the address of a dictionary in

memory). We assume an arbitrary but fixed total ordering on values, and we write

v1 < v2 to denote that value v1 is prior to value v2 in this total ordering. The state

of a program is described by a triple consisting of: (1) the environment env , which

maps each program variable to a value, (2) the heap, which maps each key of each

dictionary to a value, and (3) a mapping of each dict-addr to its associated class

name.

The syntax for our target language is given in Figure 4.2. We write d[k] to

denote the value that key k is mapped to in dictionary d. To represent that a key

is absent from a dictionary, it is mapped to the special value nil. To simplify later

analysis, we require that each dictionary write to d[k] be immediately preceded by

a dictionary read from d[k]. The builtin functions in the target language are as

follows:

value ::= integer-const | string-const | nil | dict-addr

env ::= prog-var → value

heap ::= dict-addr × value︸ ︷︷ ︸
key

→ value

classes ::= dict-addr → string-const

state ::= env × heap × classes

Figure 4.1: Concrete Semantic Domain
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prog-var ::= Variable in the program

exprobj ::= prog-var | integer-const | string-const | nil

expr bool ::= (exprobj = exprobj ) | (exprobj ≤ exprobj )

stmt ::= simple-stmt | compound-stmt

simple-stmt ::= prog-var := exprobj
| prog-var := prog-var[exprobj] /* Dict Read */
| prog-var[exprobj] := prog-var /* Dict Write */
| prog-var := builtin-func(...)
| assume(expr bool)

| assert(expr bool)

compound-stmt ::= stmt ; stmt
| if expr bool then stmt else stmt
| while expr bool do stmt

Figure 4.2: Syntax of Target Language

• first key(d): Returns the least key in dict d, or nil if d is empty.

(“Least” is determined by the above-mentioned total ordering on values.)

• next key(d, prev): Returns the least key k in d such that prev < k, or nil if

no such k exists.

• new dict(class): Allocates a dict; class must be a string constant and must

not be “int”, “str”, “nil”, or “unalloc”.

• free(d): Deallocates dictionary d.

• read int() and read str(): Source of non-determinism.

At the start of the program, all variables are initialized to nil.

4.4 Overview of Analysis

In our analysis, the annotated pre-/post-conditions are formulas in a fragment of

first-order logic augmented with transitive closure. Such a formula can be viewed as

representing the set of programs states that satisfy the formula. For example, the

formula a= 42 represents the set of all states in which the value of variable a is 42.

In a formula, we write “lookup(d, k)” to denote the value associated with key k

in dictionary d. We may abbreviate “lookup(d, k)” by “d[k]”. For example, the
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1. function Analyze(c) {

2. if c is the top-level statement in the program:

3. precond(c) :=
∧
v∈prog-var v = nil

4. if c has the form “c1;c2”:

5. precond(c1) := precond(c)

6. Analyze(c1)

7. precond(c2) := postcond(c1)

8. Analyze(c2)

9. postcond(c) := postcond(c2)

10. if c has the form “if e then c1 else c2”:

11. precond(c1) := precond(c) ∧ e
12. Analyze(c1)

13. precond(c2) := precond(c) ∧ ¬e
14. Analyze(c2)

15. postcond(c) := α(postcond(c1) ∨ postcond(c2))

16. if c has the form “while e do c1”:

17. Repeat until fixed point:

18. precond(c1) := precond(c) ∧ e
19. Analyze(c1)

20. precond(c) := α(precond(c) ∨ postcond(c1))

21. postcond(c) := precond(c) ∧ ¬e

22. if c has the form of a simple-stmt :

23. postcond(c) := α(JcK(precond(c)))

24. }

Figure 4.3: Top-Level Algorithm
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formula ∀u1. d1[u1] = d2[u1] represents the set of all states in which d1 has the

same key-value mapping as d2. We write “class(x)” to denote the class of x. If x is

an integer, string, or nil, then class(x) is “int”, “str”, or “nil”, respectively.

Figure 4.3 shows the top-level algorithm for our analysis; the following notation

is used:

• precond(c) and postcond(c) denote the annotated precondition and postcondi-

tion of statement c.

• JcK(Φ) denotes the strongest postcondition of statement c for a given precon-

dition Φ, provided that c that has the form of a simple-stmt (as defined in

Figure 4.2). A full definition of JcK is found in Figure 4.4.

