
FORMAL LANGUAGES, 
AUTOMATA AND 
COMPUTABILITY

15-453

www.cs.cmu.edu/~emc/flac09

IN
STR

U
C
TO

R
S

W
ill Klieber

Yi W
u

Edm
und Clarke



Grading
Exams: 50%
-Final Exam: 25%
-Midterm Exam: 25%
Homework: 45%
Class Participation: 5%
Attendance is required.

H
O
M
EW

O
R
K

Homework will be assigned every Thursday
and will be due one week laterat the 
beginning of class 

You mustlist your collaboratorsand all 
referencesin every homework assignment.

Readings will be posted on the course website.
For next class: Read Chapters 0 and 1.1



www.cs.cmu.edu/~emc/flac09

This class is about mathematical 
modelsof computation



W
HY SHO

ULD I C
A
R
E?

W
A
Y
S O

F TH
IN
K
IN
G

TH
EO

R
Y
 C
A
N
 D
R
IV
E PR

A
C
TIC

E
Mathematical models of computation 
predated computers as we know them

TH
IS STU

FF IS U
SEFU

L

C
ourse O

utline

PA
R
T 1

Automata and Languages

PA
R
T 2

Computability Theory

PA
R
T 3

Complexity and Applications



C
ourse O

utline
PA

R
T 1

Automata and Languages:
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas.

PA
R
T 2

Computability Theory: 
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  the 
recursion theorem, the Post correspondence problem.

PA
R
T 3

Complexity Theory and Applications:
time complexity, classes P and NP, NP-completeness, space complexity 
PPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP.

PA
R
T 1

Automata and Languages: (1940’s)�
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas.

PA
R
T 2

Computability Theory: (1930’s-40’s)�
Turing Machines, decidability, reducibility, the arithmetic hierarchy, the 
recursion theorem, the Post correspondence problem.

PA
R
T 3

Mathem
atical Models of Com

putation
(predated computers as we know them)�

Complexity Theory and Applications: (1960’s-70’s)�
time complexity, classes P and NP, NP-completeness, space complexity 
PPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP.



This class will emphasize PRO
O
FS

A good proof should be:
Easy to understand
Correct

Suppose A
⊆
{1, 2, …

, 2n}

TRUE or FALSE:There are always two 
numbers in A

such that one divides the 
other

with |A| = n+1

TRUE



TH
E PIG

EO
N
H
O
LE PR

IN
C
IPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 1:
LEVEL 1

TH
E PIG

EO
N
H
O
LE PR

IN
C
IPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 1:
LEVEL 1



TH
E PIG

EO
N
H
O
LE PR

IN
C
IPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 1:

HINT 2:
Every integer acan be written as a = 2

km, 
where m is an odd number

LEVEL 1

LEVEL 2
PRO

O
F IDEA:

Given:A
⊆
{1, 2, …

, 2n} and |A| = n+1

Show: There is an integerm and elements
a1 ≠a2 inA
such that  a1 = 2 im

and  a2 = 2 jm



Suppose A ⊆
{1, 2, …

, 2n}
Write every number in A as a = 2 km, where 
m is an odd numberbetween 1 and 2n-1
How many odd numbers in {1, …

, 2n-1}?
n

Since |A| = n+1, there must be two numbers 
in A with the same odd part with |A| = n+1

Say a1 and a2 have the same odd part m.
Then a1 = 2 im

and a2 = 2 jm, so one must 
divide the other 

LEVEL 3
PRO

O
F:

We expect your proofs to have three levels:

�The first levelshould be a one-word or 
one-phrase “HINT”of the proof

(e.g. “Proof by contradiction,”“Proof by induction,”
“Follows from the pigeonhole principle”)�

�The second levelshould be a short one-
paragraph description or “KEY IDEA”

�The third levelshould be the FULL PROOF



D
O
U
B
LE STA

N
D
A
R
D
S?

