
Myhill-Nerode Handout

Definition. An equivalence relation E on strings is right invariant iff concatenating a
string w onto two equivalent strings u and v produces two strings (uw and vw) that are also
equivalent; i.e., for all strings u, v, and w, we have uE v ⇒ uwE vw.

Theorem 1. A language L is accepted by a DFA iff L is the union of some equivalence
classes of a right-invariant equivalence relation of finite index.

Proof, Part A. Suppose that a lan-
guage L is accepted by a DFA M =
〈S,Σ, δ, s0, F 〉. Define an equivalence
relation E so that two strings u and w
are equivalent iff the DFA (starting in
state s0) would transition to the same
state by reading either u or w, i.e.,

uE v iff δ̂(s0, u) = δ̂(s0, v)

Let “EC (si)” denote the equivalence class {w | δ̂(s0, w) = si} (i.e., the set of strings that
transition the DFA to state si). It is easy to verify that all members of EC (si) are indeed
equivalent to each other. E is of finite index, because the set of equivalence classes is
{EC (si) | si ∈ S}, which is finite. Since a string w is in language L iff w transitions the
DFA to an accepting state, L is the union of the equivalence classes for accepting states:
L =

⋃
t∈F EC (t). Now we need to show that E is right-invariant. This is simple; if uE v,

then, as illustrated in the diagram,

δ̂(s0, uw) = δ̂(δ̂(s0, u), w) = δ̂(δ̂(s0, v), w) = δ̂(s0, vw)

Proof, Part B. Let us write “[w]” to denote the equivalence class to which w belongs.
Consider a right-invariant equivalence relation E (on Σ∗, for a given Σ) of finite index. Let
S be the (finite) set of equivalence classes. Suppose there is a subset F of these equivalence
classes whose union is L. Define a DFA M = 〈S,Σ, δ, s0, F 〉, where the start state s0 is [ε]
and the transition function is δ([u], α) = [uα].

Note that the transition function is well-defined; if u and v are in the same equivalence class,
then [uα] = [vα] because E is right-invariant.

To show that the DFA M recognizes L, we will show inductively that reading a string w
puts the DFA into the state [w]; i.e., we will show that δ̂(s0, w) = [w].

• Base Case: If w = ε, then δ̂(s0, ε) = s0 = [ε].

• Recursive Case: If w = uα, where α is a single symbol of the alphabet Σ, then

δ̂(s0, uα) = δ(δ̂(s0, u), α) = δ([u], α) = [uα].
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Theorem 2. Let L be a regular language, and let the equivalence relation R be defined by

uR v iff, for all z ∈ Σ∗, (uz ∈ L)⇔ (vz ∈ L)

Then R is of finite index and the DFA constructed by the method of Theorem 1 using R is
minimal.

Proof that R is of finite index. Let E be an equivalence relation satisfying Theorem 1.
Then R must either equal E or be a consolidation of E; i.e., each equivalence class of R
must either be an equivalence class of E or be formed by consolidating several equivalence
classes of E into a single equivalence class. (Proof: Suppose, to the contrary, that there are
two strings u and v that are equivalent under E but not under R. Then there must exist
a string z such that (uz ∈ L) 6= (vz ∈ L). But since u and v are equivalent under E, then
uz and vz must also be equivalent under E (because E is right-invariant), even though only
one of them is in L, so E would not satisfy the requirements of Theorem 1.) Since E has
finite index, then a fortiori so does R.

Example. Consider the following DFA:

What is the equivalence relation E constructed by the method of Theorem 1 Part 1?

What is the equivalence relation R defined by Theorem 2 for the language recognized by this
DFA?
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