• α is an abstraction function. Given a formula Φ, α(Φ) is an overapproximation

of Φ (i.e., the set of states represented by α(Φ) is a superset of the set of states

represented by Φ). We say that α(Φ) is a sound approximation of Φ because

if Φ is satisfied by an error state σ then α(Φ) is also satisified by the same

error state σ. The range of the function α is a finite set of formulas that we

will denote ŝt-fmla. (This finiteness, together with certain other conditions,

ensures termination of the Analyze algorithm.)

4.5 Abstraction Function

There are two parameters in our abstraction method, q and m, described below.

We define ŝt-fmla to be the set of formulas that comply with the grammar for ŝt-fmla

(defined in Figure 4.5) and meet the following conditions:

1. The formula is in prenex form with a prefix of q universal quantifiers:

∀u1...∀uq. φ where φ is quantifier-free.

2. The syntactic nesting depth of lookup is limited to a maximum depth m (e.g.,

if m = 2, the term d[k1][k2] is valid but d[k1][k2][k3] is not, where d, k1,

k2, and k3 are program variables).

3. The only constants allowed are those that occur in the program text.

4. Restrictions on the reach+ predicate described in Section 4.6.1.

In Figure 4.4, we give a formal semantics of the non-compound statements in our

target language. In defining the semantics, we need to refer to the values that the

program variables had before executing the statement and their values after. To refer

to the prior values, we write a subscript “pre”. For example, given the precondition
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Notation: We write t[x−>e] to denote the result of substituting e for x in t.
In the below rules, any variable subscripted “pre” is to be understood as a fresh
variable that is implicitly existentially quantified at the outermost scope.

1. Jv := eK(Φ) =
(
Φ[v−>vpre] ∧ v= e[v−>vpre]

)
where e is a program variable or a constant expression. Note that the right-
hand side comes from the Floyd assignment axiom [12].

Example: Ja := 42K(a= 5 ∧ b= a) = ∃apre. (apre = 5 ∧ b= apre ∧ a= 42)

2. Jassume(e)K(Φ) = Φ ∧ e

3. Jverify(e)K(Φ) = Φ ∧ e
Our static analyzer raises an alarm if it cannot ascertain that Φ⇒ e.

4. Jd := new dict(c)K(Φ) =
(
Φ[class−>classpre, d−>dpre] ∧

classpre(d) = "unalloc" ∧ class(d) = c ∧∧
t∈terms(Φ[d−>dpre])(t 6=d ⇒ class(t) = classpre(t)) ∧ ∀u1. d[u1]= nil

)
5. Jd := free(d)K(Φ) =

(
Φ[class−>classpre] ∧ class(d) = "unalloc" ∧∧

t∈terms(Φ[d−>dpre])(t 6=d ⇒ class(t) = classpre(t))
)

6. Jv := d[k]K(Φ) =
(
Φ[v−>vpre] ∧ v= (d[k])[v−>vpre]

)
7. Jd[k] := eK(Φ) =

(
Φ[lookup−>lookuppre] ∧ (d[k] = e)∧∧

d′[k′]pre∈terms(Φ[lookup−>lookuppre])(d
′ 6=d ∨ k′ 6=k)⇒ (d′[k′] = d′[k′]pre)

)
where d′[k′]pre abbreviates lookuppre(d

′, k′).

8. Jv := first key(d)K(Φ) =
(
Φ[v−>vpre]∧(

(v= nil ∧ ∀u1. d
′[u1]= nil) ∨

(v 6= nil ∧ d′[v] 6= nil ∧ ∀u1. d
′[u1] 6= nil ⇒ v≤u1)

))
where d′ denotes d[v−>vpre].

9. Jv := next key(d, p)K(Φ) =
(
Φ[v−>vpre]∧(

(v= nil ∧ ∀u1. p
′<u1 ⇒ d′[u1]= nil) ∨

(v 6= nil ∧ d′[v] 6= nil ∧ ∀u1. (p′<u1 ∧ d′[u1] 6= nil) ⇒ v≤u1)
))

where d′ denotes d[v−>vpre] and p′ denotes p[v−>vpre].

