12

Behavioural Subtyping Using Invariants and

Constraints

Barbara H. Liskov
MIT, Cambridge, MA, USA

Jeannette M. Wing
Carnegie Mellon University, Pittsburgh, PA, USA

12.1 Introduction

What does it mean for one type to be a subtype of another? We argue that this is a
semantic question having to do with the behaviour of the objects of the two types:
the objects of the subtype ought to behave the same as those of the supertype, as
far as anyone or any program using supertype objects can tell.

For example, in strongly typed object-oriented languages such as Simula 67 [DMNT0],
C++ [Str86), Modula-3 [Nel91] and Trellis/Owl [SCB*86], subtypes are used to
broaden the assignment statement. An assignment

xxT:=E

is legal provided that the type of expression E is a subtype of the declared type
T of variable x. Once the assignment has occurred, x will be used according to its
‘apparent’ type T, with the expectation that if the program performs correctly when
the actual type of x’s object is T, it will also work correctly if the actual type of the
object denoted by x is a subtype of T.

Clearly subtypes must provide the expected methods with compatible signa-
tures. This consideration has led to the formulation of the contra/covariance rules
[BHJ*87, SCB*86, Car88] (see Chapter 11). However, these rules are not strong
enough to ensure that the program containing the above assignment will work cor-
rectly for any subtype of T, since all they do is ensure that no type errors will
occur. It is well known that type checking, while very useful, captures only a small
part of what it means for a program to be correct; the same is true for the con-
tra/covariance rules. For example, stacks and queues might both have a put method
to add an element and a get method to remove one. According to the contravariance
rule, either could be a legal subtype of the other. However, a program written in

1 A version of this ¢ hapter was published as ‘A Behavioural Notion of Subtyping’, by B.H. Liskov and
J.M. Wing in the ACM Transactions on Programming Languages and Systems, volume 16, number 6,
November 1994, pp. 1811-1841. This c hapter omits the journal paper’s Section 5.3, Section 7, and all
related paragraphs throughout Sections 1 through 9 that mention our alternative definition of subtyping.
It also omits some related work discussion. Most importantly, the formulation of the key definition is
more elegant in this c hapterthan in the journal paper.

254

Behavioural Subtyping Using Invariants and Constraints 255

the expectation that x is a stack is unlikely to work correctly if x actually denotes
a queue, and vice versa.

What is needed is a stronger requirement that constrains the behaviour of sub-
types: properties that can be proved using the specification of an object’s presumed
type should hold even though the object is actually a member of a subtype of that

type:

Subtype Requirement: Let ¢(z) be a property that is provable about objects x of t ype T.
Then ¢(y) should be true for objects y of t ypeS, where S is a subtype of T.

A type’s specification determines what properties we can prove about objects.

We are interested only in safety properties (‘nothing bad happens’). First, prop-
erties of an object’s behaviour in a particular program must be preserved: to ensure
that a program continues to work as expected, calls of methods made in the pro-
gram which assume that the object belongs to a supertype must have the same
behaviour when the object actually belongs to a subtype. In addition, however,
properties independent of particular programs must be preserved because these are
important when independent programs share objects. We focus on two kinds of such
properties: invariants, which are properties that are true of all states, and history
properties, which are properties that are true of all sequences of states. We formu-
late invariants as predicates over single states and history properties over pairs of
states. For example, an invariant property of a bag is that its size is always less than
its bound; a history property is that the bag’s bound does not change. We do not
address other kinds of safety properties of computations, for example, the existence
of an object in a state, the number of objects in a state or the relationship between
objects in a state, since these do not have to do with the meanings of types. We
also do not address liveness properties (‘something good eventually happens’), for
example, the size of a bag will eventually reach the bound.

This chapter provides a general, yet easy to use, definition of the subtype relation
that satisfies the Subtype Requirement. Our approach handles mutable types and
allows subtypes to have more methods than their supertypes. Dealing with mutable
types and subtypes that extend their supertypes has surprising consequences on
how to specify and reason about objects. In our approach, we discard the standard
data-type induction rule, we prohibit the use of an analogous ‘history’ rule and we
make up for both losses by adding explicit predicates to our type specifications.
Our specifications are formal, which means that they have a precise mathematical
meaning that serves as a firm foundation for reasoning. Our specifications can also
be used informally, as described in [LG85]. '

Our definition applies in a very general distributed environment in which possibly
concurrent users share mutable objects. Our approach is also constructive: one can
prove whether a subtype relation holds by proving a small number of simple lemmas
based on the specifications of the two types.

The chapter also explores the ramifications of the subtype relation and shows
how interesting type families can be defined. For example, arrays are not a subtype

256 B. H. Liskov and J. M. Wing

of sequences (because the user of a sequence expects it not to change over time)
and 32-bit integers are not a subtype of 64-bit integers (because a user of 64-bit
integers would expect certain method calls to succeed that will fail when applied
to 32-bit integers). However, type families can be defined that group such related
types together and thus allow generic routines to be written that work for all fam-
ily members. Our approach makes it particularly easy to define type families: it
emphasizes the properties that all family members must preserve, and it does not
require the introduction of unnecessary methods (i.e., methods that the supertype
would not naturally have).

The chapter is organized as follows. Sectlon 12.2 discusses in more detail what
we require of our subtype relation and provides the motivation for our approach.
We describe our model of computation in Section 12.3 and present our specification
method in Section 12.4. We give a formal definition of subtyping in Section 12.5,
and we discuss its ramifications on designing type hierarchies in Section 12.6. We
describe related work in Section 12.7 and summarize our contributions in Section
12.8.

'12.2 Motivation

To motivate the basic idea behind our notion of subtyping, let us look at an example.
Consider a bounded bag type which provides a put method that inserts elements
into a bag and a get method that removes an arbitrary element from a bag. Put
has a precondition which checks to see that adding an element will not grow the
bag beyond its bound; get has a precondition that checks to see that the bag is
nonempty. ‘

Consider also a bounded stack type that has, in addition to push and pop methods,
a swap_top method that takes an integer, i, and modifies the stack by replacing its
top with i. Stack’s push and pop methods have preconditions similar to bag’s put
and get, and swap_top has a precondition requiring that the stack is non-empty.

Intuitively, stack is a subtype of bag because both kinds of collections behave
similarly. The main difference is that the get method for bags does not specify
precisely what element is removed; the pop method for stack is more constrained,
but what it does is one of the permitted behaviours for bag’s get method. Let us
ignore swap_top for the moment.

Suppose that we want to show that stack is a subtype of bag. We need to relate
the values of stacks to those of bags. This can be done by means of an abstraction
function, like that used for proving the correctness of implementations [Hoa72). A
given stack value maps to a bag value where we abstract from the insertion order
on the elements.

We also need to relate stack’s methods to bag’s. Clearly there is a correspondence
between stack’s push method and bag’s put and similarly for the pop and get methods
(even though the names of the corresponding methods do not match). The pre- and
postconditions of corresponding methods will need to relate in some precise (to be

Behavioural Subtyping Using Invariants and Constraints 257

defined) way. In showing this relationship we need to appeal to the abstraction
function so that we can reason about stack values in terms of their corresponding
bag values.

