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Abstract - Context sensing for context-aware HCI challenges
traditional sensor fusion methods with its requirements for
(1) adaptability to a constantly changing sensor suite and (2)
sensing quality commensurate with human perception. We
build this paper on two IMTC2002 papers, where the
Dempster-Shafer “theory of evidence” was shown to be a
practical approach to implementing the sensor fusion system
architecture. The implementation example involved fusing
video and audio sensors to find and track a meeting
participant’s focus-of-attention. An extended Dempster-
Shafer approach, incorporating weights representative of
sensor precision, was newly suggested. In the present paper
we examine the weighting mechanism in more detail;
especially as the key point of this paper, we further extend
the weighting idea by allowing the sensor-reliability-based
weights to change over time. We will show that our novel
idea — in a manner resembling Kalman filtering remnance
effects that allow the weights to evolve in response to the
evolution of dynamic factors — can improve sensor fusion
accuracy as well as better handle the evolving environments
in which the system operates.

Keywords: sensor fusion, context-aware computing,
human-computer interaction, Dempster-Shafer
theory, Kalman filtering

I. INTRODUCTION

We build this paper on two previous papers, Sensor
Fusion for Context Understanding [1] and Sensor
Fusion Using Dempster-Shafer Theory [2], presented at
IMTC2002. Inasmuch as this paper is a continuation
and expansion of the second of these two papers, we
need refer back to them in order to make the
background work clear.

The goal of “context aware computing” — which, as a
practical matter, is more-or-less synonymous with
“context aware human computer interaction” — is for
computers to understand environmental context, and
thereby to more accurately interpret noisy and
ambiguous inputs received from the humans with whom
they interact. To achieve this end requires meeting two
challenges (1) how to represent a concept as
anthropocentric as "context" in a computer, and (2) how
to design and deploy the sensors and sensor fusion
systems that will populate the representation's slots.

Of course, one always approaches a hard problem by
initially simplifying it, e.g., by beginning with concrete
parameters that can be adequately defined and sensed
such as, e.g., location, which is not difficult, especially
if the humans involved are cooperative. Enough effort
has already gone into this problem that reasonably
reliable solutions — say, in the 80% range — have been
demonstrated and documented. Sensor fusion
combining a handful of sensors of this order of
reliability can be expected, a priori, to provide system
accuracy approaching arbitrarily close to 100% — how
close obviously depending on the size of the hand.

But real life is yet a little harder, because (1) in real
life it is unlikely that there will be available as many
even “pretty good sensors” as would be needed to
achieve the desired high level of system performance,
and (2) in real life the number of available sensors, and
the reliability of each sensor’s reporting, will vary
unpredictably, and in many situations practically
unknowably on the requisite timescale.

To make it easier to deal with these sticky problems,
in these early papers we consider only simple situations
wherein we can assume that (1) the context information
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is represented by discrete symbols or numbers, (2) the
mapping from sensor output to context representation is
unambiguous, and (3) the sensors are "smart" enough to
report not just data, but also meaningful estimates of its
reliability, i.e., honest measures of self-confidence.
Fortunately, we have available several historical data
sets that record information streams from multiple
sensors of differing modality, and the corresponding
ground truth, thus enabling us to simulate this idealized
scenario. With this simulation, we can start measuring,
analyzing, comparing, and contrasting the performance
of all conceivable sensor fusion architectures and
implementations. Later we will further verify our
findings regarding sensor fusion methods by using
artificially generated data whose actual probability
distributions we can know.

As described in detail in [1] and [2], our actual
approach employs a layered and modularized
architecture, isolating sensed context from sensor
realization, and a Dempster-Shafer “theory of evidence”
based sensor fusion algorithm whose formulating
terminology imitates the terminology we conventionally
attach to the human perception and reasoning processes.
The modularization and architecture is described in [1];
and the works of applying the Dempster-Shafer
algorithm to several of the historical information
streams and comparing the results to an ad hoc
weighted sum of probabilities algorithm are described
in [2].