Figure 4.4: Semantics for Non-Compound Statements
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term ::= integer-const | string-const | nil

| prog-var | ui
| lookup(term︸︷︷︸

dict

, term︸︷︷︸
key

)

ap ::= term = term
| term ≤ term
| class(term) = string-const
| reach+(term︸︷︷︸

dest

, term︸︷︷︸
origin

, set of terms︸ ︷︷ ︸
stop-points

, set of string-const pairs︸ ︷︷ ︸
edges

)

ŝt-fmla ::= true | false | ap | ¬ŝt-fmla

| ŝt-fmla ∧ ŝt-fmla | ŝt-fmla ∨ ŝt-fmla

| ∀ui . ŝt-fmla

Figure 4.5: Atomic Propositions and State Formulas

a=5 ∧ b=a and the assignment statement a := 42, we may compute a strongest

postcondition ∃apre. apre = 5 ∧ b= apre ∧ a= 42. Note that the symbols subscripted

with “pre” are not allowed in the abstract domain ŝt-fmla (because don’t comply

with the grammar in Figure 4.5). Accordingly, we define an abstraction function α

that eliminates the existentially quantified “pre” symbols while preserving soundness.

For the above example, the abstraction function might yield a postcondition such as

b= 5 ∧ a= 42. The requirements on the abstraction function α are:

1. α(Φ) must represent a superset of the states represented by Φ, in order to

ensure soundness, and

2. α(Φ) must be in ŝt-fmla (the abstract domain).

Additionally, we would like α to possess two additional properties:

1. α(Φ) should be a reasonably precise overapproximation of Φ. (E.g., an ab-

straction function λΦ.true, which always yields true regardless of the input

formula Φ, meets the two requirements, but it is terribly imprecise!)

2. α should produce reasonably small formulas, so that the analysis uses a rea-

sonable amount of time and memory.

Note that in Figure 4.3 and in the definition of the semantics in Figure 4.4, α is only

applied to formulas that are in (or can easily be re-written in) the form ∀u1...∀uq. φ
where φ has no quantifiers (but may contain terms with the “pre” subscript). So,

we only need to define α on formulas of this form.

At a high level, we compute the abstraction α(∀~u.φ) as illustrated in Figure 4.6:

1. Universal Instantiation. We instantiate clauses implied by ∀~u.φ that contain
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universally quantified variables. If such a clause C contains a term d[ui] and

a term d[k] occurs in φ, we instantiate clause C with k substituted for ui.

2. Reachability Predicate. This is discussed in detail in Section 4.6.

3. Rewriting. We rewrite the formula to avoid unnecessary references to “pre”

terms. The rewritten formula must be logically equivalent to original formula

under the theory of equality, uninterpreted functions, and total order. E.g., we

may rewrite apre=5 ∧ b=apre as apre=5 ∧ b=5. The purpose of this step is to

prepare for the next step, wherein we treat atomic propositions as independent

boolean variables. Currently, we convert the formula to disjunctive normal

form (DNF) and process each cube separately, but this does not scale up to

even moderate-size programs. We are now investigating a method based on

combining techniques employed by Binary Decision Diagrams (BDDs) [7] with

the closed-QBF techniques discussed in Chapters 1 and 2 of this thesis proposal.

We expect that this investigation will yield good experimental results.

4. Existential Elimination. In this step, we treat all atomic propositions as

boolean variables. The atomic propositions that contain a subscripted “pre” are

treated as existentially quantified boolean variables. All other atomic proposi-

tions are treated as free (unquantified) boolean variables. This yields a formula

in QBF with free variables: The goal is find a formula that is logically equiv-

alent but doesn’t contain any existentially quantified boolean variables. This

step can be handled by existing BDD tools. Alternatively, our investigation of

a way of combining BDD techniques with closed-QBF techniques may produce

an efficient algorithm for this step.

function α(Φ) {

Φ := univ instantiation(Φ);
Φ := update reach(Φ);
Φ := rewrite modulo theory(Φ);
Φ := existential elim(Φ);
return Φ;

}

Figure 4.6: Abstraction Function
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4.6 Reachability Predicate

The reachability predicate reach+(dest , orig , stop, edges) is used to summarize por-

tions of the heap memory that are not represented concretely. The purpose of the

third argument (stop) may not be immediately intuitive, so in order to motivate the

need for it, let us first consider a simpler, coarser-grained predicate reach c. Given

two terms orig and dest , we define reach c(dest , orig) to be true iff dest can be

reached from orig via a series of dictionary lookups. Formally, reach c is recursively

defined by:

reach c(dest , orig) = (orig = dest) ∨ ∃k. reach c(dest , orig[k])

Consider a program that creates a circularly-linked list of strings and then processes

each list node, counting the number of occurrences of each word in the strings.