Finally, what about swap_top? Most other definitions of the subtype relation have
ignored such ‘extra’ methods, and it is perfectly adequate do so when programs are
considered in isolation and there is no aliasing. In such a constrained situation, a
program that uses an object that is apparently a bag but is actually a stack will
never call the extra methods, and therefore their behaviour is irrelevant. However,
we cannot ignore extra methods in the presence of aliasing, and also in a general
computational environment that allows the sharing of mutable objects by multiple
users or processes. In particular, we need to pay attention to extra mutator methods
(like swap_top) that modify their object.

Consider first the case of aliasing. The problem here is that within a program an
object is accessible by more than one name, so that modifications using one of the
names are visible when the object is accessed using the other name. For example,
suppose that o is a subtype of 7 and that variables

X\ T

y: o

both denote the same object (which must, of course, belong to o or one of its
subtypes): When the object is accessed through x, only 7 methods can be called.
However, when it is used through y, o methods can be called; and if these methods
are mutators, their effects will be visible later when the object is accessed via x. To
reason about the use of variable x using the specification of its type 7, we need to
impose additional constraints on the subtype relation.

Now consider the case of an environment of shared mutable objects, such as is
provided by object-oriented databases (e.g., Thor [Lis92] and Gemstone [MS90]).
In such systems, there is a universe containing shared, mutable objects and a way
of naming those objects. In general, lifetimes of objects may be longer than the
programs that create and access them (i.e., objects might be persistent) and users (or
programs) may access objects concurrently and/or aperiodically for varying lengths
of time. Of course there is a need for some form of concurrency control in such
an environment. We assume that such a mechanism is in place and consider a
computation to be made up of atomic units (i.e., transactions) that exclude one
another. The transactions of different computations can be interleaved, and thus
one computation is able to observe the modifications made by another. ' '

If there were subtyping in such an environment, the following situation might
occur. A user installs a directory object that maps string names to bags. Later, a
second user enters a stack into the directory under some string name; such a binding
is analogous to assigning a subtype object to a variable of the supertype. After this,
both users occasionally access the stack object. The second user knows that it is a
stack and accesses it using stack methods. The question is, What does the first user
need to know for his or her programs to make sense?

258 B. H. Liskov and J. M. Wing

We think it ought to be sufficient for a user to know only about the ‘apparent™
type of the object; the subtype ought to preserve any properties that can be proved
about the supertype. In particular, the first user ought to be able to reason about
his or her use of the stack object using invariant and history properties of bag.

Our approach achieves this goal by adding information to type specifications.
To handle invariants, we add an invariant clause; to handle history properties, a
constraint clause. Showing that o is a subtype of T requires showing that (under the
abstraction function) o’s invariant implies 7’s invariant and o’s constraint implies
7’s constraint. : : :

For example, for the bag and stack example, the two invariants are identical: both
state that the size of the bag (stack) is less than or equal to its bound. Similarly, the
two constraints are identical: both state that the bound of the bag (or stack) does not
change. Showing that stack’s invariant and constraint, respectively, imply the bag’s
invariant and constraint is trivial. The extra method swap_top is permitted because,
even though it changes the stack’s contents, it preserves the stack’s invariant and
constraint. '

In Section 12.5 we present and discuss our subtype definition. First, however, we
define our model of computation and then discuss specifications, since these define
the objects, values and methods that will be related by the subtype relation.

12.3 Model of Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint
typed sets. Each object has a unique identity. A type defines a set of values for an
object and a set of methods that provide the only means to manipulate that object.
Effectively, Objis a set of unique identifiers for all objects that can contain values.

Objects can be created and manipulated in the course of program execution. A
state defines a value for each existing object. It is a pair of mappings, an environment
and a store. An environment maps program variables to objects; a store maps
objects to values. ' :

State = Env x Store
Env = Var — Obj
Store = Obj — Val

Given a variable, z, and a state, p, with an environment, p.e, and store, p.s, we use
the notation z, to denote the value of z in state p; that is, z, =p.s(p.e(z)). When
we refer to the domain of a state, dom(p), we mean more precisely the domain of
the store in that state.

We model a type as a triple, (O, V, M), where O C Obj is a set of objects,
V C Valis a set of values and M is a set of methods. Each method for an object is
a producer, an observer or a mutator. Producers of an object of type 7 return new
objects of type 7; observers return results of other types; mutators modify objects of
type 7. An object is immutable if its value cannot change and otherwise it is mutable;

Behavioural Subtyping Using Invariants and Constraints 259

a type is immutable if its objects are and otherwise it is mutable. Clearly a type
can be mutable only if some of its methods are mutators. We allow ‘mized methods
where a producer or an observer can also be a mutator. We also allow methods
to signal exceptions; we assume termination exceptions, that is, each method call
either terminates normally or in one of a number of named exception conditions.
To be consistent with object-oriented language notation, we write z.m(a) to denote
the call of method m on object z with the sequence of arguments a.

Objects come into existence and get their initial values through creators. (These
are often called constructors in the literature.) Unlike other kinds of methods,
creators do not belong to particular objects, but rather are independent operations.

A computation, that is, program execution, is a sequence of alternating states and
transitions starting in some initial state, po:

po Try p1 .. Pnar Trn pn-

Each transition, Tr;, of a computation sequence is a partial function on states; we
assume that the execution of each transition is atomic. A history is the subsequence
of states of a computation; we use p and 9 to range over states in any computation,
¢, where p precedes 1 in ¢. The value of an object can change only through the
invocation of a mutator; in addition, the environment can change through assign-
ment and the domain of the store can change through the invocation of a creator or
producer. - ' '
Objects are never destroyed:

V1<i<n.dom(pi-1) C dom(p;).

12.4 Specifications
12.4.1 Type Specifications

A type specification includes the following information:

the type’s name;

a description of the type’s value space;

a definition of the type’s invariant and history properties;
for each of the type’s methods:

— its name;
— its signature (including signaled exceptions);
— its behaviour in terms of preconditions and postconditions.

Note that the creators are missing. Omitting creators allows subtypes to provide
different creators than their supertypes. In addition, omitting creators makes it easy
for a type to have multiple implementations, allows new creators to be added later
and reflects common usage: for example, Java interfaces and virtual types provide
no way for users to create objects of the type. We show how to specify creators in-
Section 12.4.2.

260 B. H. Liskov and J. M. Wing

In our work we use formal specifications in the two-tiered style of Larch [GHW85].
The first tier defines sorts, which are used to define the value spaces of objects. In
the second tier, Larch interfaces are used to define types.

For example, Figure 12.1 gives a specification for a bag type whose objects have
methods put, get, card and equal. The uses clause defines the value space for the
type by identifying a sort. The clause in the figure indicates that values of objects
of type bag are denotable by terms of sort B introduced in the BBag specification;
a value of this sort is a pair, (elems, bound), where elems is a mathematical multiset
of integers and bound is a natural number. The notation { } stands for the empty
multiset, U is a commutative operation on multisets that does not discard duplicates,
¢ is the membership operation and | z | is a cardinality operation that returns the
total number of elements in the multiset z. These operations as well as equality (=)
and inequality (#) are all defined in BBag. '

The invariant clause contains a single-state predicate that defines the type’s
invariant properties. The constraint clause contains a two-state predicate that
defines the type’s history properties. We will discuss these clauses in more detail in
subsequent sections. '

bag = type

uses BBag (bag for B)
for all b: bag

invariant | b,.elems |< b,.bound
constraint b,.bound = by.bound

put = proc (i: int)
requires | bpre.clems |< bpre .bound
modifies b :
ensures by o5 elems = bpre.clems U {i} A bpost-bound =. bpre-bound

get = proc () returns (int)
requires byre.elems # {}
" modifies b '
ensures by oo elems = bpre-elems — {resull} A result€ bpre-elems A
by ost bound = bpre -bound

card = proc () returns (int)
ensures result=| bpr.elems |

equal = proc (a: bag) returns (bool)
ensures result= (a =)

end bag
Fig. 12.1. A typespecification for bags.

