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Abstract - Context sensing for context-aware HCI challenges 
traditional sensor fusion methods with its requirements for 
(1) adaptability to a constantly changing sensor suite and (2) 
sensing quality commensurate with human perception. We 
build this paper on two IMTC2002 papers, where the 
Dempster-Shafer “theory of evidence” was shown to be a 
practical approach to implementing the sensor fusion system 
architecture. The implementation example involved fusing 
video and audio sensors to find and track a meeting 
participant’s focus-of-attention. An extended Dempster-
Shafer approach, incorporating weights representative of 
sensor precision, was newly suggested. In the present paper 
we examine the weighting mechanism in more detail; 
especially as the key point of this paper, we further extend 
the weighting idea by allowing the sensor-reliability-based 
weights to change over time. We will show that our novel 
idea – in a manner resembling Kalman filtering remnance 
effects that allow the weights to evolve in response to the 
evolution of dynamic factors  –  can improve sensor fusion 
accuracy as well as better handle the evolving environments 
in which the system operates. 

Keywords: sensor fusion, context-aware computing, 
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I. INTRODUCTION 

We build this paper on two previous papers, Sensor 
Fusion for Context Understanding [1] and Sensor 
Fusion Using Dempster-Shafer Theory [2], presented at 
IMTC2002.  Inasmuch as this paper is a continuation 
and expansion of the second of these two papers, we 
need refer back to them in order to make the 
background work clear. 

The goal of “context aware computing” – which, as a 
practical matter, is more-or-less synonymous with 
“context aware human computer interaction” – is for 
computers to understand environmental context, and 
thereby to more accurately interpret noisy and 
ambiguous inputs received from the humans with whom 
they interact. To achieve this end requires meeting two 
challenges (1) how to represent a concept as 
anthropocentric as "context" in a computer, and (2) how 
to design and deploy the sensors and sensor fusion 
systems that will populate the representation's slots. 

Of course, one always approaches a hard problem by 
initially simplifying it, e.g., by beginning with concrete 
parameters that can be adequately defined and sensed 
such as, e.g., location, which is not difficult, especially 
if the humans involved are cooperative. Enough effort 
has already gone into this problem that reasonably 
reliable solutions – say, in the 80% range – have been 
demonstrated and documented. Sensor fusion 
combining a handful of sensors of this order of 
reliability can be expected, a priori, to provide system 
accuracy approaching arbitrarily close to 100% – how 
close obviously depending on the size of the hand. 

But real life is yet a little harder, because (1) in real 
life it is unlikely that there will be available as many 
even “pretty good sensors” as would be needed to 
achieve the desired high level of system performance, 
and (2) in real life the number of available sensors, and 
the reliability of each sensor’s reporting, will vary 
unpredictably, and in many situations practically 
unknowably on the requisite timescale. 

To make it easier to deal with these sticky problems, 
in these early papers we consider only simple situations 
wherein we can assume that (1) the context information 



 

is represented by discrete symbols or numbers, (2) the 
mapping from sensor output to context representation is 
unambiguous, and (3) the sensors are "smart" enough to 
report not just data, but also meaningful estimates of its 
reliability, i.e., honest measures of self-confidence. 
Fortunately, we have available several historical data 
sets that record information streams from multiple 
sensors of differing modality, and the corresponding 
ground truth, thus enabling us to simulate this idealized 
scenario. With this simulation, we can start measuring, 
analyzing, comparing, and contrasting the performance 
of all conceivable sensor fusion architectures and 
implementations. Later we will further verify our 
findings regarding sensor fusion methods by using 
artificially generated data whose actual probability 
distributions we can know. 

As described in detail in [1] and [2], our actual 
approach employs a layered and modularized 
architecture, isolating sensed context from sensor 
realization, and a Dempster-Shafer “theory of evidence” 
based sensor fusion algorithm whose formulating 
terminology imitates the terminology we conventionally 
attach to the human perception and reasoning processes. 
The modularization and architecture is described in [1]; 
and the works of applying the Dempster-Shafer 
algorithm to several of the historical information 
streams and comparing the results to an ad hoc 
weighted sum of probabilities algorithm are described 
in [2]. 