Figure 4.7 shows the heap memory for such a program. Figure 4.7(a) illustrates

the heap before processing any nodes, and Figure 4.7(b) illustrates the heap after

"next": "next": "next":"next":

"doc": "ciao""doc": "next week" "doc": "hello" "doc": "world"

"next":

"doc": "ciao"

"next":"next":

"doc": "hello" "doc": "world"

"wc":

"hello": 1

"next":

"doc": "next week"

"wc":

"next": 1

"week": 1

cur_nodehead

(b)

(a)

class: "list" class: "list" class: "list" class: "list"

class: "list"class: "list"

class: "wordcount"

class: "list"class: "list"

class: "wordcount"

Figure 4.7: Heap memory for Word Count program: (a) before processing any nodes,
and (b) after processing the first two nodes.
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processing the first half of the list.

First let us consider the heap memory illustrated in Figure 4.7(a). We can express

the following property using the reach c predicate: “For every object u1 that is

reachable from head, if u1 has class list, then u1["doc"] is a string and u1["next"]

is a list object”. Formally:

∀u1. (reach c(u1, head) ∧ class(u1)="list") ⇒
(

(class(u1["doc"]) = "str") ∧
(class(u1["next"]) = "list")

)
Now let us consider the heap memory illustrated in Figure 4.7(b). It consists of

(1) a list segment in which each node has a wc field of class wordcount, followed

by (2) a list segment in which each node lacks a wc field. We want to summarize

the heap memory in such a way that retains this information. If we were to use

the simple reach c predicate to describe what is reachable from the head of the list

in Figure 4.7(b), we would lose precision because it fails to distinguish between the

processed and unprocessed segments of the list.

We would like a predicate that identifies the set of nodes between the head of

the list and the first unprocessed node. To do this, we include a set of stop-points as

an argument to the reach+ predicate. Informally, reach+(dest , orig , stop, edges) is

true iff dest can be reached from orig via edges without passing through any stop-

points. The edges parameter is a set of (class , key) pairs. For example, edges =

{("list", "next")} corresponds to reachability by following the next field of list

objects. A star (“*”) in place of a class/key indicates that any class/key may be

followed. Formally, we define two reachability predicates as follows:

reach1(dest , orig , stop, edges) =

∃c.∃k. orig[k]= dest ∧ dest 6∈ stop ∧ class(orig) = c ∧
((c, k) ∈ edges ∨ (c, "*") ∈ edges ∨ ("*", "*") ∈ edges)

reach+(dest , orig , stop, edges) = reach1(dest , orig , stop, edges) ∨
∃x. (reach1(x , orig , stop, edges) ∧ reach+(dest , x , stop, edges))

So, for example, we can use the reach+ predicate to describe the following property

of the heap memory state in Figure 4.7(b): “Every list object between head and

cur node has a field wc of class wordcount, and every list object between cur node
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and head lacks a wc field (i.e., the wc key is mapped to nil)”. Formally:

∀u1.
(
(reach(u1, head, stop, edges) ∧ class(u1)="list") ⇒

class(u1["wc"]) = "wordcount"
)
∧(

(reach(u1, cur node, stop, edges) ∧ class(u1)="list") ⇒
u1["wc"] = nil

)
where edges = {("list", "next")} and stop = {cur node, head}.

4.6.1 Restrictions on Reachability Predicates in ŝt-fmla

An atomic proposition reach+(dest , orig , stop, edges) may appear in a formula in

ŝt-fmla only if:

• dest is a universal variable (u1, ..., uq).

• orig is a program variable.

• stop is the set of all program variables.

4.6.2 Updating the Reachability Predicate

In ŝt-fmla, the stop argument of the reach+ predicate is required to be exactly the

set of program variables. Let V denote this set. Note that the semantic definitions

in Figure 4.4 can produce reach+ predicates with different stop arguments. For

example, given a precondition Φ ∈ ŝt-fmla and an assignment statement v := e, the

corresponding postcondition Jv := eK(Φ) would contain the subformula Φ[v−>vpre].

So if a reach+ predicate appears in Φ[v−>vpre], then its stop argument would include

vpre rather than v.