Behavioural Subtyping Using Invariants and Constraints 261

The body of a type specification provides a specification for each method. Since a
method’s specification needs to refer to the method’s object, we introduce a name for
that object in the for all line. We use result to name a method’s result parameter.
In the requires and ensures clauses z stands for an object, Zpre for its value in the
initial state and o, for its value in the final state.t Distinguishing between initial
and final values is necessary only for mutable types, so we suppress the subscripts
for parameters of immutable types (like integers). We need to distinguish between
an object, z, and its value, Zpre O Zpost, because we sometimes need to refer to
the object itself, for example, in the equal method, which determines whether two
(mutable) bags are the same object.

A method m’s precondition, denoted m.pre, is the predicate that appears in its re-
quires clause; for example, put’s precondition checks to see that adding an element
‘will not enlarge the bag beyond its bound. If the clause is missing, the precondltlon
1s trivially ‘true’.

A method m's postcondztzon, denoted m.post, is the conjunction of the predi-
cates given by its modifies and ensures clauses. A modifies zy,...,2, clause is
shorthand for the predicate:

V z € (dom(pre) — {z1,--.,2n}) - Tpre = Tpost,

which says that only objects listed may change in value.. A modifies clause is a
strong statement about all objects not explicitly listed, that is, their values may
not change; if there is no modifies clause, then nothing may change. For example;
card’s postcondition says that it returns the size of the bag and no objects (including
the bag) change, and put's postcondition says that the bag’s value cha.nges by the
addition of its integer argument, and no other objects change.

Methods may terminate normally or exceptionally; the exceptions are listed in a
signals clause in the method’s header. For example, instead of the get method we
might have had:

get' = proc () returns (int) signals (empty)
modifies b
ensures .if bp..elems = { } then signal empty
else by opselemns = bpre.clems — {result} A
result € byre.elems A by ospbound = bpre.bound.

12.4.2 Specifying Creators
Objects are created and initialized through creators. Figure 12.2 shows specifications
for three different creators for bags. The first creator creates a new empty bag whose
bound is its integer argument. The second and third creators fix the bag’s bound to
be 100. The third creator uses its integer argument to create a singleton bag. The
assertion new(z) stands for the predicate:

1 Note that pre and post are implicitly universally quantified variables over states. Also, more formally,
Zpre stands for pre.s(pre.e(z)) and zpost stands for post. s(post.e(z)).

262 B. H. Liskov and J. M. Wing
z € dom(post) — dom(pre). .
Recall that objects are never destroyed, so that dom(pre) C dom(post).

~ bag_create= proc (n: int) returns (bag)
requires n > 0
ensures new(result) A resultpose = ({},n)

bag_create_small = proc () returns (bag)
ensures new(resul_t) A resultyos = ({},100)

- bag_create_single = proc (i: int) returns (bag)
ensures new(result) A resultpo,e = ({i},100)

Fig. 12.2. Creator specifications for bags.

12.4.3 Type Specifications Need Explicit Invariants

By not including creators in type specifications, and by. allowing subtypes to extend
supertypes with -mutators, we lose a powerful reasoning tool: data type induction.
Data type induction is used to prove type invariants. The base case of the rule
requires that each creator of the type establish the invariant; the inductive case re-
quires that each method (in particular, esach mutator) preserve the invariant. With-
out the creators, we have no base case.. Without knowing all mutators of type 7 (as
added by 7’s subtypes), we have an incomplete inductive case. With no data type
induction rule, we cannot prove type invariants!

To compensate for the lack of a data type induction rule, we state the invariant
‘explicitly in the type specification through an invariant clause; if the invariant is
trivial (i.e., identical to ‘true’), the clause can be omitted. The invariant defines the
legal values of its type 7. For example, we include

invariant | b,.elems |< b,.bound

in the type specification of Figure 12.1 to state that the size of a-bounded bag never
exceeds its bound. The predicate ¢(z,) appearing in an invariant clause for type
r stands for the predicate: for all computations, ¢, and all states p in c,

Vz:7.z € dom(p) = ¢(z,)-

Any additional invariant property must follow from the conjunction of the type’s
invariant and invariants that hold for the entire value space. For example, we could
show that the size of a bag is nonnegative because this is true for all mathematical
multiset values.

As part of specifying a type and its creators we must show that the invariant holds
for all objects of the type. All creators for a type 7 must establish 7’s invariant, L.

For each creator for t ype, show for all z:7 that I [r esulp ost/ Tp),

Behavioural Subtyping Using Invariants and Constraints 263

where P[a/ b] stands for predicate P with every occurrence of b replaced by a.
Similarly, each producer must establish the invariant on its newly created object. In
addition, each mutator of the type must preserve the invariant. To prove this, we
assume that each mutator is called on an object of type 7 with a legal value (one
that satisfies the invariant) and show that any value of a T object that it modifies

is legal:
For each mutator m of 7, for all z:7 assume Ir[Zpre/,] and show I {Zp os/ Tp]-

For example, we would need to show that the three creators for bé.g establish
the invariant, and that put and get preserve the invariant for bag. (We can ignore
card and equal because they are observers.) Informally, the invariant holds because
each creator guarantees that the size is no larger than the bound; put's precondition
checks that there is enough room in the bag for another element; and get either
decreases the size of the bag or leaves it the same.

The loss of data type induction means that additional invariants cannot be proved
Therefore, the specifier must be careful to define an invariant that is strong enough
that all desired invariants follow from it. '

1 2.4.4 Type Specifications Need Ezplicit Constraints
We are interested in the history properties of objects in addition to their invariant
properties. We can formulate history properties as predicates over state pairs and
prove them using the history rule:

History Rule: For each of the i mutators m of 7, for all z : 7:

mq.pre A m;.post = @[Tpre/ Tp, Tpost/ Ty)
B0, Ty)

We cannot use this history rule directly, however. It is incomplete since subtypes
may define additional mutators. If we use it without considering the extra mutators,
it is easy to prove properties that do not hold for subtype objects!

To compensate for the lack of the history rule, we state history propertles explicitly
in the type specification through a constraint clauset; if the constraint is trivial,
the clause can be omitted. For example, the constraint

constraint b,.bound = by.bound

in the specification of bag declares that a bag’s bound never changes. As another
example, consider a fat_set object that has an insert but no delete method; fat_sets
only grow in size. The constraint for fat_set would be

constraint V i:int . i € s, = 1 € sy.

t The use of the term ‘constraint’ is borrowed from the Ina Jo specification language [SH92], which also
includes constraints in specifications.

