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The Value of Privacy: Strategic Data Subjects, Incentive

Mechanisms, and Fundamental Limits

WEINA WANG, LEI YING, and JUNSHAN ZHANG, Arizona State University

We study the value of data privacy in a game-theoretic model of trading private data, where a data collector
purchases private data from strategic data subjects (individuals) through an incentive mechanism. One pri-
mary goal of the data collector is to learn some desired information from the elicited data. Specifically, this
information is modeled by an underlying state, and the private data of each individual represents his of her
knowledge about the state. Departing from most of the existing work on privacy-aware surveys, our model
does not assume the data collector to be trustworthy. Further, an individual takes full control of his or her
own data privacy and reports only a privacy-preserving version of his or her data.

In this article, the value of ϵ units of privacy is measured by the minimum payment among all nonnegative
payment mechanisms, under which an individual’s best response at a Nash equilibrium is to report his or her
data in an ϵ-locally differentially private manner. The higher ϵ is, the less private the reported data is. We
derive lower and upper bounds on the value of privacy that are asymptotically tight as the number of data
subjects becomes large. Specifically, the lower bound assures that it is impossible to use a lower payment to
buy ϵ units of privacy, and the upper bound is given by an achievable payment mechanism that we design.
Based on these fundamental limits, we further derive lower and upper bounds on the minimum total payment
for the data collector to achieve a given accuracy target for learning the underlying state and show that the
total payment of the designed mechanism is at most one individual’s payment away from the minimum.
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1 INTRODUCTION

From the monetary coupons offered for revealing opinions of a product to the large-scale trade of
personal information by data brokers such as Acxiom [21], the commoditization of private data has
been trending up when big data analytics is playing a more and more critical role in advertising,
scientific research, and so on. However, in the wake of a number of recent scandals, such as the
Netflix data breach and the Veterans Affairs data theft, data privacy is emerging as one of the most
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Fig. 1. Information structure of the model: The data collector is interested in the stateW , which is a binary

random variable. Each individual i possesses his or her private data, which is a binary signal Si . Conditioned

on W , S1, S2, . . . , SN are i.i.d. Individual i’s reported data is Xi , which is generated based on Si using a

randomized strategy.

serious concerns of big data analytics. One common practice of collecting private data is called
informed consent. With information on “who is collecting the data, what data are collected, and
how the data will be used,” data subjects decide whether to report data or not. The data collector is
supposed to use the data only in the manner disclosed to data subjects. This practice, however, has
two fundamental issues: (i) data subjects have no control of data privacy after transferring private
data to the data collector, and (ii) the data collector has to take full responsibility of protecting
users’ private data, which not only costs significant investment on infrastructure and maintenance
but also may lead to reputation damage if a data breach occurs. In some applications, such as
collecting history records of web browsers [10, 11], the data collectors prefer to avoid holding
individuals’ raw data for subpoena concerns.

Taking a forward-looking view, we envisage a market model for private data analytics where
data subjects (individuals) are able to control their own data privacy by reporting perturbed data
to the data collector. In particular, the data collector will use an incentive mechanism to pay (or
reward) individuals for reporting informative data, and individuals report noisy data with the
level of privacy protection (or level of noise added) being strategically chosen to maximize their
payoffs. A distinctive merit of this privacy protection approach is that data subjects take full control
of their own privacy, and the data collector gets informative data but does not need to bear the
responsibility of protecting data privacy. This differentiates our approach from the existing work
[12–15, 22, 24, 26], where the data collector is assumed to be a trustworthy entity who is willing
to and has the capability to protect users’ privacy.

One significant challenge of the proposed paradigm is that the data collector has no direct con-
trol (perhaps no information either) over the quality of the reported data. To tackle this challenge,
we cast the problem into a game-theoretic setting, which allows us to quantify two fundamental
tradeoffs: the tradeoff between cost and accuracy from the data collector’s perspective, and the
tradeoff between reward and privacy from an individual’s perspective (the value of privacy for a
data subject). In return, with the reward (incentive) as the bridge, it establishes the tradeoff of data
privacy concerned by an individual versus data quality concerned by the data collector.

Specifically, we consider a game-theoretic model of collecting private data for hypothesis test-
ing, where the data collector is interested in learning information from a population of N indi-
viduals. An illustration of our model is shown in Figure 1. The information is model by a binary
random variableW , which is called the state. Each individual i possesses a binary signal Si , which
is his or her private data, representing his or her knowledge about the state W . Conditional on
the state W , the signals are independently generated such that the probability for each signal Si

to be the same as W is θ , where 0.5 < θ < 1. To protect his or her privacy, an individual reports
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only a privacy-preserving version of her signal, denoted by Xi , or chooses to not participate after
considering both the payment from the data collector and the loss of privacy. The data collector
needs to decide how to pay the individuals to get informative reports, i.e., not completely random
data. Intuitively, the data collector should offer higher payments to purchase more informative
data (which incurs more privacy leakage for individuals). More precisely, the payment mechanism
should be carefully designed to provide right incentives for informative data reporting. We will
answer the following fundamental questions in this article: What is the minimum payment needed

from the data collector to obtain reported data with a privacy level ϵ? Which payment mechanism

can be used to collect private data with minimum cost?