The conclusion of that paper [2] is that the
Dempster-Shafer approach gives slightly better results
quantitatively, but we argue that it provides a significant
improvement in robustness, e.g., against data packet
loss or catastrophic sensor failure, as well as a built-in,
theoretically and intuitively justifiable mechanism for
evaluating and reporting our confidence in the results as
a function of the device and environmental conditions.
The focus of the present paper is on reporting outcome
realized when: (1) we incorporate, into the Dempster
Shafer algorithm, weighting factors — actually this was
introduced in a preliminary way in [2] — that give
increased credence to sensors with better inherent
reliability, e.g., higher precision, lower drift, built-in
“soft failure” capacity, etc., and (2) we further
incorporate, into the weighting factors, a new dynamic
component — reminiscent of Kalman filtering — that
organically evolves the weights. The sensor fusion
mechanism is thus continuously calibrated according to
the sensors’ recent performance whenever the ground
truth is available.

II. CONTEXT SENSING APPROACH

A. Sensor fusion architecture

The sensor fusion system architecture, discussed in
detail in [1], is reproduced in Fig. 1.

A speaker-identification sensor might decide, for
example, that the current speaker is User-A with
confidence interval of [0.5, 0.7], or s/he is User-B with
confidence interval of [0.3, 0.5]. It might then report
via its Interface Widget a database entry in the format:

Context.Location[room-NSH-A417].People = {
{name=User-A, confidence=[0.5,0.7],
proximity=inside, background=Background[User-A],
..., time=update-time},
{name=User-B, confidence=[0.3,0.5],
proximity=inside, background=Background[User-B],
..., time=update-time}, ...}

Applications

Context Data

Interpreters etc.
> Al Algorithms

Sensor Fusion Mediator
|Dempster-Shafer Theory of Evidence

A A
Interface Widget | | Interface Widget

Fig. 1. System architecture for sensor fusion of context-
aware computing

B. Dempster-Shafer sensor fusion algorithm

The Dempster-Shafer decision theory is essentially a
generalized Bayesian statistical theory. Its new feature
is that it allows distributing support for a proposition
(e.g., "this is User-A") to the union of propositions that
include it (e.g., “this is likely either User-A or User B”).

In a Dempster-Shafer reasoning system, all the
mutually exclusive context interpretations are
enumerated in a "frame-of-discernment”, denoted ©.
For example, if we know that there is a person in an
instrumented room, and from the reality constraints this
person can normally only be “User-A” or “User-B”.
Now our task is to specify the user’s identity as one of
the four possibilities described as:

®={4, B, {4,B}, ¢}



meaning s/he is “User-A”, “User-B”, “either User-A or
User-B” (which is actually an indication of ignorance),
or “neither User-A nor User-B” (which is an indication
of exceptional situation).

With the frame of discernment ® defined, each
sensor Si would contribute its observation by assigning
its beliefs over ®. This assignment function is called the
“probability mass function” of Si, denoted mi.

So, according to Si’s observation, the probability that
“the detected person is user-A” is indicated by a
“confidence interval” whose lower bound is a "belief"
and whose upper bound is a "plausibility":

[Beliefi(4), Plausibility,(A)]
Beliefj(A) is quantified by all pieces of evidence E; that
support proposition “User-A”:

Beliefi(4) = Y m;(E})
E,c4
Plausibility;(4) is quantified by all pieces of evidence Ej.
that do not rule out proposition "User-A":
Plausibilityi(4) = 1— Y m,(Ey)
E.nA=¢
For each proposition in 0, e.g., "User-A", Dempster-
Shafer theory gives a rule of combining sensor Si’s
observation mi and sensor Sj’s observation mj:

D> mi(E)m(Ey)
E,NE =4

1= > m(E)ym;(Ey)

ENE,=¢

(m; @m;)(A)=

This rule can be chained straightforwardly if we
view mj not as sensor Sj’s observation, but instead as
the previously combined observations of sensors Sk and
S1.

By associating "belief" with the lower end of a
probability range and "plausibility" with its upper end,
the Dempster-Shafer approach manages to capture the
key features of the human perception-reasoning process.
In contrast, the Bayesian approach, which is essentially
a subset of the Dempster-Shafer approach, provides no
mechanism for dealing quantitatively with the ranges of
"belief" and "plausibility" that humans characteristically
attach to their estimates of likelihood.

III. APPLICATION EXAMPLE: TRACKING
MEETING PARTICIPANTS’ FOCUS-OF-
ATTENTION FROM MULTIPLE CUES

A. Initial experiments

The experimental arrangement, discussed in detail in
[2], is reproduced in Fig. 2. An omni-directional

camera with face detection software provides one focus-
of-attention sensor, microphones in front of each
meeting participant provide another focus-of-attention
sensor, and human examination of the videotape
provides ground truth. Measures of confidence are
derived from the relative strengths of the signals
supporting in turn the hypothesis that each meeting
participant is the instantaneous focus-of-attention.