264 B. H. Liskov and J. M. Wing

The predicate ¢(z,, Z,;) appearing in a constraint clause for type 7 stands for the
_predicate: for all computations, ¢ and all states p and 9 in ¢ such that p precedes

¥,

Vz:7.z € dom(p) = ¢(zp, Ty)-

Note that we do not require that 1 be the immediate successor of p in c.

Just as we had to prove that methods preserve the invariant, we must also show
that they satisfy the constraint. This is done by using the history rule for each
mutator. '

The loss of the history rule is analogous to the loss of a data type induction rule.
A practical consequence of not having a history rule is that the specifier must make
the constraint strong enough so that all desired history properties follow from it.

12.5 The Meaning of Subtype
12.5.1 Specifying Subtypes

To state that a type is a subtype of some other type, we simply append a subtype
clause to its specification. We allow multiple supertypes; there would be a separate
subtype clause for each. An example is given in Figure 12.3. ,

A subtype’s value space may be different from its supertype’s. For example,
in the figure the sort, S, for bounded stack values is defined in BStack as a pair,
(items, limit), where items is a sequence of integers and limit is a natural number.
The invariant indicates that the length of the stack’s sequence component is less
than or equal to its limit. The ‘constraint indicates that the stack’s limit does not
change. In the pre- and postconditions, [] stands for the empty sequence, || is
concatenation, last picks off the last element of a sequence, and allButLast returns
a new sequence with all but the last element of its argument. R

Under the subtype clause we define an abstraction function, A, that relates
stack values to bag values by relying on the helping function, mk._elems, that maps
sequences to multisets in the obvious manner. (We will revisit this abstraction
function in Section 12.5.3.) The subtype clause also lets specifiers relate subtype
methods to those of the supertype. The subtype must provide all methods of-its
supertype; we refer to these as the inherited methodst. Inherited methods can be
renamed, for example, push for put; all other methods of the supertype are inherited
without renaming, for example, equal. In addition to the inherited methods, the
subtype may also have some eztra methods, for example, swap_top. (Stack’s equal
method must take a bag as an argument to satisfy the contravariance requirement.

We discuss this issue further in Section 12.6.1.)

+ We do not mean that the subtype inherits the code of these methods, but simply that it provides methods
with the same behaviour (as defined below) as the corresponding supertype methods.

Behavioural Subtyping Using Invariants and Constraints 265

stack = type

uses BStack (stack for S)
for all s: stack

invariant length(s,.items) < s,.limit
constraint s,.limit = sy.limit

push = proc (i: int)
requires length(spre.items) < spre.limit
modifies s ,
ENSUres 'Sp opsitems = Spre.items || [i] A 8posslimit = spre.limit

pop = proc () returns (int)
requires s,.items # | |
modifies s :
ensures result= last(spre.items) A 8p ospitems = allButLast(8pre.items) A
Sp osplimit = Spre.limit

swap_top = proc (i: int)
requires spre.items # [|
modifies s
ensures s, o,pitems = allButLast(spre-items) || [i] A pomlimit = Spre-limit

height = proc () returns (int)
ensures resuli= length(spre.items)

equal = proc (t: bag) returns (bool)
ensures result= (s =1t)

subtype of bag (push for put, pop for get, height for cerd)
Vst: S . A(st) = (mk_elems(st.items), st.limit)
where mk_clems : Seq - M
Vi: Int,sq: Seq
mk_elems([]) = { } :
mk_elems(sq || [¢]) = mk_elems(sq) U {i}

end stack
Fig. 12.3. Stack t ype.

12.5.2 Definition of Subtype

The formal definition of the subtype relation, <, is given in Figure 12.4. It relates
two types, o and 7, each of whose specifications respectively preserves its invariant,
I, and I, and satisfies its constraint, C, and C,. In the rules, since z is an object
of type o, its value (Zpre OF Zpost) is @ member of S and therefore cannot be used
directly in the predicates about 7 objects (which are in terms of values in T). The
abstraction function A is used to translate these values so that the predicates about

266 B. H. Liskov and J. M. Wing

T objects make sense. A may be partial, need not be onto, but can be many-to-one.
We require that an abstraction function be defined for all legal values of the subtype
(although it need not be defined for values that do not satisfy the subtype invariant).
Moreover, it must map legal values of the subtype to legal values of the supertype.

DEFINITION OF THE SUBTYPE RELATION, <: ¢ = (0,,59,M) is a subtype of
= (O, T, N) if there exists an abstraction function, 4 : §.— T, and a renaming
map, K : M - N, such that:
(i) Subtype methods preserve the supertype methods’ behaviour. If m, of 7 is
the corresponding renamed method m, of o, the following rules must hold:
o Signature rule.
— Contravariance of arguments. m, and m, have the same number of
arguments. If the list of argument t ypesof m; is a; and that of m, is
Bi,then Vi . a; < 6;.
— Covariance of result.. Either both m, and m, have a resuit or nexther
has. If there is a result, let m,’s result t ypebe a and m,’s be 8. Then
B=Xa.
— Ezception rule. The exceptions signaled by m,, are contained in the set
of exceptions signaled by m,..

e Methods rule. Forall:r o:

— Precondition rule. m,- pre[A(:z:p,,) [Zpre] = mg.pre.
— Postcondition rule. m,.post = m,.post[A (x,")/z,n, A(Zp 0sd)/ Zp osf

(ii) Subtypes preserve supertype properties. For all computations, ¢, and all
states p and ¢ in c such that p precedes ¢, for all z: o: '

e Jnvariant Rule. Subtype invariants ensure supertype invariants.
I, = I [A(zp)/ o]

e Constraint Rule. Subtype constraints ensure supertype constraints.
Co = Cr[A(2p)/Tp, A(zyp)/zy)

Fig. 12.4. Definition of the subtype relation.

The first clause addresses the need to relate inherited methods of the subtype.
Our formulation is similar to America’s [Ame90]. The first two signature rules are
the standard contra/covariance rules. The exception rule says that m, may not sig-
nal more than m,, since a caller of a method on a supertype object should not expect
to handle an unknown exception. The pre- and postcondition rules are the intuitive
counterparts to the contravariant and covariant rules for signatures. The precon-
dition rule ensures that the subtype’s method can be called at least in any state
required by the supertype. The postcondition rule says that the subtype method’s
postcondition can be stronger than the supertype method’s postcondition; hence,
any property that can be proved based on the supertype method’s postcondition
also follows from the subtype’s method’s postcondition.

The second clause addresses preserving program-independent properties. The
invariant rule and the assumption that the type specification preserves the invariant

Behavioural Subtyping Using Invariants and Constraints 267

suffice to argue that invariant properties of a supertype are preserved by the subtype.
The argument for the preservation of subtype’s history properties is completely
analogous, using the constraint rule and the assumption that the type specification
satisfies its constraint.

We do not include the invariant in the methods (or constraint) rule directly. For
example, the precondition rule could have been

(mer.pre[A(Zpre)/ Zpre] A Ir[A(Tpre)/ Tpre]) = mo-pre.

We omit adding the invariant because if it is needed in doing a proof, it can always
be assumed, since it is known to be true for all objects of its type.

Note that in the various rules we require z : o, yet x appears in predicates
concerning T objects as well. This makes sense because o <X 7.