When reporting data to the data collector, a privacy-aware individual weighs the privacy loss
against the payment to choose the best quantity of privacy to trade. To make an individual willing
to trade ϵ level of privacy, the data collector needs to make sure doing this benefits the individual
most. Note that only compensating the privacy cost incurred is not sufficient. The payment mech-
anism needs to ensure that ϵ is the best privacy level: If an individual uses a less-private strategy,
then the decrease in his or her payment is larger than the decrease in her privacy cost; however,
if an individual uses a more-private strategy, then the increase in her payment is smaller than the
increase in her privacy cost. In other words, we focus on Nash equilibria (strategy profiles where
individuals’ strategies are best responses to others). We also note that Nash equilibrium is a more
applicable solution concept than Bayesian Nash equilibrium for our model, due to the choice of
privacy measure. This will become clear after we introduce the detailed model in Section 3. To
quantify the monetary value of data privacy in a market for private data, we study the minimum
payment that makes an equilibrium strategy have a privacy level of ϵ .

We remark that the problem of eliciting non-verifiable data has been studied in the peer pre-
diction literature (see, e.g., the seminal article [23]). It is worth noting that individuals have no
privacy concerns in a classical setting of peer prediction. Therefore, the relation between privacy
and payment, which is the main focus of the current article, has not been addressed by the peer
prediction literature. Nevertheless, this study has leveraged ideas from peer prediction to reward
an individual when her reported data is less perturbed. We emphasize that this study takes into
account individuals’ behavior of striking the right balance between privacy loss and payments.
This tradeoff makes truthfulness no longer a focal design goal, since truthful data reporting incurs
a high privacy loss that is expensive to compensate. Instead, the data collector seeks to incentivize
informative data reporting and achieve her learning goal using cost-effective mechanisms.

Summary of Main Results

We assume that individuals use the celebrated notion of differential privacy [7, 8] in the local
model [5, 6, 19] to evaluate their data privacy. When an individual i uses an ϵ-differentially private
randomization strategy to generate Xi , the privacy loss incurred is ϵ , and the individual’s cost of
privacy loss is a function of ϵ , whose form is assumed to be publicly known. The value of ϵ units of
privacy, denoted byV (ϵ ), is measured by the minimum payment of all nonnegative payment mech-
anisms under which an individual’s best response in a Nash equilibrium is to report the data with
privacy level ϵ , where nonnegativity ensures that individuals would not be charged for reporting
data. We are interested in the range that ϵ > 0, simply because when ϵ = 0, the reported data are
independent of the private data and thus would be of no use for data analysis. Our contributions
are summarized as follows:

(1) We establish a lower bound on V (ϵ ) through the following three steps. First, we prove
that from a payment perspective, it suffices to focus on mechanisms under which an in-
dividual’s equilibrium strategy is the following randomized response with a privacy level
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of ϵ : The reported data are generated by flipping the signal with probability 1
eϵ+1 . For

convenience, we refer to this strategy as the ϵ-strategy. Next, we prove that the expected
payments resulting from any Nash equilibrium of any payment mechanism can be “repli-
cated” by a genie-aided payment mechanism, where the payments are determined with
the aid of a genie who knows the underlying state W . This makes the analysis of the
Nash equilibria more tractable by decoupling the individuals in the payments. Then the
lower bound is given by necessary conditions for ϵ to be the best privacy level in a genie-
aided mechanism. We remark that although the genie-aided mechanism that achieves this
lower bound is not implementable, it can be well approximated by the feasible payment
mechanism we design when the number of individuals is large.

(2) We observe that the strategy of an individual in a Nash equilibrium exhibits the follow-
ing interesting characteristics: It is either a symmetric randomized response, where by
symmetry we mean this strategy treats the two possible realizations of the private signal
symmetrically, or a non-informative strategy, where the reported data are independent of
the signal. This characterization holds regardless of the prior distribution over the state,
and it also holds for more general probability models of binary signals. This characteriza-
tion advances our understanding of the behavior of privacy-aware individuals. It is worth
pointing out that finding an equilibrium strategy of a privacy-aware individual under
some payment mechanism involves non-convex optimization.

(3) We prove an upper bound on V (ϵ ) by designing a payment mechanism R (N ,ϵ ) , in which
the strategy profile consisting of ϵ-strategies constitutes a Nash equilibrium. The expected
payment to each individual at this equilibrium gives an upper bound onV (ϵ ). This upper
bound converges to the lower bound exponentially fast as the number of individuals N
becomes large, which indicates that the lower and upper bounds are asymptotically tight.