The conclusion of that paper [2] is that the 
Dempster-Shafer approach gives slightly better results 
quantitatively, but we argue that it provides a significant 
improvement in robustness, e.g., against data packet 
loss or catastrophic sensor failure, as well as a built-in, 
theoretically and intuitively justifiable mechanism for 
evaluating and reporting our confidence in the results as 
a function of the device and environmental conditions. 
The focus of the present paper is on reporting outcome 
realized when: (1) we incorporate, into the Dempster 
Shafer algorithm, weighting factors – actually this was 
introduced in a preliminary way in [2] – that give 
increased credence to sensors with better inherent 
reliability, e.g., higher precision, lower drift, built-in 
“soft failure” capacity, etc., and (2) we further 
incorporate, into the weighting factors, a new dynamic 
component – reminiscent of Kalman filtering – that 
organically evolves the weights. The sensor fusion 
mechanism is thus continuously calibrated according to 
the sensors’ recent performance whenever the ground 
truth is available. 

 

 

 

II. CONTEXT SENSING APPROACH 

A. Sensor fusion architecture 

The sensor fusion system architecture, discussed in 
detail in [1], is reproduced in Fig. 1. 

A speaker-identification sensor might decide, for 
example, that the current speaker is User-A with 
confidence interval of [0.5, 0.7], or s/he is User-B with 
confidence interval of [0.3, 0.5].  It might then report 
via its Interface Widget a database entry in the format: 

Context.Location[room-NSH-A417].People = { 
   {name=User-A, confidence=[0.5,0.7], 
     proximity=inside, background=Background[User-A], 
     …, time=update-time}, 
   {name=User-B, confidence=[0.3,0.5], 
     proximity=inside, background=Background[User-B], 
     …, time=update-time}, …} 

 

Interface Widget 
sensor 

Interface Widget 
sensor 

Sensor Fusion Mediator 

Context Data 

Applications 

Interpreters etc. 
AI Algorithms 

Dempster-Shafer Theory of Evidence 

 
Fig. 1. System architecture for sensor fusion of context-

aware computing 

B. Dempster-Shafer sensor fusion algorithm 

The Dempster-Shafer decision theory is essentially a 
generalized Bayesian statistical theory.  Its new feature 
is that it allows distributing support for a proposition 
(e.g., "this is User-A") to the union of propositions that 
include it (e.g., “this is likely either User-A or User B”).  

In a Dempster-Shafer reasoning system, all the 
mutually exclusive context interpretations are 
enumerated in a "frame-of-discernment", denoted Θ. 
For example, if we know that there is a person in an 
instrumented room, and from the reality constraints this 
person can normally only be “User-A” or “User-B”. 
Now our task is to specify the user’s identity as one of 
the four possibilities described as:  

}},,{,,{ φBABA=Θ  



 

meaning s/he is “User-A”, “User-B”, “either User-A or  
User-B” (which is actually an indication of ignorance), 
or “neither User-A nor User-B” (which is an indication 
of exceptional situation). 

With the frame of discernment Θ defined, each 
sensor Si would contribute its observation by assigning 
its beliefs over Θ. This assignment function is called the 
“probability mass function” of Si, denoted mi.  

So, according to Si’s observation, the probability that 
“the detected person is user-A” is indicated by a 
“confidence interval” whose lower bound is a "belief" 
and whose upper bound is a "plausibility": 

[Beliefi(A), Plausibilityi(A)] 
Beliefi(A) is quantified by all pieces of evidence Ek that 
support proposition “User-A”: 
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Plausibilityi(A) is quantified by all pieces of evidence Ek  
that do not rule out proposition "User-A": 
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For each proposition in Θ, e.g., "User-A", Dempster-
Shafer theory gives a rule of combining sensor Si’s 
observation mi and sensor Sj’s observation mj: 
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This rule can be chained straightforwardly if we 
view mj not as sensor Sj’s observation, but instead as 
the previously combined observations of sensors Sk and 
Sl. 

By associating "belief" with the lower end of a 
probability range and "plausibility" with its upper end, 
the Dempster-Shafer approach manages to capture the 
key features of the human perception-reasoning process.  
In contrast, the Bayesian approach, which is essentially 
a subset of the Dempster-Shafer approach, provides no 
mechanism for dealing quantitatively with the ranges of 
"belief" and "plausibility" that humans characteristically 
attach to their estimates of likelihood. 

