15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Read sections 7.1 - 7.3 of the book for next time

COMPLEXITY THEORY

Studies what can and can't be computed under limited resources such as time, space, etc.

Today: Time complexity

TIME COMPLEXITY OF ALGORITHMS

(Chapter 7 in the textbook)

MEASURING TIME COMPLEXITY

We measure time complexity by counting the elementary steps required for a machine to halt
Consider the language $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

1. Scan across the tape and reject if the string is not of the form $0^{\mathrm{m}} 1^{\mathrm{n}}$
2. Repeat the following if both 0 s and 1 s $2 \mathrm{k}^{2}$ remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1

2k
3. If 0 s remain after all 1 s have been crossed off, or vice-versa, reject. Otherwise accept.

- The number of steps that an algorithm uses on a particular input may depend on several parameters.
- For instance, if the input is a graph, then the number of steps may depend on the number of nodes, the number of edges, et cetera.
- For simplicity, we compute the running time purely as a function of the length of the input string and don't consider any other parameters.

Let M be a TM that halts on all inputs.
Assume we compute the running time purely as a function of the length of the input string.
Definition: The running time or time-complexity function of M is the function $f: N \rightarrow N$ such that $f(n)$ is the maximum number of steps that M uses on any input of length \mathbf{n}.

ASYMPTOTIC ANALYSIS

$$
5 n^{3}+2 n^{2}+22 n+6=O\left(n^{3}\right)
$$

Big-O notation has been discussed in previous classes. We will briefly review it.

BIG-O

Let f and g be two functions $f, g: N \rightarrow \mathbf{R}^{+}$. We say that $f(n)=O(g(n))$ if positive integers c and n_{0} exist so that for every integer $n \geq n_{0}$

$$
f(n) \leq c g(n)
$$

When $f(n)=O(g(n))$, we say that $g(n)$ is an asymptotic upper bound for $f(n)$

$$
5 n^{3}+2 n^{2}+22 n+6=O\left(n^{3}\right)
$$

If $\mathrm{c}=6$ and $\mathrm{n}_{0}=10$, then $5 \mathrm{n}^{3}+2 \mathrm{n}^{2}+22 \mathrm{n}+6 \leq \mathrm{cn}^{3}$
$2 \mathrm{n}^{4.1}+200283 \mathrm{n}^{4}+2=\mathrm{O}\left(\mathrm{n}^{4.1}\right)$
$3 n \log _{2} n+5 n \log _{2} \log _{2} n=O\left(n \log _{2} n\right)$
$n \log _{10} n^{78}=O\left(n \log _{10} n\right)$
$\log _{10} n=\log _{2} n / \log _{2} 10$
$O\left(n \log _{2} n\right)=O\left(n \log _{10} n\right)=O(n \log n)$

$$
A=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}(n \log n)
$$

Cross off every other 0 and every other 1 . If the \# of 0 s and 1 s left on the tape is odd, reject.

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxxx1xxxxx
XXXXXXXXXXXXXXXXXXXXXXXXX

Definition: $\operatorname{TIME}(t(n))$ is the set of languages decidable in $\mathrm{O}(\mathrm{t}(\mathrm{n})$) time by a Turing Machine.

$$
\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)
$$

We can prove that a (single-tape) TM can't decide A faster than $O(n \log n)$.

$$
A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Can $A=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ be decided in time $O(n)$ with a two-tape TM?

- Scan all 0s and copy them to the second tape.
- Scan all 1 s , crossing off a 0 from the second tape for each 1.

Different models of computation yield different running times for the same language!

Theorem.
Let $t(n)$ be a function such that $t(n) \geq n$. Then every $\mathrm{t}(\mathrm{n})$-time multi-tape TM has an equivalent $O\left(t(n)^{2}\right)$ single-tape TM.

Polynomial Time

$P=\bigcup_{k \in N} \operatorname{TIME}\left(n^{k}\right)$

NON-DETERMINISTIC TURING MACHINES AND NP

NON-DETERMINISTIC TMs

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to several possibilities.
2. The machine accepts a string if there exists a path from start configuration to an accepting configuration.

Definition: A Non-Deterministic TM is a 7-tuple $T=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where:
Q is a finite set of states
$\boldsymbol{\Sigma}$ is the input alphabet, where $\square \notin \boldsymbol{\Sigma}$
Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
$\delta: \mathbf{Q} \times \boldsymbol{\Gamma} \rightarrow \operatorname{Pow}(\mathbf{Q} \times \boldsymbol{\Gamma} \times\{\mathbf{L}, \mathbf{R}\})$
$q_{0} \in Q$ is the start state
$q_{\text {accept }} \in Q$ is the accept state
$q_{\text {reject }} \in Q$ is the reject state, and $q_{\text {reject }} \neq q_{\text {accept }}$

Deterministic Computation

Non-Deterministic Computation

BOOLEAN FORMULAS

$$
\begin{aligned}
& \text { logical parentheses } \\
& \text { A satisfying assigntions } \\
& \text { variables that makestisasetting of the } \\
& \phi=(\sim \times \wedge) \vee Z \\
& x=1, y=1, z=1 \text { is a satisfying assignment for } \phi \\
& \text { variables }
\end{aligned}
$$

BOOLEAN FORMULAS

$x=0, y=0, z=1$ is a satisfying assignment for:

A boolean formula is satisfiable if there exists a satisfying assignment for it.

$$
\begin{aligned}
\text { YES } & \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c} \wedge \neg \mathbf{d} \\
\text { NO } & \neg(x \vee y) \wedge x
\end{aligned}
$$

Definition: SAT is the language consisting of all satisfiable boolean formulas.
SAT $=\{\phi \mid \phi$ is a satisfiable boolean formula $\}$

Conjunctive Normal Form (CNF)

- A literal is a variable or the negation of a var.
- Example: The variable x is a literal, and its negation, $\neg x$, is a literal.
- A clause is a disjunction (an OR) of literals.
- Example: ($x \vee y \vee \neg z$) is a clause.
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction (an AND) of clauses.
- Example: $(x \vee \neg z) \wedge(y \vee z)$ is in CNF.
- A CNF formula is a conjunction of disjunctions of literals.