(4) The above fundamental bounds on the value of privacy can be further used to study the
payment–accuracy problem, where the data collector aims to minimize the total payment
while achieving an accuracy target in learning the state W . Given an accuracy target τ ,
which can be regarded as the maximum allowable error, let F (τ ) denote the minimum
total payment for achieving τ . We obtain lower and upper bounds on F (τ ) based on the
lower and upper bounds on the value of privacy. The upper bound is given by the designed
mechanism R (N ,ϵ ) with properly chosen parameters, which shows that the total payment
of the designed mechanism is at most one individual’s payment away from the minimum.

(5) We also give a more in-depth analysis of the Nash equilibria of the designed mechanism
R (N ,ϵ ) . Besides the desired Nash equilibrium where every individual uses the ϵ-strategy,
R (N ,ϵ ) also has other equilibria. When implementing this mechanism, the data collector
should prime the individuals to use the ϵ-strategy, but the presence of multiple equilibria
still puts obstacles to obtaining the desired outcome. We first show that any Nash equi-
librium of R (N ,ϵ ) is homogeneous, i.e., all the individuals use the same strategy in a Nash
equilibrium. By our characterization of equilibrium strategies, this strategy is either an
informative symmetric randomized response or a non-informative strategy. For informa-
tive equilibrium strategies that report truthfully with a probability greater than 1/2, we
prove that any sequence of privacy levels of such equilibria converges to the desired level
ϵ as the number of individuals N becomes large. Then with a large population, even if the
designed mechanism R (N ,ϵ ) may have such equilibria with privacy levels different from
the desired level ϵ , then these levels are close to ϵ . However, this convergence of privacy
levels does not fully address the issues raised by the multiplicity of equilibria, since other
equilibria, including the non-informative equilibria, still exist. We believe that it is possible
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to leverage results that address the multiplicity in the peer prediction literature (e.g., Ref-
erence [20]) to mitigate this problem. Eliminating undesired equilibria for the designed
mechanism would be an interesting direction for future work.

2 RELATED WORK

Most existing work on privacy-aware surveys [12–15, 22, 24, 26] assumes that there is a trusted
data curator or data collector. The private data are either already kept by the data collectoror can
be elicited truthfully. What the data collector purchases is the “right” of using individuals’ data in
an announced way. Our work differs from these articles by considering a data collector who is not
trusted by individuals. In this scenario, individuals report noisy data for privacy protection.

In the seminal work by Ghosh and Roth [15], individuals’ data are already known to the data
collector, and individuals bid their costs of privacy loss caused by data usage, where each individ-
ual’s privacy cost is modeled as a linear function of ϵ if his or her data is used in an ϵ-differentially
private manner. The goal of the mechanism design is to elicit truthful bids of individuals’ cost
functions, i.e., the coefficients. Subsequent work [12, 22, 24, 26] explores various models for indi-
viduals’ valuation of privacy, especially the correlation between the coefficients and the private
bits.

This line of work has been extended to the scenario that the data are not available yet and need
to be reported by the individuals to the data collector, but the data collector is still trusted [2, 13,
14, 32]. Notably, Ghosh et al. [14] study the model in which the collected data are non-verifiable.
The goal of the mechanism design there is to incentivize truthful data reporting (without adding
any noise) from individuals. For more work on the interplay between differential privacy and
mechanism design, Pai and Roth [25] give a comprehensive survey.

The local model of differential privacy, which is a generalization of randomized response [31]
and is formalized in Reference [19], has been studied in the literature [1, 5–9, 16, 18, 27, 29, 30].
The hypothesis testing formulation in our article is similar to a setting in Reference [18], where
the authors find an optimal mechanism that maximizes the power to discriminate between data
generated from different hypotheses subject to local differential privacy constraints. In practice,
Google’s Chrome web browser has implemented the RAPPOR mechanism [10, 11] to collect users’
data, which guarantees that only limited privacy is leaked by using randomized response in a novel
manner. However, users may still not be willing to report data in the desired way due to the lack
of an incentive mechanism.