Fig. 2. Settings of four users in meeting viewed from the
omni camera set at the center of the table.

The sensor fusion task is, given both the video and
audio observation reports, optimally to combine the two
inputs to generate a better focus-of-attention estimation,
i.e., one with a higher and narrower confidence range.
Given only one of the sensors, e.g., due to data packet
loss in transmission, the system should revert gracefully
to the estimation provided by the remaining working
Sensor.

B. Initial results

In the baseline work that generated the historical data
sets, the authors used a linearly weighted sum of
probabilities to estimate combined probability via an ad
hoc formula. The video-only focus-of-attention
estimation accuracy was around 75+5%, the audio-only
focus-of-attention estimation accuracy was around
65+5%; and the linear combination of these two
increased the overall accuracy by about 2+1 percentage
points.

For the same data streams, the Dempster-Shafer
combination algorithm arguably shows a small overall
estimation accuracy improvement over either single
sensor modality. Preliminary experiments [2] with a
weighted Dempster-Shafer algorithm arguably show an
additional ~ small overall estimation accuracy
improvement.



Thus, as a practical matter, all three algorithms for
sensor fusion perform similarly; the small gains, even if
they are real, are insignificant in any practical sense.
Nevertheless, imaginative examination of the tabulated
experimental results (Table 1 in [2]) suggests that the
result would be substantially improved if we could
improve the measure of "self-confidence" provided by
the individual sensors.

IV. WEIGHTED DEMPSTER-SHAFER
ALGORITHM FURTHER INVESTIGATION

A. Weighting means non-democratic voting

The fundamental Dempster-Shafer combination rule
implies that we trust any sensors S; and S; equally.
Misplaced trust can produce counterintuitive outcomes,
e.g., if two observers agree that there is an arbitrarily
small possibility of X, but they agree on no other
possibility, Dempster-Shafer will say X is the only
possible conclusion. Nor is this scenario far-fetched, as
in many Dempster-Shafer applications the frame-of-
discernment, and the numerical values of "belief" and
"plausibility", are essentially educated guesses supplied
by human experts. The human has a tendency to hedge
one's bet by assigning a small probability to an unlikely
alternative conclusion, which expands the overall
frame-of-discernment. It thus becomes easy for two
experts' sub-frames-of-discernment to share only one
outcome that both experts think is unlikely. The result is
the described catastrophe: the algorithm concludes the
small area of agreement is the only possible conclusion.

But in sensor systems we should be able to do better
by quantitatively invoking technical knowledge about
each sensor's expected performance (based on, e.g., the
sensor manufacturer's specifications), ground-truth
knowledge about each sensor's current actual
performance (based on, e.g., current working status),
and historical knowledge about the evolution of their
performance as the sensors age (based on, e.g., a regular
stream of occasional ground-truth observations).

This sort of differential trust can be accounted for by
a simple modification to the Dempster-Shafer formula
in which the observations mi are weighted by trust
factors wi derived from the corresponding expectations,
calibrations, and histories of the corresponding sensor
S's performance. The weighting process is expressed
formally by inserting the weights wi as factors
multiplying the probability mass functions, i.e., the
observations m;:

D wm(E)-w; m;(E,)]
(m; ®m;)(A)= 1_‘ AZ: [wm,(E)-w, m,(E,)]

E,NEp=¢

B. Dynamic weighting means the voting process is
continously calibrated

When the ground truth is available, e.g. shortly after
current measurements or from additional information
channels, it can be used by making the weight factors w;
as functions of time ¢ In this approach wy?) is
reminiscent of Kalman filtering.

We believe that adding sensor-property based
weighting, and particularly adding dynamic sensor-
property based weighting, to the Dempster-Shafer
framework is the major contribution of our work.

A simple but effective practical implementation is to
define w;(?) (with backward-looking time step Af) as:

w0 =Y et —n-Ar)-p’

where the ¢;(?) is the function describing the correctness
of the senor §;’s estimation at time ¢:

{0
Ci(t) =

1 incorrect estimation

correct estimation

and the p is the “remnance factor”, which is in the range
0.0 to 1.0, deciding how rapidly past performance will
be discounted.

