Myhill-Nerode Handout

Definition. An equivalence relation E on strings is right invariant iff concatenating a
string w onto two equivalent strings u and v produces two strings (vw and vw) that are also
equivalent; i.e., for all strings u, v, and w, we have v Fv = uww EFovw.

Theorem 1. A language L is accepted by a DFA iff L is the union of some equivalence
classes of a right-invariant equivalence relation of finite index.

Proof, Part A. Suppose that a lan-
guage L is accepted by a DFA M = A
(S,%,6,s0, F). Define an equivalence
relation F so that two strings u and w \
are equivalent iff the DFA (starting in
state sg) would transition to the same %o
state by reading either u or w, i.e.,
uFEv iff 3(30,u) :5(30,1)) v

Let “EC(s;)” denote the equivalence class {w | 8(sg,w) = s;} (i.e., the set of strings that
transition the DFA to state s;). It is easy to verify that all members of EC(s;) are indeed
equivalent to each other. FE is of finite index, because the set of equivalence classes is
{EC(s;) | si € S}, which is finite. Since a string w is in language L iff w transitions the
DFA to an accepting state, L is the union of the equivalence classes for accepting states:
L = U,cr EC(t). Now we need to show that £ is right-invariant. This is simple; if u £ v,
then, as illustrated in the diagram,

~ A A ~ ~

6(so,uw) = 6(0(sp,u),w) = 0(6(s0,v),w) = &(s0, vw)

Proof, Part B. Let us write “{w]” to denote the equivalence class to which w belongs.
Consider a right-invariant equivalence relation £ (on X*, for a given X)) of finite index. Let
S be the (finite) set of equivalence classes. Suppose there is a subset F' of these equivalence
classes whose union is L. Define a DFA M = (S, %, 0, so, F'), where the start state s is [€]
and the transition function is §([u], ) = [ua].

Note that the transition function is well-defined; if u and v are in the same equivalence class,
then [ua] = [va] because E is right-invariant.

To show that the DFA M recognizes L, we will show inductively that reading a string w
puts the DFA into the state [w]; i.e., we will show that §(sg, w) = [w].

e Base Case: If w = ¢, then d(so, €) = so = [e].

e Recursive Case: If w = wa, where « is a single symbol of the alphabet ¥, then

A A

d(s0, ucx) = 6((so,u), ) = d([u], ) = [ual.
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Theorem 2. Let L be a regular language, and let the equivalence relation R be defined by

uRv iff, for all z € £*, (uz € L) < (vz € L)

Then R is of finite index and the DFA constructed by the method of Theorem 1 using R is
minimal.

Proof that R is of finite index. Let E be an equivalence relation satisfying Theorem 1.
Then R must either equal E or be a consolidation of E; i.e., each equivalence class of R
must either be an equivalence class of E or be formed by consolidating several equivalence
classes of E into a single equivalence class. (Proof: Suppose, to the contrary, that there are
two strings v and v that are equivalent under E but not under R. Then there must exist
a string z such that (uz € L) # (vz € L). But since u and v are equivalent under E, then
uz and vz must also be equivalent under £ (because F is right-invariant), even though only
one of them is in L, so F would not satisfy the requirements of Theorem 1.) Since E has
finite index, then a fortior: so does R.

Example. Consider the following DFA:

What is the equivalence relation E constructed by the method of Theorem 1 Part 17

What is the equivalence relation R defined by Theorem 2 for the language recognized by this
DFA?
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