12.5.8 Applying the Definition of Subtyping as a Checklist
Proofs of the subtype relation are usually obvious and can be done by inspection.
Typically, the only interesting part is the definition of the abstraction function;
the other parts of the proof are usually straightforward. However, this section
~ goes through the steps of an informal proof just to show what kind of reasoning is
involved. Formal versions of these informal proofs are given in [LW92].
Let us revisit the stack and bag example using our definition as a checklist. Here

0 = (Ostack> S, {push, pop, swap_top, height, equal})
7 = (Obag, B, {put, get, card, equal}).
Recall that we represent a bounded bag’s value as a pair, (elems, bound), of a
multiset of integers and a fixed bound, and a bounded stack’s value as a pair,
(items, limit), of a sequence of integers and a fixed bound. It can easily be shown
that each specification preserves its invariant and satisfies its constraint.

We use the abstraction function and the renaming map given in the specification
for stack in Figure 12.3. The abstraction function states that for all st : S,

A(st) = (mk_elems(st.items), st. hmzt),

where the helping function, mk_elems : Seg = M, maps sequences to multlsets such
that for all sq: Seq, i : Int:

mk_elems([]) ={ }
mk_elems(sq || [i]) = mk_elems(sq) U {i}.
A is partial; it is defined only for sequence-natural numbers pairs, (items, limit),
where limit is greater than or equal to the size of items.
The renaming map R is

R(push) = put
R(pop) = get
R(height) = card
R(equal) = equal.

268 B. H. Liskov and J. M. Wing

Checking the signature and exception rules is easy and could be done by the com-
piler.

Next, we show the correspondences between push and put, between pop and get,
and so on. Let us look at the pre- and postcondition rules for just one method,
push. Informally, the precondition rule for put/push requires that we showt: v

| A(Spre)-elems |< A(Spre).bound
=
length(spre .items) < Spre.limit.

Intuitively, the precondition rule holds because the length of the stack is the same
as the size of the corresponding bag, and the limit of the stack is the same’as the
bound for the bag. Here is an informal proof with slightly more detail:

(i) A maps the stack’s sequence component to the bag’s multiset by putting
all elements of the sequence into the multiset. Therefore the length of the
sequence Spre.items is equal to the size of the multiset A(spre).elems.

(ii) Also, A maps the limit of the stack to the bound of the bag, so that s,,,,.limit =
A(Spre).bound.

(iii) From put's precondition we know that | A(spre).elems |< A(8pre)- bound
(iv) push’s precondition holds by substituting equals for equals.

Note the role of the abstraction function in this proof. It allows us to relate stack
and bag values, and therefore we can relate predicates about bag values to those
about stack values, and vice versa. Also note how we depend on A being a function
(in step (iv),' where we use the substitutivity property of equality).

The postcondition rule requires that we show that push’s postcondition implies
put’s. We can deal with the modifies and ensures parts separately. The modifies
part holds because the same object is mentioned in both specifications. The ensures
part follows from the definition of the abstraction function.

The invariant rule requires that we show that the invariant on stacks:

length(s,.items) < s,.limit -
implies that on bags:
| A(sp).elems |< A(s,).bound.

We can show this by a simple proof of induction on the length of the sequence of a

bounded stack.
The constraint rule requires that we show that the constraint on stacks:

sp.limit = sy.limat
implies that on bags:
A(sp).bound = A(sy).bound.

t Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the same
object (b appears in the bag specification).

Behavioural Subtyping Using Invariants and Constraints 269

This is true because the length of the sequence component of a stack is the same as
the size of the multiset component of its bag counterpart.

Note that we do not have to say anything specific for swap_top; it is taken care of
just like all the other methods when we show that the specification of stack satisfies
its invariant and constraint. ‘

12.6 Type Hierarchies

The requirement that we impose on subtypes is very strong and raises a concern
that it might rule out many useful subtype relations. To address this concern we
looked at a number of examples. We found that our technique captures what people
want from a hierarchy mechanism, but we also discovered some surprises.

The examples led us to classify subtype relationships into. two broad categories.
In the first category, the subtype extends the supertype by providing additional
methods and possibly an additional ‘state’. In the second, the subtype is more
constrained than the supertype. We discuss these relationships in the followmg In
practice, many type families will exhibit both kinds of relationships.

12.6.1 Extension Subtypes

A subtype extends its supertype if its. objects have extra methods in -addition to
those of the supertype. Abstraction functions for extension subtypes are onto, that
is, the range of the abstraction function is the set of all legal values of the supertype.
The subtype might simply have more methods; in this case the abstraction function
is one-to-one. Or its objects might also have more ‘state’, that is, they might
record information that is not present in objects of the supertype; in this case the
abstraction function is many-to-one.

As an example of the one-to-one case, consider a type intset (for set of integers)
with methods to insert and delete elements, to select elements and to provide the
size of the set. A subtype, intset2, might have more methods, for example, union,
is_empty. Here there is no extra state, just extra methods. Suppose that intset’s
invariant and constraints are both trivial; intset2’s would be as well. Thus, proving
that intset2 preserves intset’s invariant and constraint is trivial. '

It is easy to discover when a proposed subtype really is not one. For example, the
fat_set type discussed earlier has an insert method but no delete method. Intset is
not a subtype of fat_set, because fat_sets only grow while intsets grow and shrink;
intset does not preserve various history properties of fat_set, in particular, the con-
straint that once some integer is in the fat_set, it remains in the fat_set. The attempt
to show that the intset constraint (which is trivial) implies that of fat_set would fail.

As a simple example of a many-to-one case, consider immutable pairs and triples
(Figure 12.5). Pairs have methods that fetch the first and second elements; triples
have these methods plus an additional one to fetch the third element. Triple is a
subtype of pair and so is semimutable triple with methods to fetch the first, second

270 B. H. Liskov and J. M. Wing

~ immutable pair
immutable triple ~ semi-mutable triple

Fig. 12.5. Pairs and triples.

person

student employee

student_employee

Fig. 12.6. Person, student and employee.

and third elements and to replace the third element, because replacing the third
element -does not affect the first or second element. This example shows that it is
possible to have a mutable subtype of an immutable supertype, provided that the
mutations are invisible to the users of the supertype.

Mutations of a subtype that would be visible through the methods of an im-
mutable supertype are ruled out. For example, an immutable sequence whose ele-
ments can be fetched but not stored is not a supertype of a mutable array, which
provides a store method in addition to the sequence methods. For sequences we
can prove that elements do not change; this is not true for arrays. The attempt
to construct the subtype relation will fail because the constraint for sequences does
not follow from that for arrays. '

Many examples of extension subtypes are found in the literature. One common ex-
ample concerns persons, employees and students (Figure 12.6). A person object has
methods that report its properties, such as its name, age and possibly its relationship
to other persons (e.g., its parents or children). Student and employee are subtypes
of person; in each case they have additional properties, for example, a. student id
number, an employee employer and salary. In addition, type student_employee is a
subtype of both student and employee (and also person, since the subtype relation
is transitive). In this example, the subtype objects have more state than those of
the supertype, as well as more methods.

