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Read sections 7.1 – 7.3 of the book for next time

TIME COMPLEXITY 
OF ALGORITHMS

(Chapter 7 in the textbook)

COMPLEXITY THEORY

Studies what can and can’t be computed under 
limited resources such as time, space, etc.

Today: Time complexity

MEASURING TIME COMPLEXITY

We measure time complexity by counting the 
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥≥≥≥ 0 }

1. Scan across the tape and reject if the 
string is not of the form 0m1n

2. Repeat the following if both 0s and 1s 
remain on the tape:

Scan across the tape, crossing off a 
single 0 and a single 1

3. If 0s remain after all 1s have been crossed 
off, or vice-versa, reject. Otherwise accept.
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• The number of steps that an algorithm uses 
on a particular input may depend on several 
parameters.

• For instance, if the input is a graph, then the 
number of steps may depend on the number 
of nodes, the number of edges, et cetera.

• For simplicity, we compute the running time 
purely as a function of the length of the input 
string and don’t consider any other 
parameters.

Let M be a TM that halts on all inputs.

Assume we compute the running time purely as 
a function of the length of the input string.

Definition: The running time or time-complexity
function of M is the function f : N →→→→ N  such 
that f(n) is the maximum number of steps that M 
uses on any input of length n.

ASYMPTOTIC ANALYSIS

5n3 + 2n2 + 22n + 6 = O(n3)

Big-O notation has been discussed 
in previous classes.  We will briefly 
review it.

Let f and g be two functions f, g : N →→→→ R+.
We say that f(n) = O(g(n)) if positive integers 
c and n0 exist so that for every integer n ≥≥≥≥ n0

f(n) ≤≤≤≤ c g(n)

When f(n) = O(g(n)), we say that g(n) is an 
asymptotic upper bound for f(n)

BIG-O

5n3 + 2n2 + 22n + 6 = O(n3)
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤≤≤≤ cn3



3n log2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

n log10 n78

= O(n4.1)

= O(n log2 n)

= O(n log10 n)

log10 n = log2 n / log2 10

O(n log2 n) = O(n log10 n) = O(n log n)

Definition: TIME(t(n)) is the set of 
languages decidable in O(t(n)) time 
by a Turing Machine.

{ 0k1k | k ≥≥≥≥ 0 } ∈∈∈∈ TIME(n2)

A = { 0k1k | k ≥≥≥≥ 0 } ∈∈∈∈ TIME(n log n)

Cross off every other 0 and every other 1. If the # 
of 0s and 1s left on the tape is odd, reject.

00000000000001111111111111

x0x0x0x0x0x0xx1x1x1x1x1x1x

xxx0xxx0xxx0xxxx1xxx1xxx1x

xxxxxxx0xxxxxxxxxxxx1xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx

We can prove that a (single-tape) TM 
can’t decide A faster than O(n log n).

A = { 0k1k | k ≥≥≥≥ 0 }



Can A = { 0k1k | k ≥≥≥≥ 0 } be decided in 
time O(n) with a two-tape TM?

• Scan all 0s and copy them to the 
second tape.

• Scan all 1s, crossing off a 0 from the 
second tape for each 1.

Different models of computation 
yield different running times for 

the same language!

Theorem.
Let t(n) be a function such that t(n) ≥≥≥≥ n. 
Then every t(n)-time multi-tape TM has 
an equivalent O(t(n)2) single-tape TM. P =       TIME(nk)∪∪∪∪

k ∈∈∈∈ N

Polynomial Time



NON-DETERMINISTIC 
TURING MACHINES 

AND NP 0 → 0, R

read write move

� → �, R

qaccept

qreject

0 → 0, R

� → �, R

0 → 0, R

DETERMINISTIC TMsNON-

NON-DETERMINISTIC TMs

…are just like standard TMs, except:

1. The machine may proceed according to 
several possibilities.

2. The machine accepts a string if there 
exists a path from start configuration to an 
accepting configuration.

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject



Definition: A Non-Deterministic TM is a 7-tuple 
T = (Q, Σ, Γ, δδδδ, q0, qaccept, qreject), where: 

Q is a finite set of states

Γ is the tape alphabet, where � ∈∈∈∈ Γ and Σ ⊆⊆⊆⊆ Γ

q0 ∈∈∈∈ Q is the start state

Σ is the input alphabet, where � ∉∉∉∉ Σ

δδδδ : Q ×××× Γ→ Pow(Q ×××× Γ ×××× {L,R})

qaccept ∈∈∈∈ Q is the accept state

qreject ∈∈∈∈ Q is the reject state, and qreject ≠≠≠≠ qaccept

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

the set of languages
decided by a O(t(n))-time non-deterministic 
Turing machine.

