Record Types

type EmployeeRecd = {age:int, name:string, salary:int};

- val r = {name="Jones", age=25, salary=45000};

val r = {age=25, name="Jones", salary=45000}
: {age:int, name:string, salary:int}

- (#age r);

val it = 25 : int

- val {name=name r, age=age r, ...} =r;
val age r = 25 : int

val name r = "Jones" : string

- val {name, age, ...} = r;

val age = 25 : int
val name = "Jones" : string



Record Types

- fun YearsToRetirement(butler) =
67 - (#age butler);

stdIn:3.1-4.29 Error: unresolved flex record
(can't tell what fields there are besides #age)

Partial record specifications. A field selection that omits some of the fields

does not completely specity the record type; a function may only be defined
over a complete record type. For instance, a function cannot be defined for all records
that have fields born and died, without specifying the full set of field names (typically
using a type constraint). This restriction makes ML records efficient but inflexible. It
applies equally to record patterns and field selections of the form #label. Ohori (1995)
has defined and implemented flexible records for a vanant of ML.

(L.C. Paulson, ML for the Working Programmer (2nd ed.), sec 2.9, page 35)



Record Types

- fun YearsToRetirement(butler : EmployeeRecd) =
67 - (#age butler);

val YearsToRetirement = fn : EmployeeRecd -> int



Record Types

- fun YearsToRetirement(butler : EmployeeRecd) =
67 - (#age butler);

val YearsToRetirement = fn : EmployeeRecd -> int

- fun YearsToRetirement({age,...} : EmployeeRecd) =
67 - age;

- fun YearsToRetirement({age,name,salary}) =
67 - age;



Record Types
- val r = {name="Jones", age=25, salary=45000}

- YearsToRetirement r;
val it = 42 : int

- map (#salary) [r];
val it = [45000] : int list

- map (#salary);
stdIn:17.1-17.14 Error: unresolved flex record
(can't tell what fields there are besides #salary)