Another example from the database literature concerns different kinds of ships

Behavioural Subtyping Using Invariants and Constraints 271

[HMS81)]. The supertype is generic ships with methods to determine such things
as who is the captain and where the ship is registered. Subtypes contain more
specialized ships such as tankers and freighters. There can be quite an elaborate
hierarchy (e.g., tankers are a special kind of freighter). Windows are another well-
known example [HO87); subtypes include bordered windows, colored windows and
scrollable windows. '

Common examples of subtype relationships are allowed by our definition provided
that the equal method (and other similar methods) are defined properly in the sub-
type. Suppose that supertype 7 provides an equal method and consider a particular
call z.equal(y). The difficulty arises when z and y actually belong to o, a subtype
of 7. If objects of the -subtype have additional state, z and y may differ when
considered as subtype objects but ought to be considered equal when considered as
supertype objects.

For example, consider immutable triples z = (0,0,0) and y = (0 0,1). Suppose
-~ that the specification of the equal method for pairs says that

equal = proc (g: pair) returns (bool)
ensures result= (p.first = q¢.first A p.second = g. second)

(We are using p to refer to the method’s object.) However, we would expect two
triples to be equal only if their first, second and third components were equal. If a
program using triples had just observed that z and y differ in their third element,
we would expect z.equal(y) to return ‘false’; but if the program were using them as
pairs and had just observed that their first and second elements were equal, it would
be wrong for the equal method to return false.

The way to resolve this dilemma. is to have two equal methods in triple:

pair_equal = proc (p: pair) returns (bool)
ensures result= (p.first = q.first A p.second = q.second)

triple_equal = proc (p: triple) returns (bool)
ensures result= (p.first = g.first A p.second = g.second
A p.third = q.third).

One of them (pair_equal) simulates the equal method for pair; the other
(triple_equal) is a method just on triples. (In some object-oriented languages, such
as Java, the additional equal methods are. obtained by overloading.)

The problem is not limited to equality methods, or even, more generally, binary -
methods [B*95]. It also affects methods that ‘expose’ the abstract state of objects,
for example, an unparse method that returns-a string representation of the abstract
state of its object. z.unparse() ought to return a representation of a pair if called in a-

context in which z is considered to be a pair, but it ought to return a representation
of a triple in a context in which z is known to be a triple-(or some subtype of a
triple).

The need for several equality methods seems natural for realistic examples. For
example, asking whether el and e2 are the same person is different from asking

272 B. H. Liskov and J. M. Wing

if they are the same employee. In the case of a person holding two jobs, the an-
swer might be true for the question about person but false for the question about

employee.

12.6.2 Constrained Subtypes

The second kind of subtype relation occurs when the subtype is more constrained
than the supertype. In this case, the supertype specification is written in a way that
allows variation in behaviour among its subtypes. Subtypes constrain the supertype
by reducing the variability. The abstraction function is usually into rather than onto.
The subtype may extend those supertype objects that it simulates by providing
additional methods and/or a state.

Since constrained subtypes reduce variation, it is crucial when defining this kind
. of type hierarchy to think carefully about what variability is permitted for the
subtypes. The variability will show up in the supertype specifications in two ways: in
the invariant and constraint, and also in the specifications of the individual methods.
In both cases the supertype definitions will be nondeterministic in those places where
different subtypes are expected to provide different behaviour.

A very simple example concerns elephants. Elephants come in many colors (re-
alistically grey and white, but we will also allow blue ones). However, all albino
elephants are white and all royal elephants are blue. Figure 12.7 shows the elephant
hierarchy. The set of legal values for regular elephants includes all elephants whose
color is grey .or blue or white: ‘

invariant e,.color = white V ep.co’lbr = grey V e,.color = blue.
‘The set of legal values for royal elephants is a subset of those for regular elephants:
invariant e,.color = blue

and hence the abstraction function is into. The situation for albino elephants is
similar. Furthermore, the elephant method that returns the color (if there is such
a method) can return grey or blue or white, that is, it is nondeterministic; the
subtypes restrict the nondeterminism for this method by defining it to return a
specifc color. "

This simple example has led others to define a subtyping relation that requires
nonmonotonic reasoning [Lip92], but we believe that it is better to use variability
in the supertype specification and straightforward reasoning methods. However,
the example shows that a specifier of a type family has to anticipate subtypes and
capture the variation among them in the specification of the supertype.

The bag type discussed in Section 12.4.1 has two kinds of variability. First, as
discussed earlier, the specification of get is nondeterministic because it does not
constrain which element of the bag is removed. This nondeterminism allows stack
to be a subtype of bag: the specification of pop constrains the nondeterminism. We

Behavioural Subtyping Using Invariants and Constraints 273

elephant

N

royal albino

Fig. 12.7. Elephant hierarchy.

_ . bag
Jargebag mediumbag ' smallbag
(bound = 2 32) (100 <= bound <= 1000) (bound = 20)
bag_150
(bound = 150)

Fig.. 12.8. A type f#mﬂy for bags.

could also define a queue-that is a subtype of bag; its dequeue method would also
constrain the nondeterminism of get, but in a way different from pop.

In addition, the actual value of the bound for bags is not defined; it can be any
natural number, thus allowing subtypes to have different bounds. This variability
shows up in the specification of put, where we do not say what specific bound value
causes the call to fail. Therefore, a user of put must be prepared for a failure.
(Of course the user could dedu_ce that a particular call will succeed, based on a
previous sequence of method calls and the constraint that the bound of a bag does
not change.) A subtype of bag might limit the bound to a fixed value, or to a smaller
range. Several subtypes of bag are shown in Figure 12.8; mediumbags have various
bounds, so that this type might have its own subtypes, for example, bag.150. »

The bag hierarchy may seem counterintuitive, since we might expect théx_t bags
with smaller bounds should be subtypes of bags with larger bounds. For example,
we might expect smallbag to be a subtype of largebag. However, the specifications
for the two types are incompatible: the bound of every largebag is 232 which is
clearly not true for smallbags. Furthermore, this difference is observable via the
methods: it is legal to call the put method on a largebag whose size is greater than
or equal to 20, but the call is not legal for a smallbag. Therefore the precondition
rule is not satisfied.

274 B. H. Liskov and J. M. Wing

varying_bag
I: size <= bound
C: true
 flexible_bag dynamic_bag bag
I: size <= bound I: size = bound I: size <= bound
C: true C: true C: bound stays the same
[...as in Fig. 8...]

Fig. 12.9. Another t ypefamily for bags.

Although the bag type can have subtypes with different bounds, it cannot have
subtypes where the bounds of the bags can change dynamically. If we wanted a
type family that included both bag and such dynamic bags, we would need to define
a supertype in which the bound is allowed, but not required, to vary. Figure 12.9
shows the new type hierarchy. Dynamic.bags have a bound that tracks the size:
each time an element is added or removed from a dynamic_bag, the bound changes
to match the new size. Flexible_bags have an additional mutator, change_bound:

change_bound = proc (n: int)

requires n >| bype.elems |
modifies b '
ensures by osselems = bpre.elems A bp oss bound = n.

