

SyOLOn\&SNI

www.cs.cmu.edu/~emc/flac09
uunavanamo
avomara ano

beginning of class
and will be due one week later at the
Homework will be assigned every Thursday

HOMEWORK

crading

$$
\begin{array}{|c|}
\hline \text { uо!łełnduos to sןəpow } \\
\text { ןeэ! } \\
\hline
\end{array}
$$

(anguay	
 samwe ani " 	
 nemamanaury	

www.cs.cmu.edu/~emc/flac09

THIS STUFF IS USEFUL

ONIYNIHL JO SAVM

complexity, classes RP and BPP. PPACE, PSPACE-completeness, the polynomial hierarchy, randomized time complexity, classes P and NP, NP-completeness, space complexity
Complexity Theory and Applications: (1960's-70's) PART 3 recursion theorem, the Post correspondence problem. Turing Machines, decidability, reducibility, the arithmetic hierarchy, the Computability Theory: (1930's-40's) PART 2 languages, pumping lemmas. finite automata, regular languages, pushdown automata, context-free Automata and Languages: (1940's) LとVd Mathematical Models of Computation
(predated computers as we know them) complexity, classes RP and BPP. PPACE, PSPACE-completeness, the polynomial hierarchy, randomized time complexity, classes P and NP, NP-completeness, space complexity Complexity Theory and Applications: PART 3 P际3 recursion theorem, the Post correspondence problem. Turing Machines, decidability, reducibility, the arithmetic hierarchy, the PART 2
Computabi PART 2 languages, pumping lemmas. finite automata, regular languages, pushdown automata, context-free Automata and Languages:

PAPT 1

 Course OutlineTRUE
 Correct

Easy to understand A good proof should be:

 HVNT 2 :
Every integer a can be written as $a=2^{k} \mathrm{~m}$,
where m is an odd number

$$
\begin{gathered}
\text { HINT }: \\
\text { THE PIGEONHOLE PRINCIPLE } \\
\text { If you put } 6 \text { pigeons in } 5 \text { holes } \\
\text { then at least one hole will have } \\
\text { more than one pigeon }
\end{gathered}
$$

Since $|A|=n+1$, there must be two numbers
in A with the same odd part
We expect your proofs to have three levels:
divide the other
How many odd numbers in $\{1, \ldots, 2 n-1\} ?$ n
l-u乙 pue \downarrow иәәмұәq ләqunu ppo ue s! $س$
Write every number in A as $a=2^{k} m$, where
Suppose $A \subseteq\{1,2, \ldots, 2 n\}$ with $|A|=n+1$

\section*{LEVEL 3
 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 1 |}

$$
\begin{aligned}
& \text { Say } a_{1} \text { and } a_{2} \text { have the same odd part } m \\
& \text { Then } a_{1}=2^{i} m \text { and } a_{2}=2^{j} m \text {, so one must } \\
& \text { divide the other }
\end{aligned}
$$

DOUBLE STANDARDS?

A deterministic finite automaton (DFA)

$$
Q \text { is the set of states (finite) }
$$

$$
\Sigma \text { is the alphabet (finite) }
$$

$$
\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q} \text { is the transition function }
$$

$$
\mathrm{q}_{0} \in \mathrm{Q} \text { is the start state }
$$

Let $w_{1}, \ldots, w_{n} \in \Sigma$ and $\mathbf{w}=w_{1} \ldots w_{n} \in \Sigma^{*}$
Then \mathbf{M} accepts \mathbf{w} if there are $r_{0}, r_{1}, \ldots, r_{n} \in \mathbf{Q}$, s.t.
-
- $r_{0}=q_{0}$
- $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, for $\mathrm{i}=0, \ldots, n-1$, and
- $\quad r_{n} \in F$

$$
\mathbf{F} \subseteq \mathbf{Q} \text { is the set of accept states }
$$

$$
\begin{aligned}
& \text { uo!łount uo!l!sueı әчł s! } 0 \leftarrow 3 \times 0: 9 \\
& \text { (əұ!u!ł) łəqечdןe ә૫ł s! } 3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { A deterministic finite automaton (DFA) } \\
\text { is represented by a } 5 \text {-tuple } M=\left(Q, \Sigma, \delta, q_{0}, F\right)
\end{array}
\end{aligned}
$$

$$
\begin{array}{|l}
\hline \text { A language } L \text { is regular if it is } \\
\text { recognized by a deterministic } \\
\text { finite automaton (DFA), } \\
\text { i.e. if there is a DFA M such } \\
\text { that } L=L(M) \text {. } \\
L=\{w \mid \text { w contains } 001\} \text { is regular } \\
L=\{w \mid \text { w has an even number of } 1 \text { 's }\} \text { is regular }
\end{array}
$$

Proof: Let
Theorem: The union of two regular
languages is also a regular language

Given two languages, L_{1} and L_{2}, define
the union of L_{1} and L_{2} as

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\}
$$

Theorem: The union of two regular
languages is also a regular language

UNION THEOREM

$$
\begin{aligned}
& \text { Intersection THEOREM } \\
& \text { Given two languages, } L_{1} \text { and } L_{2} \text {, define } \\
& \text { the intersection of } L_{1} \text { and } L_{2} \text { as } \\
& \qquad L_{1} \cap L_{2}=\left\{w \mid w \in L_{1} \text { and } w \in L_{2}\right\} \\
& \text { Theorem: The intersection of two } \\
& \text { regular languages is also a regular } \\
& \text { language }
\end{aligned}
$$