V. NEW EXPERIMENTAL RESULTS

A. Using the pre-recorded data

In the previous report [2], we showed the sensor
fusion results using regular and our newly proposed
weighted  Dempster-Shafer methods, with  the
probability linear summation as the comparison
baseline. With the same pre-recorded data, here we
further calculated the sensor fusion results using the
above described dynamic weighted Dempster-Shafer
method. As an example, the remnance factor is chosen
as 0.9, and the results are shown in Table 1.

It can be seen that, although the difference may not
be very significant, the result of dynamically weighed
Dempster-Shafer method is better than any one of the
alternative method in every experimental data set.

B. Using new simulated data with known probability
distribution

Analyzing the pre-recorded experimental data can
provide us a good feeling regarding how well these
sensor fusion methods work. However, to make our
conclusions more clear and convincing, we would like



to test the algorithm against data with known

probability distribution.

Without losing generality, we imagine a typical
focus-of-attention analysis scenario with a set of three
sensors, and we use simulated sensor fusion data to
compare sensor fusion methods.

Suppose some user’s head would pan an angle
according to a Gaussian distribution N/-45°, a,/, N/0°,
opof, or N[45°, a,] when his/her focus-of-attention is on
the left-side, the straight-forward, or the right-side
meeting-participant respectively.

Table 1. Focus-of-attention analysis sensor fusion method
comparison with the pre-recorded data

. linear dynamic

User f:aarlrﬁs sum colr)rsect c\())vrlr)eit >\I)VDS

correct correct

o #0 1229 | 70.1% | 70.0% | 71.4% | 74.9%
‘f: #1 1075 | 69.8% | 70.0% | 69.4% | 73.0/%
,é #2 1098 | 80.2% | 80.8% | 80.2% | 80.9%
E‘ #3 991 65.6% | 66.6% | 70.0% | 72.1%
0 #0 768 76.8% | 77.0% | 77.0% | 80.1%
‘f: #1 956 72.0% | 72.3% | 72.1% | 77.0%
,é #2 1006 | 84.1% | 84.2% | 83.9% | 85.1%
E‘ #3 929 75.7% | 76.9% | 73.2% | 79.1%
° #0 799 71.2% | 71.5% | 71.0% | 74.5%
‘f: #1 751 85.5% | 85.8% | 85.2% | 86.2%
,é #2 827 83.3% | 84.3% | 83.4% | 83.8%
E‘ #3 851 81.9% | 82.3% | 81.7% | 82.8%
#0 653 85.0% | 85.0% | 84.2% | 86.2%

= o #1 653 542% | 542% | 54.5% | 63.1%
% % #2 681 69.5% | 69.3% | 70.3% | 76.1%
g‘ :% #6 435 782% | 78.4% | 79.8% | 83.9%
summary 13702 | 75.8% | 75.4% | 75.4% | 78.4%

Because of sensor Si’s measurement noise which has
Gaussian distribution N[dft,(t), o,/ that is independent of
the being measured angle, the Si observed pan angle
would be:

N[-45° + dft (1), > + ol ]
N[dft (t),\Jo? + o4 ],
or

N[45°+ dft (1), \Jo > + ol ],

when the user’s focus-of-attention is on the left-side, the
straight-forward, or the right-side meeting-participant
respectively.

The term dft,(t) here describes the sensor Si’s drifting
effects in measurement. But because the dft(t) cannot
be predicted, the sensor Si would reasonably infer the
user’s focus-of-attention as if there were no drift.

Using the observed pan angle (with dft(t) being set
to zero) distribution function, for user’s head pan angle
x, the probability density functions pdf;(?), pdfs(t), and
pdfr(t) can be calculated. Next, the sensor Si’s rational
estimation regarding the user’s focus-of-attention can be
calculated with the relative probability density function
values as:

1
pdf, (0)+ pdf () + pdf, (1)

where the three numbers correspond to the probabilities
that the user’s focus-of-attention is on the left, straight,
or the right person.

{pdf, (1), pdfs(1), pdf, (1)}

With this simulated sensing scheme, we can imagine
a meeting scenario where the user has his/her focus-of-
attention on the left-side, the one straight-across the
table, and the right-side meeting participant randomly
(with a probability distribution of 0.3, 0.4, and 0.3
respectively) for a random time length in the range of 5
to 15 seconds.