Notice that other types in the family need not have a change_bound method

This example illustrates the different ways that subtypes reduce variability. All
varying_bag subtypes reduce variability in the specification for the put method;
varying_bag’s put method is nondeterministic, since it might add the element (and
change the bound) if the size is the same as the bound, or it might not. Bag and
flexible_bag reduce this variability by not adding the element, whereas dynamic_bag
does add the element. In addition, bag reduces variability by restricting the con-
straint: the trivial constraint for varying bag can be thought of as stating ‘either a
bag’s bound may change or it stays the same’; the constraint for bag reduces this
variability by making a choice (‘the bag’s bound stays the same’), and users can then
rely on this property for bags and its subtypes. Dynamic.bag reduces variability by
restricting varying_bag’s invariant, so that it no longer allows the size to be less than
the bound. Finally, flexible_bag reduces variability because of the extra mutator,
change_bound; all of its subtypes must allow explicit resetting of the bound.

Another example is a family of integer counters shown in Figure 12.10. When a

Behavioural Subtyping Using Invariants and Constraints 275

counter

(value never decreases)

T

incrementer doubler multiplier

(value never decreases) (value doubles) ~(value multiplies)

Fig. 12.10. Type family for counters.

counter is advanced, we only know that its value gets bigger, so that the constraint
is simply
constraint ¢, < cy.

The doubler and multiplier subtypes have stronger constraints. For example, a
multiplier’s value always increases by a multiple, so that its constraint is

constraint 3 n:int . [n>0Ac, =n*cy).

For a family like this, we might choose to have an advance method for counter (so
that each of its subtypes is constrained to have this method), or we might not. If
we do provide an advance method, its specification will have to be nondeterministic
(i.e., it merely states that the size of the counter grows) to allow the subtypes to
. provide the definitions that are appropriate for them.

In the case of the bag family illustrated in Figure 12.8, all types in the hierarchy
might be ‘real’ in the sense that they have objects. However, sometimes supertypes
are virtual; they define the properties that all subtypes have in common but have
no objects of their own. Varying bag of Figure 12.9 might be such a type.

Virtual types are useful in many type hierarchies. For example, we would use
them to construct a hierarchy for integers. Smaller integers cannot be a subtype
of larger integers because of observable differences in behaviour; for example, an
overflow exception that would occur when adding two 32-bit integers would not
occur if they were 64-bit integers. Also, larger integers cannot be a subtype of
smaller ones, because exceptions do not occur when expected. However, we clearly
would like integers of different sizes to be related. This is accomplished by designing
a virtual supertype that includes them. Such a hierarchy is shown in Figure 12.11,
where integer is a virtual type whose invariant simply says that the size of an integer
is greater than zero. Integer types with different sizes are subtypes of integer. In
addition, small integer types are subtypes of regular_int, another virtual type; the
invariant in the specification for regular_int states that the size of an integer is either
16 bits or 32 bits. An integer family might have a structure like this, or it might be
flatter by having all integer types be direct subtypes of integer. ‘

276 B. H. Liskov and J. M. Wing

integer

PN

64-bit-int regular_int

N

32-bit-int 16-bit-int

Fig. 12.11. Integer family.

12.7 Related Work

Some research on defining subtype relations is concerned with capturing constraints
on method signatures via the contra/covariance rules, such as those used in lan-
guages like Trellis/Owl [SCB*86], Emerald [BHJ*87], Quest [Car88], Eiffel [Mey88],
POOL [Ame90] and to a limited extent Modula-3 [Nel91]. Our rules place con-
straints not just on the signatures of an object’s methods, but also on their be-
haviour. v

Our work is most similar to that of America [Ame91], who has proposed rules for
determining based on type specifications whether one type is a subtype of another.
Meyer [Mey88] also uses pre- and postcondition rules similar to America’s and ours.
Cusack’s [Cus91] approach of relating type specifications defines subtyping in terms
of strengthening state invariants. However, none of these authors considers neither
the problems introduced by extra mutators nor the preservation of history prop-
erties. Therefore, they allow certain subtype relations that we forbid (e.g., intset
could be a subtype of fat_set in these approaches).

Our use of constraints in place of the history rule is one of two techniques discussed
in [LW94]. That paper proposes a second technique in which there is no constraint;:
instead, extra methods are not allowed to introduce new behaviour. It requires that
the behaviour of each extra mutator be ‘explained’ in terms of existing behaviour,
through existing methods. We believe that the use of constraints is simpler and
easier to reason about than this ‘explanation’ approach.

The emphasis on semantics of abstract typesvis a prominent feature of the work by
Leavens. In his Ph.D. thesis, Leavens [Lea89] defines types in terms of algebras and
subtyping in terms of a simulation relation between them. His simulation relations
are a more general form of our abstraction functions. Leavens considered only
immutable types. Dhara [Dha92, DL92, LD92] extends Leavens’ thesis work to deal
with mutable types, but he rules out the cases where extra methods cause problems,
for example, aliasing. Because of their restrictions, they allow some subtype relations
to hold where we do not. For example, they allow mutable pairs to be a subtype of
immutable pairs, whereas we do not.

Others have worked on the specification of types and subtypes. For example,

Behavioural Subtyping Using Invariants and Constraints 277

many have proposed Z as the basis of specifications of object types [CL91, DD90,
CDD*89)]; Goguen and Meseguer [GM87] use FOOPS; Leavens and his colleagues
use Larch [Lea91, LW90, DL92]. Although several of these researchers separate
the specification of an object’s creators from its other methods, none has identified
the problem posed by the missing creators, and thus none has provided an explicit
solution to this problem.

12.8 Summary

We defined a new notion of the subtype relation based on the semantic properties of
the subtype and supertype. An object’s type determines both a set of legal values
and an interface with its environment (through calls on its methods). Thus, we
are interested in preserving properties about supertype values and methods when
designing a subtype. We require that a subtype preserve the behaviour of the
supertype methods and also all invariant and history properties of its supertype.
We are particularly interested in an object’s observable behaviour (state changes),
thus motivating our focus on history properties and on mutable types and mutators.

We also presented a way to specify the semantic properties of types formally. One
reason we chose to base our approach on Larch is that it allows formal proofs to be
done entirely in terms of specifications. In fact, once the theorems corresponding
to our subtyping rules are formally stated in Larch, their proofs are almost com-
pletely mechanical — a matter of symbol manipulation — and could be done with the -
assistance of the Larch Prover [GG89, ZW97].

In developing our definition, we were motivated primarily by pragmatics. Our
intention is to capture the intuition that programmers apply when designing type
hierarchies in object-oriented languages. However, intuition in the absence of pre-
cision can often go astray or lead to confusion. This is why it has been unclear
how to organize certain type hierarchies, such as integers. Our definition sheds light
on such hierarchies and helps in uncovering new designs. It also supports the kind
of reasoning that is needed to ensure that programs that work correctly using the
supertype continue to work correctly with the subtype. :

Programmers have found our approach relatively easy to apply and use it pri-
marily in an informal way. The essence of a subtype relationship is expressed in
the mappings. These mappings can be defined informally, in much the same way
that abstraction functions and representation invariants are given as comments in a
program that implements an abstract type. The proofs can also be done informally,
in the style given in Section 12.5.3; they are usually straightforward and can be done
by inspection..

We also showed that our approach is useful by looking at a number of examples.
This led us to identify two kinds of subtypes: ones that extend the supertype, and
ones that constrain it. In the former case, the supertype can be defined without a
great deal of thought about the subtypes, but in the latter case this is not possible;
instead, the supertype specification must be done carefully so that it allows all of

278 B. H. Liskov and J. M. Wing

the intended subtypes. In particular, the specification of the supertype must contain
~ sufficient nondeterminism in the invariant, constraint and method specifications.