III. APPLICATION EXAMPLE: TRACKING 
MEETING PARTICIPANTS’ FOCUS-OF-
ATTENTION FROM MULTIPLE CUES  

A. Initial experiments 

The experimental arrangement, discussed in detail in 
[2], is reproduced in Fig. 2.  An omni-directional 

camera with face detection software provides one focus-
of-attention sensor, microphones in front of each 
meeting participant provide another focus-of-attention 
sensor, and human examination of the videotape 
provides ground truth.  Measures of confidence are 
derived from the relative strengths of the signals 
supporting in turn the hypothesis that each meeting 
participant is the instantaneous focus-of-attention. 

 
Fig. 2. Settings of four users in meeting viewed from the 

omni camera set at the center of the table. 

The sensor fusion task is, given both the video and 
audio observation reports, optimally to combine the two 
inputs to generate a better focus-of-attention estimation, 
i.e., one with a higher and narrower confidence range.  
Given only one of the sensors, e.g., due to data packet 
loss in transmission, the system should revert gracefully 
to the estimation provided by the remaining working 
sensor. 

B.  Initial results 

In the baseline work that generated the historical data 
sets, the authors used a linearly weighted sum of 
probabilities to estimate combined probability via an ad 
hoc formula.  The video-only focus-of-attention 
estimation accuracy was around 75±5%, the audio-only 
focus-of-attention estimation accuracy was around 
65±5%; and the linear combination of these two 
increased the overall accuracy by about 2±1 percentage 
points.   

For the same data streams, the Dempster-Shafer 
combination algorithm arguably shows a small overall 
estimation accuracy improvement over either single 
sensor modality.  Preliminary experiments [2] with a 
weighted Dempster-Shafer algorithm arguably show an 
additional small overall estimation accuracy 
improvement.   



 

Thus, as a practical matter, all three algorithms for 
sensor fusion perform similarly; the small gains, even if 
they are real, are insignificant in any practical sense.  
Nevertheless, imaginative examination of the tabulated 
experimental results (Table 1 in [2]) suggests that the 
result would be substantially improved if we could 
improve the measure of "self-confidence" provided by 
the individual sensors. 

IV. WEIGHTED DEMPSTER-SHAFER 
ALGORITHM FURTHER INVESTIGATION 

A.  Weighting means non-democratic voting 

The fundamental Dempster-Shafer combination rule 
implies that we trust any sensors Si and Sj equally.  
Misplaced trust can produce counterintuitive outcomes, 
e.g., if two observers agree that there is an arbitrarily 
small possibility of X, but they agree on no other 
possibility, Dempster-Shafer will say X is the only 
possible conclusion.  Nor is this scenario far-fetched, as 
in many Dempster-Shafer applications the frame-of-
discernment, and the numerical values of "belief" and 
"plausibility", are essentially educated guesses supplied 
by human experts.  The human has a tendency to hedge 
one's bet by assigning a small probability to an unlikely 
alternative conclusion, which expands the overall 
frame-of-discernment.  It thus becomes easy for two 
experts' sub-frames-of-discernment to share only one 
outcome that both experts think is unlikely. The result is 
the described catastrophe: the algorithm concludes the 
small area of agreement is the only possible conclusion. 

But in sensor systems we should be able to do better 
by quantitatively invoking technical knowledge about 
each sensor's expected performance (based on, e.g., the 
sensor manufacturer's specifications), ground-truth 
knowledge about each sensor's current actual 
performance (based on, e.g., current working status), 
and historical knowledge about the evolution of their 
performance as the sensors age (based on, e.g., a regular 
stream of occasional ground-truth observations). 

This sort of differential trust can be accounted for by 
a simple modification to the Dempster-Shafer formula 
in which the observations mi are weighted by trust 
factors wi derived from the corresponding expectations, 
calibrations, and histories of the corresponding sensor 
Si's performance.  The weighting process is expressed 
formally by inserting the weights wi as factors 
multiplying the probability mass functions, i.e., the 
observations mi: 
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B. Dynamic weighting means the voting process is 
continously calibrated 

When the ground truth is available, e.g. shortly after 
current measurements or from additional information 
channels, it can be used by making the weight factors wi 
as functions of time t. In this approach wi(t) is 
reminiscent of Kalman filtering.  

We believe that adding sensor-property based 
weighting, and particularly adding dynamic sensor-
property based weighting, to the Dempster-Shafer 
framework is the major contribution of our work. 

A simple but effective practical implementation is to 
define wi(t) (with backward-looking time step ∆t) as: 
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where the ci(t) is the function describing the correctness 
of the senor Si’s estimation at time t: 


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and the p is the “remnance factor”, which is in the range 
0.0 to 1.0, deciding how rapidly past performance will 
be discounted.  