Aside from privacy concerns, the problem we study in this article is closely related to the peer
prediction mechanism proposed by Miller et al. [23]. In peer prediction, individuals do not have
privacy concerns, and their utility only comes from the payments they receive. The peer predic-
tion mechanism pays an individual based on how well his or her reported data predicts another
randomly selected individual’s data. It uses strictly proper scoring rules to evaluate the predic-
tion, under which an individual’s best way of predicting another individual’s data is to report her
own data truthfully. However, when an individual have privacy concerns, his or her best reporting
strategy is not to obtain the highest possible payment, since his or her utility also includes a cost
due to privacy loss. He or she will weigh this privacy cost against the payment to decide how to
perturb his or her data. This tradeoff between privacy and payment is critical for the problem in
this article and has not been studied in the peer prediction literature. The mechanism we design
has a flavor of peer prediction in the sense that the payment to an individual also depends on how
well his or her reported data predict others’ reported data. But more importantly, we characterize
how individuals behave when trading privacy for money, where the reported data are noisy rather
than truthful, and then quantify the minimum payment needed to induce a desired privacy level.
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3 SYSTEM MODEL

We consider a single-bit learning problem with privacy-aware individuals as shown in Figure 1.
Recall that the data collector is interested in learning the stateW , which is a binary random vari-
able. For example, the stateW can describe the underlying value of some new technology. Let PW

denote the prior PMF ofW . We assume that PW (1) > 0 and PW (0) > 0.

Individuals and Strategies. Consider a population of N individuals and denote the set of in-
dividuals by N = {1, 2, . . . ,N }. Denote all individuals other than some given individual i by “−i .”
Each individual i possesses a binary signal Si , which is his or her private data, reflecting his or
her knowledge about the stateW . For example, Si can represent individual i’s opinion towards the
new technology. Let S = (S1, S2, . . . , SN ). Conditional on the stateW , the signals S1, S2, . . . , SN are
i.i.d. with the following conditional distributions:

P(Si = 1 |W = 1) = θ , P(Si = 0 |W = 1) = 1 − θ ,
P(Si = 0 |W = 0) = θ , P(Si = 1 |W = 0) = 1 − θ ,

where the parameter θ with 0.5 < θ < 1 is called the quality of signals.
LetXi denote the data reported by individual i and letX = (X1,X2, . . . ,XN ). The acceptable val-

ues for reported data are 0, 1, and “nonparticipation.” So Xi takes values in the set X = {0, 1,⊥},
where ⊥ indicates that individual i declines to participate. A strategy of individual i for data re-
porting is a mapping σi : {0, 1} → D (X), whereD (X) is the set of probability distributions on X.
Let σ = (σ1,σ2, . . . ,σN ). The strategy σi prescribes a distribution to Xi for each possible value of
Si , which defines the conditional distribution of Xi given Si . Since we will discuss different strate-
gies of individual i , we let Pσi

(Xi = xi | Si = si ) with xi ∈ X and si ∈ {0, 1} denote the conditional
probabilities defined by strategy σi . If a strategy σi satisfies that Pσi

(Xi = 1 | Si = 1) = Pσi
(Xi =

0 | Si = 0) and Pσi
(Xi = ⊥ | Si = 1) = Pσi

(Xi = ⊥ | Si = 0) = 0, then we say σi is a symmetric ran-

domized response. If a strategy σi makes Xi and Si independent, then we say σi is non-informative;
otherwise we say σi is informative.

Mechanism. The data collector uses a payment mechanism defined below to determine the
amount of payment to each individual.

Definition 3.1. A payment mechanism R : XN → RN is a function that maps individuals’ re-
ported data X to a vector R (X ), whose ith entry Ri (X ) is the amount of payment to individual i .

We are interested in payment mechanisms in which the payment to each individual is nonneg-
ative, i.e., Ri (x ) ≥ 0 for any individual i and any x ∈ XN , which we call nonnegative mechanisms.
This constraint is motivated by the fact that in many practical applications such as surveys, the
data collector has no means to charge users and can only use payments to incentivize user partic-
ipation.

Privacy Cost. We quantify the privacy loss incurred when a strategy is in use by the level of
(local) differential privacy [5–9, 19] of the strategy, defined as follows.

Definition 3.2. The level of (local) differential privacy, or simply the privacy level, of a strategy
σi , denoted by ζ (σi ), is defined to be

ζ (σi ) = max

{
ln

(
Pσi

(Xi ∈ E | Si = si )

Pσi
(Xi ∈ E | Si = 1 − si )

)
: E ⊆ {0, 1,⊥}, si ∈ {0, 1}

}
,

where we follow the convention that 0/0 = 1, and the strategy σi is said to be ζ (σi )-differentially
private.
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The level of differential privacy quantifies the indistinguishablity between the conditional dis-
tributions of the reported data given different values of the signal, therefore measuring how dis-
closive the strategy is. Note that the amount of privacy leakage quantified by differential privacy is
“in addition” to what the adversaries already know. We refer the reader to Reference [8] for more
semantic implications of differential privacy.

The privacy loss causes a cost to an individual. We assume that when using strategies with
the same privacy level, individuals experience the same cost of privacy. Thus, we model each
individual’s cost of privacy by a function д of the privacy level. We call д the cost function and
the cost the privacy cost. Our results can be extended to the case where the cost functions are
heterogeneous (see the discussion in Section 4.3). We assume that the form of д is publicly known
(Ghosh and Roth [15] and subsequent work studies the scenario that cost functions are private and
design truthful mechanisms to elicit them).