To recap, we have a formula Ψ that contains a reach+ predicate whose stop

argument is V [v−>vpre], but we want a logically equivalent formula that contains

only reach+ predicates whose stop argument is V . To accomplish this, we use

Equation 4.1 (illustrated in Figure 4.8), which defines one reach+ predicate in terms

of another. In particular, we conjoin Ψ with two instantiations of Equation 4.1

below (one with s substituted with v, and one with s substituted with vpre) and then
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existentially quantify out all undesired reach+ predicates:

reach+(dest , orig , stop0, edges) = (4.1)

reach+(dest , orig , stop0 ∪ {s}, edges) ∨
(∃x. reach∗(x, orig , stop0 ∪ {s}, edges) ∧

reach1(s, x, stop0, edges) ∧
reach∗(dest , s, stop0 ∪ {s}, edges))

where stop0 is V \ {v} and reach∗(dest , orig , stop, edges) is defined as the formula

reach+(dest , orig , stop, edges) ∨ (dest = orig). Equation 4.1 deserves some explana-

tion. By elementary graph theory, if dest is reachable from orig , then it is reachable

via a loop-free path. So without loss of generality, consider a loop-free path from

orig to dest . Such a path has either 0 occurrences of s (corresponding to the first

disjunct in the RHS of Equation 4.1) or exactly 1 occurrence (corresponding to the

second disjunct). In the case where there is 1 occurrence, there exists a predecessor

of s (let’s call it “x”) that is reachable from orig without passing through s, and

dest is reachable from s, as illustrated in Figure 4.8.

reach+

orig dest

reach*

reach1

reach*
x s

Figure 4.8: Illustration for Equation 4.1
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4.7 Future Work

There is a working implementation of the analysis described in this chapter, but it is

too slow and consumes too much memory for programs of any appreciable size. We

are working on a more efficient way of computing the result of a suitable abstraction

function, as discussed in Section 4.5. By combining recently-developed techniques for

solving closed-QBF problems with techniques used for BDDs, we aim to implement

an abstraction function capable of handling industrial-size programs.

Additionally, it is desired to augment the target language with syntactic con-

structs for defining functions and to extend the analyzer to efficiently handle such

functions. The main work needed is a technique for function summarization such

as that used in [22]. This would allow the analyzer to avoid needlessly re-analyzing

the body of a function when it is called in contexts that differ only in immaterial

aspects.
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Chapter 5

Proposed Work and Timeline

To finish my thesis work, I will complete at least one of the following tasks:

1. Invariant Inference for Heap Data Structures. Design and implement a

more efficient algorithm for the abstraction function α. The implementation

should be able automatically to infer invariants and verify assertions for pro-

grams with heap data structures. The analyzer provides a general interface:

the user can write specifications using asserts in the target language. (Speci-

fications that are quantified over elements of a collection can be expressed by

writing an assert inside a loop.) The analyzer will be tested on various bench-

marks used in Separation Logic and other example programs that manipulate

heap data structures. Some of the examples that we expect the analyzer to be

able to handle include:

(a) verifying the correctness of the insert, find, and remove operations for

AVL binary search trees (without verifying balancedness),

(b) verifying that reversing a singly-linked list twice yields the original list,

(c) verifying that an adjacency-list representation of an undirected graph re-

mains self-consistent — i.e., verifying, for all pairs of nodes (n1, n2), that

n1 is in the adjacency list of n2 iff n2 is in the adjacency list of n1,

(d) inferring the invariants maintained by an implementation of the two-

watched-literals scheme for SAT solvers,

(e) inferring the shape of nested data structures such as double-linked lists of

DAGs of trees.

2. Integrating CEGAR with DPLL techniques for QBF. Design and im-

plement a technique that tightly integrates CEGAR learning with DPLL tech-
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niques. The resulting solver should significantly outperform both the existing

GhostQ and RAReQS solvers on certain families of benchmarks, and it should

perform at least as well (modulo a small overhead cost) as the existing version

of RAReQS on the remaining benchmark families.

Timeline

In December through January or February, I will work on invariant inference for

programs with heap data structures. Then I will discuss the progress of my work

with the thesis committee. If there are good experimental results, then I will finish

writing my thesis and defend as soon as the thesis committee believes is appropriate.

If, on the other hand, the experimental results are poor, then I will instead focus on

integrating CEGAR learning with DPLL techniques for the remaining part of my

thesis work.

Improved Algorithm for Abstraction Function α

A principal component of the abstraction function requires solving a quantified

boolean formula with free variables (i.e., variables not bound by quantifiers). The

problem of QBF with free variables can, of course, be solved using BDDs. However,

as part of my thesis work, I am interested in investigating whether it might be advan-

tageous for a solver to combine BDD techniques with recently developed closed-QBF

techniques. The reason that I believe it may be advantageous is as follows. For

some formulas, the set of satisfying assignments can be expressed compactly as a

BDD and can be found quickly with BDD tools. Yet for other formulas, the set of

satisfying assignments can be expressed compactly in DNF or CNF and can be found

quickly with SAT/QBF-based techniques. Accordingly, a technique that combines

BDD techniques with SAT/QBF techniques may potentially perform better than

either a pure BDD or a pure SAT/QBF approach.