V. NEW EXPERIMENTAL RESULTS 

A.  Using the pre-recorded data 

In the previous report [2], we showed the sensor 
fusion results using regular and our newly proposed 
weighted Dempster-Shafer methods, with the 
probability linear summation as the comparison 
baseline. With the same pre-recorded data, here we 
further calculated the sensor fusion results using the 
above described dynamic weighted Dempster-Shafer 
method. As an example, the remnance factor is chosen 
as 0.9, and the results are shown in Table 1.  

It can be seen that, although the difference may not 
be very significant, the result of dynamically weighed 
Dempster-Shafer method is better than any one of the 
alternative method in every experimental data set. 

B. Using new simulated data with known probability 
distribution 

Analyzing the pre-recorded experimental data can 
provide us a good feeling regarding how well these 
sensor fusion methods work. However, to make our 
conclusions more clear and convincing, we would like 



 

to test the algorithm against data with known 
probability distribution. 

Without losing generality, we imagine a typical 
focus-of-attention analysis scenario with a set of three 
sensors, and we use simulated sensor fusion data to 
compare sensor fusion methods.  

Suppose some user’s head would pan an angle 
according to a Gaussian distribution N[-45°, σ0], N[0°, 
σ00], or N[45°, σ0] when his/her focus-of-attention is on 
the left-side, the straight-forward, or the right-side 
meeting-participant respectively.    

Table 1.  Focus-of-attention analysis sensor fusion method 
comparison with the pre-recorded data 

 
User valid 

frames 

linear 
sum 

correct 

DS 
correct 

WDS
correct 

dynamic
WDS

correct 

#0 1229 70.1% 70.0% 71.4% 74.9% 

#1 1075 69.8% 70.0% 69.4% 73.0/% 

#2 1098 80.2% 80.8% 80.2% 80.9% 

Ex
pe

rim
en

t S
et

2 

#3 991 65.6% 66.6% 70.0% 72.1% 

#0 768 76.8% 77.0% 77.0% 80.1% 

#1 956 72.0% 72.3% 72.1% 77.0% 

#2 1006 84.1% 84.2% 83.9% 85.1% 

Ex
pe

rim
en

t S
et

5 

#3 929 75.7% 76.9% 73.2% 79.1% 

#0 799 71.2% 71.5% 71.0% 74.5% 

#1 751 85.5% 85.8% 85.2% 86.2% 

#2 827 83.3% 84.3% 83.4% 83.8% 

Ex
pe

rim
en

t S
et

6 

#3 851 81.9% 82.3% 81.7% 82.8% 

#0 653 85.0% 85.0% 84.2% 86.2% 

#1 653 54.2% 54.2% 54.5% 63.1% 

#2 681 69.5% 69.3% 70.3% 76.1% 

Ex
pe

rim
en

t 
A

uf
na

hm
e2

 

#6 435 78.2% 78.4% 79.8% 83.9% 

summary 13702 75.8% 75.4% 75.4% 78.4% 

 

Because of sensor Si’s measurement noise which has 
Gaussian distribution N[dfti(t), σi] that is independent of 
the being measured angle, the Si observed pan angle 
would be:  
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when the user’s focus-of-attention is on the left-side, the 
straight-forward, or the right-side meeting-participant 
respectively.  

The term dfti(t) here describes the sensor Si’s drifting 
effects in measurement. But because the dfti(t) cannot 
be predicted, the sensor Si would reasonably infer the 
user’s focus-of-attention as if there were no drift.  

Using the observed pan angle (with dfti(t) being set 
to zero) distribution function, for user’s head pan angle 
x, the probability density functions pdfL(t), pdfS(t), and 
pdfR(t) can be calculated. Next, the sensor Si’s rational 
estimation regarding the user’s focus-of-attention can be 
calculated with the relative probability density function 
values as:  

)}(),(),({
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where the three numbers correspond to the probabilities 
that the user’s focus-of-attention is on the left, straight, 
or the right person.  

With this simulated sensing scheme, we can imagine 
a meeting scenario where the user has his/her focus-of-
attention on the left-side, the one straight-across the 
table, and the right-side meeting participant randomly 
(with a probability distribution of 0.3, 0.4, and 0.3 
respectively) for a random time length in the range of 5 
to 15 seconds.  