We say the cost function д is proper if it satisfies the following three conditions:

д(ξ ) ≥ 0, ∀ξ ≥ 0, (1)

д(0) = 0, (2)

д is non-decreasing, (3)

where Equation (1) follows from the fact that a privacy cost is nonnegative, Equation (2) indicates
that the privacy cost is 0 when the reported data is independent of the private data, and Equation (3)
means that the privacy cost will not decrease when the privacy loss becomes larger. In this article,
we will focus on a proper cost function that is convex, continuously differentiable, and д(ξ ) = 0
only for ξ = 0. With a little abuse of notation, we also use д(σi ) to denote д(ζ (σi )), which is the
privacy cost to individual i when the strategy σi is used.

Game Formulation and Nash Equilibrium. In this market model, the data collector first announces
a payment mechanism. Then this mechanism induces a strategic form game where the individuals
are the players. The utility of each individual is the difference between his or her payment and his
or her privacy cost. We assume that the individuals are risk neutral, i.e., they are interested in max-
imizing their expected utility. In this game, the prior distribution PW , the signal quality parameter
θ , the form of the payment mechanism R, and the cost function д are common knowledge.

We remark that there is no need to formulate this game as a Bayesian game for the following
reasons. Each individual’s privacy cost depends on not only how he or she reports data given
the current realization of his or her signal, but also how he or she would report data given other
possible realizations of his or her signal. So each individual’s privacy cost is a function of the
whole strategy regardless of the current realization of his or her signal. The form of this function
is commonly known. The form of the payment mechanism is also commonly known. Therefore,
the utility function of every individual is common knowledge in this game, and thus we do not
need to formulate it as a Bayesian game.

We focus on Nash equilibria of a payment mechanism, where each individual has no incentive
to unilaterally change his or her strategy given other individuals’ strategies. Formally, a Nash
equilibrium in our model is defined as follows.

Definition 3.3. A strategy profile σ is a Nash equilibrium in a payment mechanism R if for any
individual i and any strategy σ ′i ,

Eσ [Ri (X ) − д(σi )] ≥ E(σ ′i ,σ−i )[Ri (X ) − д(σ ′i )],

where the expectation is over the reported dataX , and the subscripts σ and (σ ′i ,σ−i ), indicate that
X is generated by the strategy profile σ and (σ ′i ,σ−i ), respectively.
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4 THE VALUE OF DATA PRIVACY

We consider nonnegative payment mechanism under which an individual i reports data with a
privacy level of ϵ in a Nash equilibrium. We denote this set of mechanisms by R (i; ϵ ). Then we
measure the value of ϵ units of privacy by the minimum payment to individual i among all mech-
anisms in R (i; ϵ ). This measure does not depend on the specific identity of i due to the symmetry
across individuals. Note that a mechanism in R (i; ϵ ) may have multiple Nash equilibria. But since
we are interested in the minimum payment possible, we include a mechanism in R (i; ϵ ) as long
as one of its Nash equilibria satisfies that individual i reports data with privacy level ϵ . For any
mechanism R ∈ R (i; ϵ ), let σ (R ;ϵ ) denote the corresponding Nash equilibrium. Then, formally, the
value of ϵ units of privacy is measured by

V (ϵ ) = inf
R ∈R (i ;ϵ )

Eσ (R ;ϵ ) [Ri (X )]. (4)

Recall that we are interested in the regime ϵ > 0, since the data collector wants the reported data
to be useful for data analysis.

In this section, we first derive a lower bound onV (ϵ ) by characterizing the Nash equilibria and
replicating mechanisms in R (i; ϵ ) by genie-aided mechanisms. We then design a payment mech-
anism in R (i; ϵ ), and, consequently, the equilibrium payment to individual i in this mechanism
serves as an upper bound of V (ϵ ). The gap between the lower and upper bounds diminishes to
zero exponentially fast as the number of individuals becomes large, which indicates that the lower
and upper bounds are asymptotically tight.

4.1 Lower Bound

We present a lower bound on V (ϵ ) in Theorem 4.1 below. For convenience, we define

VLB (ϵ ) = д′(ϵ )
eϵ + 1

eϵ

(
θ

2θ − 1
(eϵ + 1) − 1

)
, (5)

where д′ is the derivative of the privacy cost function of an individual and θ is the quality of
signals.

Theorem 4.1. The value of ϵ units of privacy measured in Equation (4) for any ϵ > 0 is lower

bounded asV (ϵ ) ≥ VLB (ϵ ). Specifically, for any nonnegative payment mechanism R, if the strategy of

an individual i in a Nash equilibrium has a privacy level of ϵ with ϵ > 0, then the expected payment

to individual i at this equilibrium is lower bounded by VLB (ϵ ).