During the lectures, my proofs will usually 
only contain the first two levels and maybe 
part of the third

D
ETER

M
IN
ISTIC

 FIN
ITE 

A
U
TO

M
A
TA



0
0,1

0
0 1

1

1

0111
111

11

1

The machine acceptsa string if the process 
ends in a double circle

Read string left to right

The machine acceptsa string if the process 
ends in a double circle

A Deterministic Finite Automaton (DFA)

0
0,1

0
0 1

1

1
states

states

q
0

q
1

q
2

q
3



The machine acceptsa string if the process 
ends in a double circle

A Deterministic Finite Automaton (DFA)

0
0,1

0
0 1

1

1

q
0

q
1

q
2

q
3

start state (q
0 )�

accept states (F)�
states

states

An alphabetΣis a finite set (e.g., Σ= {0,1})�

A stringover Σis a finite-length sequence of 
elements of Σ

For x a string, |x|is the lengthof x
The unique string of length 0will be denoted 
by εand will be called theemptyor null string

N
O
TA

TIO
N

A language over Σis a set of strings over 
Σ, ie, a subset of Σ*

Σ*denotes the set of finite length sequences 
of elements of Σ



Q
is the set of states (finite)�
Σis the alphabet (finite)�
δ: Q ×

Σ→
Q

is the transition function
q
0 ∈

Q
is the start state

F ⊆
Q
is the set of accept states

A deterministic finite automaton (DFA) 
is represented by a 5-tuple M = (Q, Σ, δ, q

0 , F):

Let w
1 , ... , w

n ∈
Σand  w

= w
1 ... w

n ∈
Σ*

Then M accepts w if there are r0 , r1 , ..., rn ∈
Q, s.t.

•
r0 =q

0
•

δ(ri , w
i+1 ) = ri+1 ,  for i = 0, ..., n-1, and 

•
rn ∈

F

Q
is the set of states (finite)�
Σis the alphabet (finite)�
δ: Q ×

Σ→
Q

is the transition function
q
0 ∈

Q
is the start state

F ⊆
Q
is the set of accept states

L(M) = the language of machine M
= set of all strings machine M

accepts

A deterministic finite automaton (DFA) 
is represented by a 5-tuple M = (Q, Σ, δ, q

0 , F):



0,1
q
0

L(M) = {0,1}*

q
0

q
1

0
0

1 1

L(M) =
{ w | w has an even number of 1s}



q
q
00

1
0

1
q
0

q
001

0
0

1

0,1

Build an automaton that accepts all and only 
those strings that contain 001

A language L
is regular if it is 

recognized
by a determ

inistic 
finite autom

aton (DFA), 
i.e. if there is a DFA M

such 
that L

= L (M).
L = { w | w contains 001} is regular

L = { w | w has an even number of 1’s} is regular



UNIO
N TH

EO
R
EM

Given two languages, L
1 and L

2 , define 
the union of L

1 and L
2 as 

L
1
∪
L
2 = { w | w ∈

L
1 or w ∈

L
2 } 

Theorem:The union of two regular 
languages is also a regular language

Theorem:The union of two regular 
languages is also a regular language

Proof: Let 
M
1 = (Q

1 , Σ, δ1 , q
0 , F
1 )be finite automaton for L

1
and 

M
2 = (Q

2 , Σ, δ2 , q
0 , F
2 )be finite automatonfor L

2

We want to construct a finite automaton 
M = (Q, Σ, δ, q

0 , F)that recognizes L = L
1 ∪

L
2

12



Idea:Run both M
1 and M

2 at the same time!

Q
= pairs of states, one from M

1 and one from M
2

= { (q
1 , q
2 ) | q

1 ∈
Q
1 and q

2 ∈
Q
2 }

= Q
1 ×Q

2

q
0 = (q

0 , q
0 )�

1
2

F = { (q
1 , q
2 ) | q

1 ∈
F
1 orq

2 ∈
F
2 }

δ( (q
1 ,q
2 ), σ) = (δ1 (q

1 , σ), δ2 (q
2 , σ)) 

Theorem:The union of two regular 
languages is also a regular language

q
0

q
1

0
0

1 1

p
0

p
1

1
1

0 0



q
0 ,p
0

q
1 ,p
0

1 1

q
0 ,p
1

q
1 ,p
1

1 1

0
0

0
0

Intersection TH
EO

R
EM

Given two languages, L
1 and L

2 , define 
the intersection of L

1 and L
2 as 

L
1
∩
L
2 = { w | w ∈

L
1 and w ∈

L
2 } 

Theorem:The intersection of two 
regular languages is also a regular 
language



FLA
C

Read Chapters 0 and 1.1
of the book for next time