For each second, the user’s real head pan angle is 
generated with σ0=5° and σ00=10°, and there are 3 
sensors that will respectively generate 10 pan angle 
observations with σ1=5°, σ2=10°, and σ3=20°.  

Since the measurement drifting effect is most 
difficult part to handle in real practices, our experiments 
study three seemly ad hoc situations but actually with 
the following considerations: (I). the sensor’s drift 
cycles are relatively long compared with our experiment 
time: dft1(t)=5°·sin(0.001·t), dft2(t)=5°·sin(0.0007·t), 
and dft3(t)=5°·sin(0.0003·t) (the sensors’ drift cycles are 
approximately 105, 150, and 345 minutes respectively); 
(II). The drift cycles are normal: dft1(t)=5°·sin(0.01·t), 
dft2(t)=5°·sin(0.007·t), and dft3(t)=5°·sin(0.003·t) (the 
sensors’ drift cycles are approximately 10.5, 15, and 35 
minutes respectively); and (III) the sensors’ drift 
amplitudes are relative large compared with their built-
in measurement noise: dft1(t)=10°·sin(0.01·t), 
dft2(t)=5°·sin(0.007·t), and dft3(t)=5°·sin(0.003·t). 

With such three assumed sensor drift scenarios, we 
did 2 sets of experiments for each situation, simulated 
about an hour length meeting, and did sensor fusion 
method analysis. Again, as an example the remnance 
factor for the dynamically weighted Dempster-Shafer 
method is set as 0.9. The results are shown in Table 2. 



 

In Table 2 fractions of the events that the user’s focus 
of attention is correctly estimated are in percentage 
format, the columns specify sensors’ drift scenario and 
experiment data sets, whereas the rows specify 
individual sensors’ (Sensor S1, S2, and S3) performance 
and the effectiveness of sensor fusion methods (Linear – 
probability linear combination, or averaging; DS – 
standard Dempster-Shafer method; wDS – weighted 
Dempster-Shafer method; and DSK – Dempster-Shafer 
method with Kalman filter-like dynamic weighting 
schemes). 

Table 2.  Sensor fusion method comparison using simulated 
sensory data 

Drift I Drift II Drift III sensor, 
sensor 
fusion #1 #2 #1 #2 #1 #2 

S1 85.7% 87.0% 86.7% 85.0% 83.7% 82.5% 

S2 81.4% 82.3% 82.4% 81.1% 80.1% 77.0% 

S3 71.9% 72.7% 72.1% 70.7% 70.5% 69.2% 

Linear 84.8% 86.3% 85.9% 84.3% 84.3% 81.6% 

DS 84.6% 86.1% 85.7% 84.1% 84.4% 80.9% 

wDS 84.9% 86.4% 86.0% 84.5% 84.6% 81.6% 

DSK 86.3% 87.3% 87.3% 86.0% 86.6% 84.6% 

 

The numbers in the table confirm our conclusion 
made in the previous paper [2], i.e., there is not much 
difference among effectiveness of sensor fusion 
methods of linear combination, standard Dempster-
Shafer method, and the weighted Dempster-Shafer 
method, with the weighted Dempster-Shafer method 
doing a marginally better job. Also confirmed is that the 
Dempster-Shafer method with dynamic weighting 
scheme consistently outperforms all other alternative 
methods. 

VI. CONCLUSION 

From pre-recorded live experimental data analyses 
and from our artificially generated data analysis, we can 
tentatively conclude that: the four sensor fusion 
schemes, ad hoc linear weighting, standard Dempster-
Shafer, Dempster-Shafer with static weights, and 
Dempster-Shafer with dynamic weights progressively 
show, at best, practically insignificant performance 
improvements. However, when the ground truth is 
available afterwards, it is better in practice to use the 
Dempster-Shafer with dynamic weights for sensor 
fusion scheme as it consistently outperforms alternative 
methods. 

Our conclusion from previous work can also be 
safely repeated: the Dempster-Shafer method (most 
desirably with dynamic weights, or with static weights) 
is the preferred sensor fusion scheme for context-aware 
computing sensor fusion, because it resembles human 
users’ inference processes and provides a great 
advantage or convenience to manage uncertainties. 

Finally we have a speculation that whenever the 
dynamic weighted Dempster-Shafer can be used, it will 
practically be the best method to deal with sensors that 
intermittently work because the sensor fusion 
mechanism needs not be changed over different 
situations.  
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