Our analysis raises two issues about type hierarchy that have been ignored previ-
ously by both the formal methods and object-oriented communities. First, subtypes
can have more methods, specifically more mutators, than their supertypes. Second,
subtypes need to have different creators than supertypes. These issues forced us to
revisit proof rules normally associated with type specifications: the data type in-
duction rule and the history rule. We decided to preclude the use of these rules, and
to have explicit invariants and constraints to replace them. Although it is possible
to define a subtype relation that avoids explicit invariants and constraints, doing so
is awkward and often requires the invention of superfluous supertype methods and
creators. We prefer to use explicit invariants and constraints because this allows a
more direct way of capturing the designer’s intent.

Acknowledgements

B. Liskov is supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract
N00014-91-J-4136, and in part by the National Science Foundation under Grant
CCR-8822158. J. Wing is supported in ‘part by the Defense Advanced Research
Projects Agency and the Wright Laboratory, Aeronautical Systems Center, Air
Force Materiel Command, USAF, F33615-93-1-1330, and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-97-2-0031; and
in part by the National Science Foundation under Grant No. CCR-9523972.

Views and conclusions contained in this document are those of the authors and
'should not be interpreted as necessarily representing official policies or endorsements,
either expressed or implied, by the U.S. Government.

Bibliography

[Ame90] P. America. A parallel object-oriented language with inheritance and subtyping.
SIGPLAN, 25(10):161-168, October 1990. :

[Ame91] P. America. Designing an object-oriented programming language with
behavioural subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in
Computer Science, pages 60-90. Springer-Verlag, 1991.

[B*95] K. Bruce et al. On binary methods. Theory and Practice of Object Systems,
1(3):221-242, 1995.

[BHJ*87] A.P. Black, N. Hutchinson, E. Jul, H. M. Levy, and L. Carter. Distribution
and abstract types in Emerald. JEEE TSE, 13(1):65-76, January 1987.

[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138-164, 1988. :

[CDD*89] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and P. Smith. Object-Z:

Behavioural Subtyping Using Invariants and Constraints 279

An object oriented extension to Z. In FORTESY, International Conference on Formal
Description Technigues. North-Holland, December 1989. -

[CL91] E. Cusack and M. Lai. Object-oriented specification in LOTOS and Z, or my cat
really is object-oriented! In J. W. de Bakker, W. P de Roever, and G. Rozenberg,
editors, Foundations of Object Oriented Languages, Volume 489 of Lecture Notes in
Computer Science, pages 179-202. Springer-Verlag, June 1991.

[Cus91] E. Cusack. Inheritance in object oriented Z. In Proceedings of ECOOP ’91.
Springer-Verlag, 1991. :

[DD90] D. Duke and R. Duke. A history model for classes in object-Z. In Proceedings of
VDM ’90: VDM and Z. Springer-Verlag, 1990. :

[Dha92] K. K. Dhara. Subtyping among mutable t ypesin object-oriented programming
languages. Master’s thesis, lowa State University, Ames, Iowa, 1992. Master’s Thesis.

[DL92] K. K. Dhara and G. T. Leavens. Subtyping for mutable t ypesin object-oriented
programming languages. Technical Report 92-36, Department of Computer Science,

~ Towa State University, Ames, Iowa, November 1992. B

[DMN70] O-J. Dahl, B. Myrhaug, and K. Nygaard. SIMULA common base language.

~ Technical Report 22, Norwegian Computing Center, Oslo, Norway, 1970. ‘

[GG8Y] S. J. Garland and J. V. Guttag: An overview of LP, the Larch Prover. In
Proceedings of the Third International Conference on Rewriting Techniques and :
Applications, Volume 355 of Lecture Notes in Computer Science, pages 137-151, April
1989. :

[GHWS85] J. V. Guttag, J. J. Horning, and J. M. Wing. The Larch family of specification
languages. IEEE Software, 2(5):24-36, September 1985.

[GM87] J. A. Goguen and J. Meseguer. Unifying functional, object-oriented and
relational programming with logical semantics. In Bruce Shriver and Peter Wegner,

- editors, Research Directions in Object Oriented Programming. MIT Press, 1987.

[HM81] M. Hammer and D. McLeod. A semantic database model. ACM Tr ans. Database
Systems, 6(3):351-386, 1981.

[HO87] D. C. Halbert and P. D. O'Brien. Using t ypes and inheritance in object-oriented
programming. IEEE Software, 4(5):71-79, September 1987.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(1):271-281, 1972. _ :

[LD92] G. T. Leavens and K. K. Dhara. A foundation for the model theory of abstract
data t ypeswith mutation and aliasing (preliminary version). Technical Report 92-35,
Department of Computer Science, Iowa State University, Ames, lowa, November 1992.

[Lea89] G. Leavens. Verifying object-oriented prograsm that use subtypes. Technical
Report 439, MIT Laboratory for Computer Science, February 1989. -

[Lea9l] G. T. Leavens. Modular specification and verification of object-oriented
programs. IEEE Software, 8(4):72-80, July 1991. '

[LG85] B. H. Liskov and J. V. Guttag. Abstraction and Specification in Program Design.
MIT Press, 1985. - .

[Lip92] U. Lipeck. Semantics and usage of defaults in specifications. In Foundations of
Information Systems Specification and Design, March 1992. Dagstuhl Seminar 9212
Report 35.

[Lis92] B. H. Liskov. Preliminary design of the Thor object-oriented database system. In
Proceedings of the Software Technology Conference. DARPA, April 1992. Also :
Programming Methodology Group Memo 74, MIT Laboratory for Computer Science,
Cambridge, MA, March 1992. :

[LW90] G. T. Leavens and W. E. Weihl. Reasoning about object-oriented programs that
use subtypes. In ECOOP/OOPSLA ’90 Proceedings, 1990.

[LW92] B. H. Liskov and J. M. Wing. Family values: A semantic notion of subtyping.
Technical Report 562, MIT Laboratory for Computer Science, 1992. Also available as
CMU-CS-92-220.

280 B. H. Liskov and J. M. Wing

[LW94] B. H. Liskov and J. Wing. A behavioural notion of subtyping. ACM
Tr ansactions on Programming Languages and Systems, 16:1811-1841, 1994.

[Mey88] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[MS90] D. Maier and J. Stein. Development and implementation of an object-oriented
DBMS. In S. B. Zdonik and D. Maier, editors, Readings in Object-Oriented Database
Systems, pages 167-185. Morgan Kaufmann, 1990.

[Nel91] G. Nelson. Systems Programming with Modula-3. Prentice Hall, 1991.

[SCB*86] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An introduction
to Trellis/Owl. In Proceedings of OOPSLA ’86, pages 9-16, September 1986.

[SH92] J. Scheid and S. Holtsberg. Ina Jo specification language reference manual.
Technical Report TM-6021/001/06, Paramax Systems Corporation, A Unisys Company,
June 1992. ' ‘ :

[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986. -

(ZW97) A. M. Zaremski and J. M. Wing. Specification matching of software components.
ACM Trans. on Software Engineering and Methodology, 6(4):333-369, October 1997.