Definition: NTIME(t(n))  is

TIME(t(n)) ⊆⊆⊆⊆ NTIME(t(n))

BOOLEAN FORMULAS

(¬¬¬¬x ∧∧∧∧ y) ∨∨∨∨ zφφφφ =

logical 
operations

variables

parentheses

A satisfying assignment is a setting of the 
variables that makes the formula true.

x = 1, y = 1, z = 1 is a satisfying assignment for φφφφ



BOOLEAN FORMULAS

x = 0, y = 0, z = 1 is a satisfying assignment for:

¬¬¬¬(x ∨∨∨∨ y) ∧∧∧∧ (z ∧∧∧∧ ¬¬¬¬x)
0 0 1 0

0

1 1

1 Definition: SAT is the language consisting of 
all satisfiable boolean formulas.

SAT = { φφφφ | φφφφ is a satisfiable boolean formula }

A boolean formula is satisfiable if there 
exists a satisfying assignment for it.

¬¬¬¬(x ∨∨∨∨ y) ∧∧∧∧ x

a ∧∧∧∧ b ∧∧∧∧ c ∧∧∧∧ ¬¬¬¬dYES

NO

• A literal is a variable or the negation of a var.
• Example: The variable x is a literal, and

its negation, ¬¬¬¬x, is a literal.
• A clause is a disjunction (an OR) of literals.

• Example:  (x ∨∨∨∨ y ∨∨∨∨ ¬¬¬¬z) is a clause.

Conjunctive Normal Form (CNF)

• A formula is in Conjunctive Normal Form (CNF)
if it is a conjunction (an AND) of clauses.

• Example:  (x ∨∨∨∨ ¬¬¬¬ z) ∧∧∧∧ (y ∨∨∨∨ z)  is in CNF.
• A CNF formula is a conjunction of disjunctions 
of literals.

Definition: A CNF formula is a 3CNF-formula iff 
each clause has exactly 3 literals.

(x1 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ x2 ∨∨∨∨ x5) ∧∧∧∧ ... ∧∧∧∧ (x3 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ ¬¬¬¬x1)

clauses

• A literal is a variable or the negation of a var.
• A clause is a disjunction (an OR) of literals.

• A formula is in Conjunctive Normal Form (CNF)
if it is a conjunction (an AND) of clauses.

• A CNF formula is a conjunction of disjunctions 
of literals.



Definition: A CNF formula is a 3CNF-formula iff 
each clause has exactly 3 literals.

(x1 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ x2 ∨∨∨∨ x5) ∧∧∧∧ ... ∧∧∧∧ (x3 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ ¬¬¬¬x1)

clauses

(x1 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ x1)

(x3 ∨∨∨∨ x1) ∧∧∧∧ (x3 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ ¬¬¬¬x1)

(x1 ∨∨∨∨ x2 ∨∨∨∨ x3) ∧∧∧∧ (¬¬¬¬x4 ∨∨∨∨ x2 ∨∨∨∨ x1) ∨∨∨∨ (x3 ∨∨∨∨ x1 ∨∨∨∨ ¬¬¬¬x1)

(x1 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x3 ∧∧∧∧ ¬¬¬¬x2 ∧∧∧∧ ¬¬¬¬x1)

YES

NO

NO

NO

3SAT = { φφφφ | φφφφ is a satisfiable 3cnf-formula }

Theorem: 3SAT ∈∈∈∈ NTIME(n2)
3SAT = { φφφφ | φφφφ is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf.
On input φφφφ:

2. For each variable, non-deterministically 
substitute it with 0 or 1.

3. Test if the assignment satisfies φφφφ.

( x ∨∨∨∨ y¬¬¬¬ ∨∨∨∨ x )

( ∨∨∨∨ y¬¬¬¬ ∨∨∨∨ )0 0 ( ∨∨∨∨ y¬¬¬¬ ∨∨∨∨ )1 1

( ∨∨∨∨ ¬¬¬¬ ∨∨∨∨ )0 00 ( ∨∨∨∨ ¬¬¬¬ ∨∨∨∨ )0 1 0

NP =       NTIME(nk)∪∪∪∪
k ∈∈∈∈ N

Non-deterministic Polynomial Time Theorem: L ∈∈∈∈ NP if and only if there exists a 
poly-time Turing machine V with

L = { x | ∃∃∃∃y. |y| = poly(|x|) and V(x,y) accepts }.