We remark that the lower bound in Theorem 4.1 can be achieved by a hypothetical payment
mechanism in which a genie who knows the realization of the underlying stateW guides the data
collector on how much to pay each individual. Note that such a genie-aided mechanism is not
an actual mechanism in the sense of Definition 3.1, and thus it does not belong to the set R (i; ϵ ).
Intuitively, the knowledge of the stateW provides more information about the system, which helps
the data collector to obtain privacy with less payment. While it may sound like a chicken-and-egg
problem as the data collector’s sole purpose of paying individuals for their private data is to learn
the state W , it will become clear that the philosophy carries over and the data collector should
utilize the best estimate of W in the payment mechanism to minimize the payment. The insight
we gain from this mechanism sheds light on the asymptotically tight upper bound on the value of
privacy in Section 4.2.
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This genie-aided payment mechanism, denoted by R̂
(ϵ )

, determines the payment to each indi-
vidual i based on his or her own reported data Xi and the stateW as follows:

R̂ (ϵ )
i (Xi ,W ) =

д′(ϵ ) (eϵ + 1)2

2eϵ
ÂXi ,W , (6)

where

Â1,1 =
1

(2θ − 1)PW (1)
, Â0,0 =

1

(2θ − 1)PW (0)
,

Â0,1 = Â1,0 = 0.

In this mechanism, it can be proved that the best response of individual i is the following symmetric

randomized response, denoted by σ (ϵ )
i , which is ϵ-differentially private:

P
σ

(ϵ )
i

(Xi = 1 | Si = 1) = P
σ

(ϵ )
i

(Xi = 0 | Si = 0) =
eϵ

eϵ + 1
,

P
σ

(ϵ )
i

(Xi = 1 | Si = 0) = P
σ

(ϵ )
i

(Xi = 0 | Si = 1) =
1

eϵ + 1
,

P
σ

(ϵ )
i

(Xi = ⊥ | Si = 1) = P
σ

(ϵ )
i

(Xi = ⊥ | Si = 0) = 0.

For convenience, we will refer to this symmetric randomized response strategy as the ϵ-strategy.
The expected payment to individual i at this strategy equals to the lower bound in Theorem 4.1.

Next we sketch the proof of Theorem 4.1. We first give three lemmas that form the basis of
the proof, and then present the proof based on that. The proofs of these lemmas are presented in
Appendix A–C.

4.1.1 Characterization of Nash Equilibria. We first characterize individuals’ behavior in a Nash
equilibrium. In general, an ϵ-differentially private strategy has uncountably many possible forms.
However, provided that the strategy is part of a Nash equilibrium (i.e., a best response of an in-
dividual), the following lemma substantially reduces the space of possibilities. We remark that a
similar phenomenon for privacy-aware individuals has been observed in Reference [3] in a differ-
ent setting.

Lemma 4.2. In any nonnegative payment mechanism, an individual’s strategy in a Nash equilib-

rium is either a symmetric randomized response, or a non-informative strategy.

We remark that Lemma 4.2 holds for more general probability models of binary signals. The
proof carries over as long as the support of the joint distribution of the signals is the entire domain
{0, 1}N .

By Lemma 4.2, if an individual’s strategy in a Nash equilibrium has a privacy level of ϵ , where
ϵ > 0, then this equilibrium strategy is either the ϵ-strategy or the (−ϵ )-strategy. The following
lemma says that from the payment perspective, it suffices to further focus on the case that it is the
ϵ-strategy.

Lemma 4.3. For any nonnegative payment mechanism R in which the strategy profile (σ (−ϵ )
i ,σ−i )

with some ϵ > 0 is a Nash equilibrium, there exists another nonnegative payment mechanism R′ in

which (σ (ϵ )
i ,σ−i ) is a Nash equilibrium, and the expected payment to each individual at these two

equilibria of the two mechanisms are the same.

This lemma is proved by considering the payment mechanismR′ that is constructed by applying
R on the reported data after modifying Xi to 1 − Xi .
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4.1.2 Genie-Aided Payment Mechanism. A genie-aided payment mechanism R̂ : XN × {0, 1} →
R

N determines the payment to an individual based on not only the reported data X but also the
underlying state W . Compared with a standard payment mechanism, a genie-aided mechanism
is hypothetical, since the data collector has access to the underlying state, as if he or she were
aided by a genie. We consider nonnegative genie-aided payment mechanisms, where R̂i (X ,W ),
the payment to individual i , depends on only his or her own reported data Xi and the underlying
stateW . We write R̂i (Xi ,W ) to represent R̂i (X ,W ) for conciseness. Therefore, for each individual i ,
a genie-aided mechanism makes use of the information ofW but discards the information in X−i .
The following lemma shows that the expected payments resulting from any Nash equilibrium of
any payment mechanism can be replicated by a genie-aided payment mechanism with the same
Nash equilibrium. Thus we can restrict our attention to genie-aided mechanisms to obtain a lower
bound on the value of privacy.