Consider a QBF formula Φin. The existing version of my solver GhostQ only

considers closed QBF instances (i.e., instances without free variables). It learns

sequents of the form 〈Lnow, Lfut〉 |= (Φ ⇔ true) and 〈Lnow, Lfut〉 |= (Φ ⇔ false),

where Φ is a subformula of Φin. To handle free variables, my proposed solver will allow

sequents of the more general form 〈Lnow, Lfut〉 |= (Φ ⇔ ψ) where Φ is a quantified

boolean formula and ψ is a propositional formula represented as an unordered BDD.

The proposed solver will use the (Q)DPLL algorithm with several modifications.
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Free variables are considered upstream of all quantified variables, so all free variables

must be assigned before a quantified variable may be chosen as a decision variable.

(However, quantified variables may be forced even if not all free variables have been

assigned.) During learning, resolution is performed as usual if the resolvent is a

quantified variable. If the resolvent r is a free variable, then we derive a new sequent

from the two existing sequents as follows:

〈{x1, ..., xn, r}, Lfut
1 〉 |= (Φin ⇔ ψ1)

〈{y1, ..., yn, ¬r}, Lfut
2 〉 |= (Φin ⇔ ψ2)

〈{x1, ..., xn, y1, ..., yn}, Lfut
1 ∪ Lfut

2 〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

where (r ? ψ1 : ψ2) denotes the unordered BDD with root node v such that var(v) =

r, high(v) = ψ1, and low(v) = ψ2 (except if ψ1 = ψ2, in which case the BDD must

be reduced). The above-derived sequent is used in Unit Propagation in a manner

similar to sequents learned for a closed QBF. If the literals in {x1, ..., xn, y1, ..., yn}
are assigned true under the current assignment, then the sequent is conflicting. If all

but one of the literals are true, then the sequent forces the remaining literal false.

A second sequent can also be derived:

〈{x1, ..., xn, y1, ..., yn}, Lfut
1 ∪ Lfut

2 〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

〈∅, Lfut
1 ∪ Lfut

2 〉 |= (Φin|{x1, ..., xn, y1, ..., yn} ⇔ (r ? ψ1 : ψ2))

Sequents of this type are not useful in Unit Propagation; however, they can be

utilized in manner similar to a BDD operation cache. In particular, whenever a new

literal is added to the current assignment πcur, the solver performs a lookup to see

if it has already learned a sequent of the form 〈∅, Lfut〉 |= (ΦSEQ ⇔ ψ), where ΦSEQ

is equal to Φin|πcur and no literal in Lfut is falsified by πcur. If such a sequent is

found, then the solver derives 〈πcur, L
fut〉 |= (Φin ⇔ ψ), which immediately becomes

conflicting. Note that if the solver is made to always assign variables in a fixed

order (which requires turning off Unit Propagation), then it builds an ordered BDD

representation.
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Integrating CEGAR with DPLL

A major advance in the field of SAT solvers was the introduction of conflict analy-

sis and non-chronological backtracking [37]. Existing DPLL-based QBF solvers also

incorporate non-chronological backtracking; a single backtrack can undo the assign-

ments of variables in multiple quantifier blocks. However, the existing version of

RAReQS can only backtrack a single quantifier block at a time. This leads to the

algorithm being exponential in the number of quantifier alternations, even for simple

problems that are trivial for DPLL-based solvers. For example, the QBF formula

∀un ∃en−1 ...∀u2 ∃e1. (e1 ∨ u2) ∧ (¬e1 ∨ ¬u2)

could not be solved by RAReQS for n = 40 (without preprocessing1, and given a

timeout of 60 seconds), despite it being trivial for DPLL-based solvers. We plan to

address this issue by extending the CEGAR approach to incorporate conflict analysis

when a counterexample is found. At the expense of additional book-keeping, this

will allow the solver to non-chronologically backtrack over irrelevant quantifier blocks,

greatly improving performance in certain cases.

1RAReQS expects its input to be preprocessed with bloqqer [5], so the use of an unprepro-
cessed formula is a bit artificial, but it nonetheless serves to illustrate how the inability to non-
chronologically backtrack can be harmful.
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