For each second, the user’s real head pan angle is
generated with 0,=5° and 0¢)=10° and there are 3
sensors that will respectively generate 10 pan angle
observations with 6;=5°, 6,=10°, and 0;=20°.

Since the measurement drifting effect is most
difficult part to handle in real practices, our experiments
study three seemly ad hoc situations but actually with
the following considerations: (I). the sensor’s drift
cycles are relatively long compared with our experiment
time:  dft;(t)=5%sin(0.001-¢), dfty,(t)=5°sin(0.0007-¢),
and dft;(t)=5°sin(0.0003-t) (the sensors’ drift cycles are
approximately 105, 150, and 345 minutes respectively);
(IT). The drift cycles are normal: dft;(t)=5%sin(0.01-¢),
dft,(t)y=5°sin(0.007-¢), and dft;(t)=5°sin(0.003-¢) (the
sensors’ drift cycles are approximately 10.5, 15, and 35
minutes respectively); and (III) the sensors’ drift
amplitudes are relative large compared with their built-
in  measurement  noise: dft,(t)=10°sin(0.011),
dfty(t)=5°sin(0.007-t), and dft;(t)=5°sin(0.003¢).

With such three assumed sensor drift scenarios, we
did 2 sets of experiments for each situation, simulated
about an hour length meeting, and did sensor fusion
method analysis. Again, as an example the remnance
factor for the dynamically weighted Dempster-Shafer
method is set as 0.9. The results are shown in Table 2.



In Table 2 fractions of the events that the user’s focus
of attention is correctly estimated are in percentage
format, the columns specify sensors’ drift scenario and
experiment data sets, whereas the rows specify
individual sensors’ (Sensor S;, S,, and S3) performance
and the effectiveness of sensor fusion methods (Linear —
probability linear combination, or averaging; DS —
standard Dempster-Shafer method; wDS — weighted
Dempster-Shafer method; and DSK — Dempster-Shafer
method with Kalman filter-like dynamic weighting
schemes).

Table 2. Sensor fusion method comparison using simulated
sensory data

sensor, Drift I Drift IT Drift IIT

sensor

fusion #1 #2 #1 #2 #1 #2
S; 85.7% | 87.0% | 86.7% | 85.0% | 83.7% | 82.5%
S 81.4% | 82.3% | 82.4% | 81.1% | 80.1% | 77.0%
S; 71.9% | 72.7% | 72.1% | 70.7% | 70.5% | 69.2%

Linear | 84.8% | 86.3% | 85.9% | 84.3% | 84.3% | 81.6%
DS 84.6% | 86.1% | 85.7% | 84.1% | 84.4% | 80.9%
wDS | 84.9% | 86.4% | 86.0% | 84.5% | 84.6% | 81.6%
DSK | 86.3% | 87.3% | 87.3% | 86.0% | 86.6% | 84.6%

The numbers in the table confirm our conclusion
made in the previous paper [2], i.e., there is not much
difference among effectiveness of sensor fusion
methods of linear combination, standard Dempster-
Shafer method, and the weighted Dempster-Shafer
method, with the weighted Dempster-Shafer method
doing a marginally better job. Also confirmed is that the
Dempster-Shafer method with dynamic weighting
scheme consistently outperforms all other alternative
methods.

VI. CONCLUSION

From pre-recorded live experimental data analyses
and from our artificially generated data analysis, we can
tentatively conclude that: the four sensor fusion
schemes, ad hoc linear weighting, standard Dempster-
Shafer, Dempster-Shafer with static weights, and
Dempster-Shafer with dynamic weights progressively
show, at best, practically insignificant performance
improvements. However, when the ground truth is
available afterwards, it is better in practice to use the
Dempster-Shafer with dynamic weights for sensor
fusion scheme as it consistently outperforms alternative
methods.

Our conclusion from previous work can also be
safely repeated: the Dempster-Shafer method (most
desirably with dynamic weights, or with static weights)
is the preferred sensor fusion scheme for context-aware
computing sensor fusion, because it resembles human
users’ inference processes and provides a great
advantage or convenience to manage uncertainties.

Finally we have a speculation that whenever the
dynamic weighted Dempster-Shafer can be used, it will
practically be the best method to deal with sensors that
intermittently work because the sensor fusion
mechanism needs not be changed over different
situations.
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