Definition: A CNF formula is a 3CNF-formula iff each clause has exactly 3 literals.

- A literal is a variable or the negation of a var.
- A clause is a disjunction (an OR) of literals.
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction (an AND) of clauses.
- A CNF formula is a conjunction of disjunctions of literals.

Definition: A CNF formula is a 3CNF-formula iff each clause has exactly 3 literals.

$$
\underbrace{\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)} \wedge \underbrace{\left(x_{4} \vee x_{2} \vee x_{5}\right) \wedge \ldots \wedge\left(x_{3} \vee \neg x_{2} \vee \neg x_{1}\right)}_{\text {clauses }}
$$

$$
\begin{array}{ll}
\text { YES } & \left(x_{1} \vee \neg x_{2} \vee x_{1}\right) \\
\text { NO } & \left(x_{3} \vee x_{1}\right) \wedge\left(x_{3} \vee \neg x_{2} \vee \neg x_{1}\right) \\
\text { NO } & \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{4} \vee x_{2} \vee x_{1}\right) \vee\left(x_{3} \vee x_{1} \vee \neg x_{1}\right) \\
\text { NO } & \left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \wedge \neg x_{2} \wedge \neg x_{1}\right)
\end{array}
$$

$$
\text { 3SAT }=\{\phi \mid \phi \text { is a satisfiable 3cnf-formula }\}
$$

Non-deterministic Polynomial Time

$N P=\bigcup N T I M E\left(n^{k}\right)$ $k \in N$

3SAT $=\{\phi \mid \phi$ is a satisfiable 3cnf-formula $\}$ Theorem: 3SAT \in NTIME(\mathbf{n}^{2}) On input ϕ :

1. Check if the formula is in 3cnf.
2. For each variable, non-deterministically substitute it with 0 or 1.

3. Test if the assignment satisfies ϕ.

Theorem: $L \in N P$ if and only if there exists a poly-time Turing machine V with

$$
L=\{x|\exists y .|y|=\operatorname{poly}(|x|) \text { and } V(x, y) \text { accepts }\}
$$

Proof:
(1) If $L=\{x|\exists y .|y|=\operatorname{pol} y(|x|)$ and $V(x, y)$ accepts $\}$ then $L \in N P$.
Because we can guess y and then run V.
(2) If $L \in N P$ then

$$
L=\{x|\exists y \cdot| y \mid=\operatorname{poly}(|x|) \text { and } V(x, y) \text { accepts }\}
$$

Let N be a non-deterministic poly-time TM that decides L. Define $V(x, y)$ to accept if y is an accepting computation history of \mathbf{N} on \mathbf{x}.

3SAT $=\{\phi \mid \exists y$ such that y is a satisfying assignment to ϕ and ϕ is in 3cnf \}

SAT $=\{\phi \mid \exists \mathbf{y}$ such that \mathbf{y} is a satisfying assignment to ϕ \}

A language is in NP if and only if there exist polynomial-length certificates for membership to the language.

SAT is in NP because a satisfying assignment is a polynomial-length certificate that a formula is satisfiable.

NP = The set of all the problems for which you can verify an alleged solution in polynomial time.

POLY-TIME REDUCIBILITY

$\mathrm{f}: \boldsymbol{\Sigma}^{\star} \rightarrow \boldsymbol{\Sigma}^{\star}$ is a polynomial-time computable function if some poly-time Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Language A is polynomial time reducible to language B, written $A \leq_{p} B$, if there is a polytime computable function $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ such that:

$$
\mathbf{w} \in \mathbf{A} \Leftrightarrow f(w) \in \mathbf{B}
$$

f is called a polynomial-time reduction of A to B.

Definition: A language B is NP-complete iff:

1. $B \in N P$
2. Every language in NP is reducible to B in polynomial time.

If B is NP-Complete and $B \in P$ then $N P=P$. Why?

SAT $=\{\phi \mid \phi$ is a satisfiable boolean formula $\}$

3-SAT $=\{\phi \mid \phi$ is a satisfiable 3cnf-formula $\}$

SAT, 3-SAT \in NP

SAT $=\{\phi \mid \phi$ is a satisfiable boolean formula $\}$

3-SAT $=\{\phi \mid \phi$ is a satisfiable 3cnf-formula $\}$

A 3cnf-formula is of the form:

Theorem (Cook-Levin): SAT is NP-complete.
Proof Outline:
(1) SAT \in NP
(2) Every language A in NP is polynomial time reducible to SAT

We build a poly-time reduction from A to SAT
The reduction turns a string w into a 3-cnf formula ϕ such that $w \in A$ iff $\phi \in 3$-SAT.
ϕ will simulate the NP machine \mathbf{N} for \mathbf{A} on \mathbf{w}.
Let N be a non-deterministic TM that decides A in time n^{k} How do we know N exists?

So proof will also show:
3-SAT is NP-Complete

f turns a string winto a 3-cnf formula ϕ such that
$\mathbf{w} \in \mathbf{A} \Leftrightarrow \phi \in 3$-SAT. ϕ will simulate an NP machine N on w, where $A=L(N)$

