15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

WWwW.cCcs.cmu.edu/~emc/flac09

INSTRUCTORS

Yi Wu

Grading

Exams: 50%

- Final Exam: 25%

- Midterm Exam: 25%
Homework: 45%
Class Participation: 5%
Attendance is required.

HOMEWORK

Homework will be assigned every Thursday
and will be due one week later at the
beginning of class

You must list your collaborators and all
references in every homework assignment.

Readings will be posted on the course website.
For next class: Read Chapters 0 and 1.1

www.cs.cmu.edu/~emc/flac09

;...,.. 15-453 Formal Languages, Automata, and Computation - Main Page - Mozilla F =8 X/

File Edit Wiew History Bookmarks Tools Help

g - - _@rL a L] http:jfwww.cs.cmu.eduj~emc/flac0t | = | [= __DT

15-453: Formal Languages, Automata, and Computation (FLAC)

Spring 2009 Semester

Computer Science Department

15-453 Formal
Languages, Automata,
and Computation Announcements

® Mon Jan 12, 2009: Welcome to FLAC!

SRS Course Description. This course provides an introduction to formal
languages, automata, computability, and complexity. The course
consists of a traditional lecture component supported by weekly

homework assignments. There is one midterm exam and a final exam.

Topics (tentative):

® Automata and Languages: finite automata, regular languages, =

Grading Reading
http:/fiwww.cs.cmu.edu/~emc/flac09/assignandsolns.html

This class is about mathematical
models of computation

WHY SHOULD I CARE?

WAYS OF THINKING

THEORY CAN DRIVE PRACTICE

Mathematical models of computation
predated computers as we know them

THIS STUFF IS USEFUL

Course Outline

PART 1

Automata and Languages

PART 2
Computability Theory

PART 3
Complexity and Applications

Course Outline

PART 1

Automata and Languages:

finite automata, regular languages, pushdown automata, context-free
languages, pumping lemmas.

PART 2

Computability Theory:
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications:

time complexity, classes P and NP, NP-completeness, space complexity
PPACE, PSPACE-completeness, the polynomial hierarchy, randomized
complexity, classes RP and BPP.

Mathematical Models of Computation
(predated computers as we know them)

PART 1
Automata and Languages: (1940’s)

finite automata, regular languages, pushdown automata, context-free
languages, pumping lemmas.

Computability Theory: (1930°s-40’s)
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications: (1960’s-70’s)
time complexity, classes P and NP, NP-completeness, space complexity

PPACE, PSPACE-completeness, the polynomial hierarchy, randomized
complexity, classes RP and BPP.

This class will emphasize PROOFS

A good proof should be:
Easy to understand

Correct

Suppose A c {1, 2, ..., 2n} with |A| = n+1

TRUE or FALSE: There are always two
numbers in A such that one divides the
other

TRUE

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes
then at least one hole will have
more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes
then at least one hole will have
more than one pigeon

LEVEL 1

HINT 1:

THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes
then at least one hole will have
more than one pigeon

HINT 2:

Every integer a can be written as a = 2km,
where m is an odd number

LEVEL 2

PROOF IDEA:

Given: Ac {1, 2, ..., 2n} and |A| = n+1

Show: There is an integer m and elements
a,;#a, inA

such that a, =2'm and a, =2m

LEVELs PROOF:

Suppose A c {1, 2, ..., 2n} with |A| = n+1

Write every number in A as a = 2km, where
m is an odd number between 1 and 2n-1

How many odd numbers in {1, ..., 2n-1}? n

Since |A| = n+1, there must be two numbers
in A with the same odd part

Say a, and a, have the same odd part m.
Then a; = 2'm and a, = 2Im, so one must
divide the other

We expect your proofs to have three levels:

dThe first level should be a one-word or
one-phrase “HINT” of the proof

(e.g. “Proof by contradiction,” “Proof by induction,”
“Follows from the pigeonhole principle”)

dThe second level should be a short one-
paragraph description or “KEY IDEA”

JThe third level should be the FULL PROOF

DOUBLE STANDARDS?

During the lectures, my proofs will usually
only contain the first two levels and maybe
part of the third

DETERMINISTIC FINITE
AUTOMATA

1

NN

I - 0

The machine accepts a string if the process
ends in a double circle

A Deterministic Finite Automaton (DFA)

The machine accepts a string if the process
ends in a double circle

A Deterministic Finite Automaton (DFA)

states — g \\\moom_uﬁ states (F)
/D\ 0/

O Y

start state (q,) g ~ _____—states

The machine accepts a string if the process
ends in a double circle

NOTATION
An alphabet 2 is a finite set (e.g., 2 = {0,1})

A string over X is a finite-length sequence of
elements of 2

2* denotes the set of finite length sequences
of elements of 2

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by € and will be called the empty or null string

A language over 2 is a set of strings over
2, ie, a subset of ¥*

A deterministic finite automaton (DFA)
is represented by a 5-tuple M =(Q, 2, 9, q,, F) :

Q is the set of states (finite)

2 is the alphabet (finite)

d:Q x 2 — Q is the transition function
go € Q is the start state

F — Qs the set of accept states

Letw,,...,w,e2and w=w,...w, € 2*
Then M accepts w if there arery, ry, ..., 1, € Q, S.1.
* To=qo

« O(r, Wy,)=r,, fori=0, .., n-1, and
e r,eF

A deterministic finite automaton (DFA)
is represented by a 5-tuple M =(Q, 2, 9, q,, F) :

Q is the set of states (finite)

2 is the alphabet (finite)

d:Q x 2 — Q is the transition function
do € Q is the start state

F — Qs the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts

L(M) = {0,1}*

L(M) = { w | w has an even number of 1s}

Build an automaton that accepts all and only
those strings that contain 001

0 0,1
|cv 0 1
20+O-E
1

A language L is regular ifitis
recognized by a deterministic
finite automaton (DFA),
i.e. if there is a DFA M such
that L = L (M).

L = {w | w contains 001} is regular

L = {w | w has an even number of 1’s} is regular

UNION THEOREM

Given two languages, L, and L,, define
the union of L, and L, as

LubL,={w|wel;orwel,}

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Proof: Let
M, =(Q,, Z, 8,4, qJ, F;) be finite automaton for L,

and
M, = (Q,, 2, §,, g2 F,) be finite automaton for L,

We want to construct a finite automaton
M=(Q, 2,9, q, F) that recognizesL=L, UL,

Idea: Run both M, and M,, at the same time!

Q = pairs of states, one from M, and one from M,

={(d,d2) |9, € Q;and q, € Q, }
=Q, x Q,

do = (9 93)
F={(d,9;)|q,€F,orq,eF,}

o((d4,92), o) = (84(d4, ©), 32(d>, o))

Theorem: The union of two regular
languages is also a regular language

O, A
~O=®
N

1

— O—ogco — 6
1

cﬁho cﬁhc

1
I
)=

Intersection THEOREM

Given two languages, L, and L,, define
the intersection of L, and L, as

LinL,={w|wel,;andwel,}

Theorem: The intersection of two
regular languages is also a regular
language

FLAC

Read Chapters 0 and 1.1
of the book for next time