Lemma 4.4. For any nonnegative payment mechanism R and any Nash equilibrium σ of it, there

exists a nonnegative genie-aided mechanism R̂, such that σ is also a Nash equilibrium of R̂ and the

expected payment to each individual at this equilibrium is the same under R and R̂.

This lemma is proved by constructing the following genie-aided payment mechanism R̂ accord-
ing to the desired equilibrium σ : For any individual i and any xi ∈ X,w ∈ {0, 1},

R̂i (xi ,w ) = Ri (xi ;w ) := Eσ [Ri (X ) | Xi = xi ,W = w].

Our intuition is as follows. A genie-aided mechanism can use the stateW to generate an incentive
to individual i , which “mimics” the incentive provided by the reported data X−i of others. The

above genie-aided payment mechanism R̂ is constructed such that no matter what strategy indi-

vidual i uses, his or her expected utility is the same under R and R̂. Since an individual calculates
his or her best response according to the expected utility, his or her equilibrium behavior and ex-

pected payment are the same under R̂ and R. We remark that the Nash equilibria of a genie-aided
mechanism are much easier to analyze, since the individuals are decoupled in the payments, and
thus an individual’s strategy does not have an influence on other individuals’ utility.

Let R̂ (i; ϵ ) denote the set of nonnegative genie-aided payment mechanisms in which the ϵ-

strategy is an individual i’s strategy in a Nash equilibrium, and let σ (ϵ )
i denote the ϵ-strategy.

Consider

V̂ (ϵ ) = inf
R̂ ∈R̂ (i ;ϵ )

E
σ

(ϵ )
i

[
R̂i (Xi ,W )

]
,

which is a definition similar to the value of ϵ units of privacy,V (ϵ ), measured in Equation (4). Then
V̂ (ϵ ) ≤ V (ϵ ) for the following reasons. Consider any R ∈ R (i; ϵ ), i.e., any nonnegative payment
mechanism R in which individual i’s strategy in a Nash equilibrium has a privacy level of ϵ . With
Lemma 4.2 and 4.3, we can assume without loss of generality that this equilibrium strategy is the

ϵ-strategy. Then by Lemma 4.4, we can map R to a R̂ ∈ R̂ (i; ϵ ), such that

Eσ (R ;ϵ ) [Ri (X )] = E
σ

(ϵ )
i

[
R̂i (Xi ,W )

]
.

Therefore, the infimum over R̂ (i; ϵ ) is no greater than the infimum over R (i; ϵ ), i.e., V̂ (ϵ ) ≤ V (ϵ ).

4.1.3 Proof of Theorem 4.1. With Lemmas 4.2, 4.3, and 4.4, we can prove the lower bound in

Theorem 4.1 by focusing on the genie-aided mechanisms in R̂ (i; ϵ ). Then there is no need to con-
sider the strategies of individuals other than individual i , since a genie-aided mechanism pays
individual i only according to Xi and W . A necessary condition for the ϵ-strategy to be a best
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response of individual i is that ϵ yields no worse expected payment than other privacy levels. We
utilize this necessary condition to obtain a lower bound on the expected payment to individual i ,
which gives a lower bound on V̂ (ϵ ) and further proves the lower bound in Theorem 4.1.

of Theorem 4.1. By Lemmas 4.2, 4.3, and 4.4, it suffices to focus on nonnegative genie-aided
payment mechanisms in which the ϵ-strategy is an individual i’s strategy in a Nash equilibrium,

i.e., mechanisms in R̂ (i; ϵ ). Consider any R̂ ∈ R̂ (i; ϵ ) and denote the ϵ-strategy by σ (ϵ )
i . Consider

the ξ -strategy of individual i with any ξ ≥ 0 and denote it by σ
(ξ )
i . Then the expected utility of

individual i at the strategy σ
(ξ )
i can be written as

E
σ

(ξ )
i

[
R̂i (Xi ,W )

]
− д

(
σ

(ξ )
i

)

=
∑

xi ,si ,w

P
σ

(ξ )
i

(Xi = xi | Si = si )P(Si = si ,W = w )R̂i (xi ,w ) − д(ξ ),

= K1
eξ

eξ + 1
+ K0

1

eξ + 1
+ K − д(ξ ),

where

K1 = {R̂i (1, 1)PW (1)θ + R̂i (1, 0)PW (0) (1 − θ )}

− {R̂i (0, 1)PW (1)θ + R̂i (0, 0)PW (0) (1 − θ )},

K0 = {R̂i (1, 1)PW (1) (1 − θ ) + R̂i (1, 0)PW (0)θ }

− {R̂i (0, 1)PW (1) (1 − θ ) + R̂i (0, 0)PW (0)θ },

K = R̂i (0, 1)PW (1) + R̂i (0, 0)PW (0).

