

Moreover, they can be manipulated very efficiently.

SURJOBEIG UOISIPӘQ ヘIBUI耳
Each nonterminal vertex v is labeled by a variable $\operatorname{var}(v)$ and has two successors:

- $\operatorname{low}(v)$ corresponding to the case where the variable v is assigned 0 , and
- $h i g h(v)$ corresponding to the case where the variable v is assigned 1 .
Each terminal vertex v is labeled by $\operatorname{value}(v)$ which is either 0 or 1 .
nonterminal vertices.
To motivate our discussion of binary decision diagrams, we first consider binary decision trees.

\downarrow

However, there is usually a lot of redundancy in such trees.
Binary decision trees do not provide a very concise representation for boolean functions.

SUBEIOB!G UO!S!つəオ К.IBU!g

- terminals are mapped to terminals and nonterminals are mapped to nonterminals,
- for every terminal vertex $v, \operatorname{value}(v)=\operatorname{value}(h(v))$, and
- for every nonterminal vertex v :
$\quad-\operatorname{var}(v)=\operatorname{var}(h(v))$,
$\quad-h(\operatorname{low}(v))=\operatorname{low}(h(v))$, and
$\quad-h(\operatorname{high}(v))=\operatorname{high}(h(v))$.

$$
\text { Canonical Form Property (Cont.) }
$$

Two binary decision diagrams are isomorphic if there exists a bijection h betw
that

- First, the variables should appear in the same order along each path from the root to a terminal.
- Second, there should be no isomorphic subtrees or redundant vertices in the diagram.
restrictions on binary decision diagrams:

The second requirement is achieved by repeatedly applying three transformation rules that do not
alter the function represented by the diagram:

The canonical form may be obtained by applying the transformation rules until the size of the
diagram can no longer be reduced.

Heuristics have been developed for finding a good variable ordering when such an ordering exists.
The intuition for these heuristics comes from the observation that OBDDs tend to be small when
related variables are close together in the ordering.
The variables appearing in a subcircuit are related in that they determine the subcircuit's output.
Hence, these variables should usually be grouped together in the ordering.
This may be accomplished by placing the variables in the order in which they are encountered
during a depth-first traversal of the circuit diagram.

When this technique is used, the OBDD package internally reorders the variables periodically to
reduce the total number of vertices in use.
applies.

For any vertex v which has a pointer to a vertex w such that $\operatorname{var}(w)=x_{i}$, we replace the pointer by
$\operatorname{low}(w)$ if b is 0 and by $\operatorname{high}(w)$ if b is 1 .
When the graph is not in canonical form, we apply Reduce to obtain the OBDD for $\left.f\right|_{x_{i} \leftarrow b}$. 'СФЯО әч丬 јо [еs.əәлед
 This function is denoted by $\left.f\right|_{x_{i} \leftarrow b}$ and satisfies the identity

$$
\left.f\right|_{x_{i} \leftarrow b}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1},\right.
$$

[^0]We begin with the function that restricts some argument x_{i} of the boolean function f to a constant

To simplify the explanation of the algorithm we introduce the following notation:

- v and v^{\prime} are the roots of the OBDDs for f and f^{\prime}.
- $x=\operatorname{var}(v)$ and $x^{\prime}=\operatorname{var}\left(v^{\prime}\right)$.
Let \star be an arbitrary two argument logical operation, and let f and f^{\prime} be two boolean functions.

The DFA provides a canonical form for the original boolean function.
An n-argument boolean function can be identified with the set of strings in $\{0,1\}^{n}$ that evaluate to
1.
This is a finite language. Finite languages are regular. Hence, there is a minimal DFA that accepts
the language.

[^0]: value b