Proof:

(1) If L = { x | ∃∃∃∃y. |y| = poly(|x|) and V(x,y) accepts }
then L ∈∈∈∈ NP.

Because we can guess y and then run V.

(2) If L ∈∈∈∈ NP then
L = { x | ∃∃∃∃y. |y| = poly(|x|) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM 
that decides L. Define V(x,y) to accept if y is 
an accepting computation history of N on x.



3SAT = { φφφφ | ∃∃∃∃y such that y is a satisfying
assignment to φφφφ and φφφφ is in 3cnf } 

SAT = { φφφφ | ∃∃∃∃y such that y is a satisfying
assignment to φφφφ } 

A language is in NP if and only if there 
exist polynomial-length certificates for 

membership to the language.

SAT is in NP because a satisfying 
assignment is a polynomial-length 

certificate that a formula is satisfiable.

NP = The set of all the problems for 
which you can verify an alleged 
solution in polynomial time. P = NP?



POLY-TIME REDUCIBILITY

f : Σ* →→→→ Σ* is a polynomial-time computable 
function

Language A is polynomial time reducible to 
language B, written A ≤≤≤≤P B, if there is a poly-
time computable function f : Σ* →→→→ Σ* such that:

w ∈∈∈∈ A ⇔⇔⇔⇔ f(w) ∈∈∈∈ B

f is called a polynomial-time reduction of A to B.

if some poly-time Turing machine M, 
on every input w, halts with just f(w) on its tape.

A B
f

f

Theorem: If A ≤≤≤≤P B and B ∈∈∈∈ P, then A ∈∈∈∈ P.

Proof: Let MB be a poly-time (deterministic) 
TM that decides B and let f be a poly-time 
reduction from A to B.

We build a machine MA that decides A as follows:

On input w:

1. Compute f(w)

2. Run MB on f(w)

Definition: A language B is NP-complete iff:

1. B ∈∈∈∈ NP

2. Every language in NP is reducible
to B in polynomial time.



P
NP

B

If B is NP-Complete and B ∈∈∈∈ P then NP =  P.  Why?

A 3cnf-formula is of the form:

(x1 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ x3) ∧∧∧∧ (x4 ∨∨∨∨ x2 ∨∨∨∨ x5) ∧∧∧∧ (x3 ∨∨∨∨ ¬¬¬¬x2 ∨∨∨∨ ¬¬¬¬x1)

clauses

SAT  =  { φφφφ | φφφφ is a satisfiable boolean formula }

3-SAT  =  { φφφφ | φφφφ is a satisfiable 3cnf-formula }

SAT, 3-SAT ∈∈∈∈ NP

SAT  =  { φφφφ | φφφφ is a satisfiable boolean formula }

3-SAT  =  { φφφφ | φφφφ is a satisfiable 3cnf-formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof Outline:

(1) SAT ∈∈∈∈ NP

(2) Every language A in NP is polynomial time 
reducible to SAT

We build a poly-time reduction from A to SAT

Let N be a non-deterministic TM that decides 
A in time nk How do we know N exists?

The reduction turns a string w into a 3-cnf 
formula φφφφ such that w ∈∈∈∈ A iff φφφφ ∈∈∈∈ 3-SAT. 
φφφφ will simulate the NP machine N for A on w.



So proof will also show: 
3-SAT is NP-Complete

P
NP

3-SAT

f turns a string w into a 3-cnf formula φφφφ such that 

w ∈∈∈∈ A ⇔⇔⇔⇔ φφφφ ∈∈∈∈ 3-SAT. 
φφφφ will simulate an NP machine N on w, where A = L(N)

A 3SAT

f

f

w φφφφ


