TIME COMPLEXITY
1 5-453 OF ALGORITHMS
FORMAL LANGUAGES, (Chapter 7 in the textbook)

AUTOMATA AND
COMPUTABILITY

Read sections 7.1 — 7.3 of the book for next time

MEASURING TIME COMPLEXITY
COMPLEXITY THEORY We measure time complexity by counting the

Studies what can and can’t be computed under elementary steps required for a machine to halt

limited resources such as time, space, etc. Consider the language A ={ 0k1k |k =0}

Today: Time complexity 1. Scan across the tape and reject if the

2K string is not of the form 0m1"

2. Repeat the following if both Os and 1s
2k2 remain on the tape:
Scan across the tape, crossing off a
single 0 and a single 1

ok 3. If Os remain after all 1s have been crossed
off, or vice-versa, reject. Otherwise accept.

*The number of steps that an algorithm uses
on a particular input may depend on several
parameters.

eFor instance, if the input is a graph, then the
number of steps may depend on the number
of nodes, the number of edges, et cetera.

* For simplicity, we compute the running time
purely as a function of the length of the input
string and don’t consider any other
parameters.

Let M be a TM that halts on all inputs.

Assume we compute the running time purely as
a function of the length of the input string.

Definition: The running time or time-complexity
function of M is the function f: N - N such
that f(n) is the maximum number of steps that M
uses on any input of length n.

ASYMPTOTIC ANALYSIS
5n3 + 2n2 + 22n + 6 = O(n3)
Big-O notation has been discussed

in previous classes. We will briefly
review it.

BIG-O

Let f and g be two functions f,g: N - R*.
We say that f(n) = O(g(n)) if positive integers
c and n, exist so that for every integer n 2 n,

f(n) < cg(n)

When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

5n3 +2n? + 22n + 6 = O(n%®)

If c =6 and n, = 10, then 5n3 + 2n2 + 22n + 6 < cn3

2n*t +200283n* + 2 = O(n*4) Definition: TIME(t(n)) is the set of
languages decidable in O(t(n)) time

3nlog,n +5nlog,log,n =O(n log,n) by a Turing Machine.

nlog,,n’® =0(n log,,n) {0<1“| k=0} O TIME(n?)

log,,n =log,n/log,10
O(n log,n) = O(n log,yn) = O(n log n)

A={0k1k|k=0}0OTIME(n I
{ | } (nlog n) We can prove that a (single-tape) TM

Cross off every other 0 and every other 1. If the # can’t decide A faster than O(n log n).
of Os and 1s left on the tape is odd, reject.

— [Ok1kK
000000000000011111111111211 A={01%k=20}

XOXOXOXOXOxOxx1IxIx1Ix1Ix1x1x
XXXOXXXOXXXOXXXXIXXXIXXX1X
XX XX XXX OXX XXX XX XXXXX IXXXXX

XXXXXXXXXXXXXXXXKXXXXXXXXXX

Can A={0k1k| k =01} be decided in
time O(n) with a two-tape TM?

e Scan all Os and copy them to the
second tape.

« Scan all 1s, crossing off a 0 from the
second tape for each 1.

Different models of computation
yield different running times for
the same language!

Theorem.

Let t(n) be a function such that t(n) = n.

Then every t(n)-time multi-tape TM has
an equivalent O(t(n)?) single-tape TM.

Polynomial Time

P = || TIME(n)
k ON

NON-DETERMINISTIC
TURING MACHINES
AND NP

NON-DETERMINISTIC TMs

0-0,R
read write move

O\O R/ D/D\
— R
~O—O—— G

0—-0,R
O-0,RrR

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to
several possibilities.

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration.

Non-Deterministic
Computation

Deterministic
Computation

| 7N\

| NN
; VAN
i 1 reject
! SN

| |

¢}

accept or reject accept

Definition: A Non-Deterministic TM is a 7-tuple
T = (Q! Z’ r! 61 qu qaccept1 qreject), Where

Q is afinite set of states
2 is the input alphabet, where O O X
Iis the tape alphabet, whereOOrMand 0O

0 : QxI—-Pow(QxTI x{L,R})
g, U Q is the start state

Jaccept U Q IS the accept state

Qreject [Q is the rejeCt state, and qreject # qaccept

Non-Deterministic
Computation

Deterministic
Computation

¢}

!)
! SN
g VAN
i 1 reject
| AN
| |

accept or reject accept

Definition: NTIME(t(n)) is the set of languages
decided by a O(t(n))-time non-deterministic
Turing machine.

TIME(t(n)) O NTIME(t(n))

BOOLEAN FORMULAS

logical

_ parentheses
. . . operations_ .
A satisfying assignymen se#ting of the

variables that m_alt i fo) la true.
P= —IXé\ Yy pgz
x=1l,y=1,z=1lisa ati7fyi assignment for @

variables

BOOLEAN FORMULAS
x=0,y=0,z=1is asatisfying assignment for:
- (x Oy) O(z O=x)

0 0, 1 0

0 1

H_/

1 1

A boolean formula is satisfiable if there
exists a satisfying assignment for it.

vyEs albOc O-d
No (X Oy) Ox

Definition: SAT is the language consisting of
all satisfiable boolean formulas.

