15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Read sections 7.1 – 7.3 of the book for next time

TIME COMPLEXITY OF ALGORITHMS

(Chapter 7 in the textbook)

COMPLEXITY THEORY

Studies what can and can't be computed under limited resources such as time, space, etc.

Today: Time complexity

MEASURING TIME COMPLEXITY

We measure time complexity by counting the elementary steps required for a machine to halt

Consider the language A = { $0^{k}1^{k} | k \ge 0$ }

 $\begin{array}{l} \mbox{1. Scan across the tape and reject if the} \\ \mbox{string is not of the form $0^{m}1^{n}$} \end{array}$

2. Repeat the following if both 0s and 1s $_{2k^2}$ remain on the tape:

Scan across the tape, crossing off a single 0 and a single 1

2k 3. If 0s remain after all 1s have been crossed off, or vice-versa, reject. Otherwise accept.

- The number of steps that an algorithm uses on a particular input may depend on several parameters.
- For instance, if the input is a graph, then the number of steps may depend on the number of nodes, the number of edges, *et cetera*.
- For simplicity, we compute the running time purely as a function of the length of the input string and don't consider any other parameters.

Let M be a TM that halts on all inputs.

Assume we compute the running time purely as a function of the length of the input string.

Definition: The running time or time-complexity function of M is the function $f: N \rightarrow N$ such that f(n) is the maximum number of steps that M uses on any input of length n.

ASYMPTOTIC ANALYSIS

 $5n^3 + 2n^2 + 22n + 6 = O(n^3)$

Big-O notation has been discussed in previous classes. We will briefly review it.

BIG-O

Let f and g be two functions f, g : N \rightarrow R⁺. We say that f(n) = O(g(n)) if positive integers c and n₀ exist so that for every integer n \geq n₀

 $f(n) \leq c g(n)$

When f(n) = O(g(n)), we say that g(n) is an asymptotic upper bound for f(n)

 $5n^3 + 2n^2 + 22n + 6 = O(n^3)$

If c = 6 and n_0 = 10, then $5n^3 + 2n^2 + 22n + 6 \le cn^3$

$2n^{4.1} + 200283n^{4} + 2 = O(n^{4.1})$ $3n \log_{2} n + 5n \log_{2} \log_{2} n = O(n \log_{2} n)$ $n \log_{10} n^{78} = O(n \log_{10} n)$ $\log_{10} n = \log_{2} n / \log_{2} 10$ $O(n \log_{2} n) = O(n \log_{10} n) = O(n \log n)$	Definition: TIME(t(n)) is the set of languages decidable in O(t(n)) time by a Turing Machine. $\{ 0^k 1^k \mid k \ge 0 \} \in TIME(n^2)$
$A = \{ 0^{k}1^{k} \mid k \ge 0 \} \in TIME(n \text{ log } n)$ Cross off every other 0 and every other 1. If the # of 0s and 1s left on the tape is odd, reject. 0000000000000111111111111111111111111	We can prove that a (single-tape) TM can't decide A faster than O(n log n). $A = \{ 0^{k}1^{k} \mid k \ge 0 \}$

Can A = { $0^{k}1^{k} | k \ge 0$ } be decided in time O(n) with a two-tape TM?

- Scan all 0s and copy them to the second tape.
- Scan all 1s, crossing off a 0 from the second tape for each 1.

Different models of computation yield different running times for the same language!

Theorem.

Let t(n) be a function such that $t(n) \ge n$. Then every t(n)-time multi-tape TM has an equivalent $O(t(n)^2)$ single-tape TM.

Polynomial Time

 $P = \bigcup_{k \in N} TIME(n^k)$

NON-DETERMINISTIC TURING MACHINES AND NP

NON-DETERMINISTIC TMs

NON-DETERMINISTIC TMs

... are just like standard TMs, except:

1. The machine may proceed according to several possibilities.

2. The machine accepts a string if there exists a path from start configuration to an accepting configuration.

BOOLEAN FORMULAS

x = 0, y = 0, z = 1 is a satisfying assignment for:

A boolean formula is satisfiable if there exists a satisfying assignment for it.

YES
$$a \wedge b \wedge c \wedge \neg d$$

NO $\neg (x \vee y) \wedge x$

Definition: SAT is the language consisting of all satisfiable boolean formulas.

SAT = { $\phi \mid \phi$ is a satisfiable boolean formula }

Conjunctive Normal Form (CNF)

- A literal is a variable or the negation of a var.
 - Example: The variable *x* is a literal, and its negation, ¬*x*, is a literal.
- A clause is a disjunction (an OR) of literals.
 - Example: $(x \lor y \lor \neg z)$ is a clause.
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction (an AND) of clauses.
 - Example: $(x \lor \neg z) \land (y \lor z)$ is in CNF.
- A CNF formula is a conjunction of disjunctions of literals.

Definition: A CNF formula is a 3CNF-formula iff each clause has exactly 3 literals.

- A literal is a variable or the negation of a var.
- A clause is a disjunction (an OR) of literals.
- A formula is in Conjunctive Normal Form (CNF) if it is a conjunction (an AND) of clauses.
- A CNF formula is a conjunction of disjunctions of literals.

A language is in NP if and only if there exist polynomial-length certificates for membership to the language.

> SAT is in NP because a satisfying assignment is a polynomial-length certificate that a formula is satisfiable.

solution in polynomial time.

P = NP?

POLY-TIME REDUCIBILITY

 $f: \Sigma^* \to \Sigma^*$ is a polynomial-time computable function if some poly-time Turing machine M, on every input w, halts with just f(w) on its tape.

Language A is polynomial time reducible to language B, written $A \leq_P B$, if there is a polytime computable function $f : \Sigma^* \to \Sigma^*$ such that:

 $w \in A \Leftrightarrow f(w) \in B$

f is called a polynomial-time reduction of A to B.

Theorem: If $A \leq_P B$ and $B \in P$, then $A \in P$.

Proof: Let M_B be a poly-time (deterministic) TM that decides B and let f be a poly-time reduction from A to B.

We build a machine M_A that decides A as follows:

On input w:

- 1. Compute f(w)
- 2. Run M_B on f(w)

Definition: A language B is NP-complete iff:

- 1. $B \in NP$
- 2. Every language in NP is reducible to B in polynomial time.