SAT = { @| @is a satisfiable boolean formula }

Conjunctive Normal Form (CNF)

* A literal is a variable or the negation of a var.

 Example: The variable x is a literal, and
its negation, =X, is a literal.

* A clause is a disjunction (an OR) of literals.
« Example: (x Oy O-2) is aclause.
*A formulais in Conjunctive Normal Form (CNF)
if it is a conjunction (an AND) of clauses.
« Example: (x 0= z) O(y Oz) is in CNF.
* A CNF formulais a conjunction of disjunctions
of literals.

Definition: A CNF formula is a 3SCNF-formula iff
each clause has exactly 3 literals.

clauses

A literal is a variable or the negation of a var.
* A clause is a disjunction (an OR) of literals.

* A formulais in Conjunctive Normal Form (CNF)
if it is a conjunction (an AND) of clauses.

* A CNF formulais a conjunction of disjunctions
of literals.

Definition: A CNF formula is a 3SCNF-formula iff
each clause has exactly 3 literals.

clauses

YES (x; O=x, 0Ox,)

NO (x5 0Ox;) O(X3 O=x%, O=X,)

NO (x; Ox, Ox3) O(=x, Ox, Ox,) O(Xxz Ox, O=X%y)
NO (x; O=X, Ox3) O(X3 U=x, O=X,)

3SAT ={ @| @is a satisfiable 3cnf-formula}

3SAT = { @| @is a satisfiable 3cnf-formula}
Theorem: 3SAT OO NTIME(n?)
On input @

1. Check if the formulais in 3cnf.

2. For each variable, non-deterministically
substitute it with O or 1.

(Ix1O1=1y1O]x])

(lo]o]-]o]o]o]) (Jolol-[2[afo])

3. Test if the assignment satisfies @.

Non-deterministic Polynomial Time

NP = [| NTIME(n¥)

KON

Theorem: L O NP if and only if there exists a
poly-time Turing machine V with

L={x | Oy. lyl = poly(Ix]) and V(x,y) accepts }.
Proof:

(D) IfL={x| Oy. ly] = poly(x]) and V(x,y) accepts }
then L O NP.

Because we can guess y and then run V.

(2) If L ONP then
L={x | Oy. lyl = poly(|x]) and V(x,y) accepts }
Let N be a non-deterministic poly-time TM

that decides L. Define V(x,y) to acceptify is
an accepting computation history of N on x.

3SAT = { @| Oy such that y is a satisfying
assignment to @and @is in 3cnf }

SAT = {@| Oy such that y is a satisfying
assignment to ¢}

A language is in NP if and only if there
exist polynomial-length certificates for
membership to the language.

SAT is in NP because a satisfying
assignment is a polynomial-length
certificate that a formula is satisfiable.

NP = The set of all the problems for
which you can verify an alleged
solution in polynomial time.

P = NP?

POLY-TIME REDUCIBILITY

f.Z* - X*is a polynomial-time computable
function if some poly-time Turing machine M,
on every input w, halts with just f(w) on its tape.

Language A is polynomial time reducible to
language B, written A <, B, if there is a poly-
time computable function f : £* - Z* such that:

wlOA < f(w)OB

fis called a polynomial-time reduction of A to B.

Theorem: If A<, B and B OP, then AOP.

Proof: Let Mg be a poly-time (deterministic)
TM that decides B and let f be a poly-time
reduction from A to B.

We build a machine M, that decides A as follows:
On input w:
1. Compute f(w)
2. Run Mg on f(w)

Definition: A language B is NP-complete iff:

1. BONP

2. Every language in NP is reducible
to B in polynomial time.

If B is NP-Complete and B OPthen NP = P. why? | SAT = {@]@isasatisfiable boolean formula}

3-SAT = {@]| @is a satisfiable 3cnf-formula }

A 3cnf-formulais of the form:
(Xg O=X%, OXg) O(X, OX, OXg) O (X5 0%, O=X,)

clauses
SAT = { @]| @is a satisfiable boolean formula } Theorem (Cook-Levin): SAT is NP-complete.
_ o Proof Outline:
3-SAT = { @] @is a satisfiable 3cnf-formula }
(1) SAT ONP
(2) Every language A in NP is polynomial time
SAT, 3-SAT O NP reducible to SAT

We build a poly-time reduction from A to SAT
The reduction turns a string w into a 3-cnf
formula @such that w O A iff ¢ O 3-SAT.

@ will simulate the NP machine N for A on w.

Let N be a non-deterministic TM that decides
A intime nk How do we know N exists?

So proof will also show:
3-SAT is NP-Complete

f turns a string w into a 3-cnf formula @such that

wOA = @O 3-SAT.
@ will simulate an NP machine N on w, where A = L(N)