It can be seen that K1, K0, and K do not depend on ξ . Let this expected utility define a function f
of ξ ; i.e.,

f (ξ ) = K1
eξ

eξ + 1
+ K0

1

eξ + 1
− д(ξ ) + K .

Then a necessary condition for the ϵ-strategy to be an equilibrium strategy is that ϵ maximizes
f (ξ ), which implies that f ′(ϵ ) = 0, since ϵ > 0. Since

f ′(ξ ) = (K1 − K0)
eξ

(eξ + 1)2
− д′(ξ ),

setting f ′(ϵ ) = 0 yields that

K1 − K0 = д
′(ϵ )

(eϵ + 1)2

eϵ
. (7)

Now we calculate the expected payment to individual i at the ϵ-strategy:

E
σ

(ϵ )
i

[
R̂i (Xi ,W )

]
= −(K1 − K0)

1

eϵ + 1
+ (K1 + K ).

By definition,

K1 + K = R̂i (1, 1)PW (1)θ + R̂i (1, 0)PW (0) (1 − θ )

+ R̂i (0, 1)PW (1) (1 − θ ) + R̂i (0, 0)PW (0)θ
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and

K1 − K0 =
(
R̂i (1, 1) − R̂i (0, 1)

)
PW (1) (2θ − 1)

+
(
R̂i (0, 0) − R̂i (1, 0)

)
PW (0) (2θ − 1).

Therefore,

K1 + K =
θ

2θ − 1
(K1 − K0) + R̂i (1, 0)PW (0) + R̂i (0, 1)PW (1)

≥ θ

2θ − 1
(K1 − K0)

= д′(ϵ )
(eϵ + 1)2

eϵ

θ

2θ − 1
,

where we have used the nonnegativity of R̂. Then the expected payment to individual i is bounded
as follows:

E
σ

(ϵ )
i

[
R̂i (Xi ,W )

]
= −(K1 − K0)

1

eϵ + 1
+ (K1 + K )

≥ д′(ϵ )
eϵ + 1

eϵ

(
θ

2θ − 1
(eϵ + 1) − 1

)
, (8)

which proves the lower bound. �

Now beyond the proof, we take a moment to check when this lower bound can be achieved.
To achieve the lower bound, we need the equality in Equation (8) to hold and Equation (7) to be
satisfied, which is equivalent to the following conditions:

R̂i (1, 0) = 0, (9)

R̂i (0, 1) = 0, (10)

(2θ − 1)
(
R̂i (1, 1)PW (1) + R̂i (0, 0)PW (0)

)
= д′(ϵ )

(eϵ + 1)2

eϵ
. (11)

It is easy to check that the genie-aided payment mechanism R̂
(ϵ )

defined in Equation (6) is in R̂ (i; ϵ )
and satisfies Equations (9)–(11) and therefore achieves the lower bound. Can this lower bound
be achieved by a standard nonnegative payment mechanism? Consider any payment mechanism
R ∈ R (i; ϵ ). Following similar arguments, we can prove that to achieve the lower bound, R needs
to satisfy the following conditions:

Ri (1; 0) = 0, (12)

Ri (0; 1) = 0, (13)

(2θ − 1)
(
Ri (1; 1)PW (1) + Ri (0; 0)PW (0)

)
= д′(ϵ )

(eϵ + 1)2

eϵ
, (14)

where recall that Ri (xi ;w ) = Eσ (R,ϵ ) [Ri (X ) | Xi = xi ,W = w] for xi ,w ∈ {0, 1}. It can be proved
that if R satisfies Equations (12) and (13), then Ri (x ) = 0 for any x ∈ XN , which contradicts Equa-
tion (14). Therefore, no standard nonnegative payment mechanism can achieve the lower bound.
However, as will be shown in the next section, we can design a class of standard nonnegative
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payment mechanisms such that the expected payment approaches the lower bound as the number
of individuals increases. The design follows the insights indicated by the genie-aided mechanism

R̂
(ϵ )

: To minimize the payment, the data collector should utilize the best estimate of W in the
payment mechanism based on the noisy reports.

4.2 Upper Bound

We present an upper bound on V (ϵ ) in Theorem 4.5 below. For convenience, we define

d =
1

2
ln

(eϵ + 1)2

4(θeϵ + 1 − θ ) ((1 − θ )eϵ + θ )
, (15)

where θ is the quality of signal. Note thatd > 0 for any ϵ > 0. Recall thatVLB (ϵ ) is the lower bound
in Theorem 4.1.

Theorem 4.5. The value of ϵ units of privacy measured in Reference [4] is upper bounded asV (ϵ ) ≤
VLB (ϵ ) +O (e−N d ), where the O (·) is for N → ∞. Specifically, there exists a nonnegative payment

mechanism R (N ,ϵ ) in which the strategy profile σ (ϵ ) consisting of ϵ-strategies is a Nash equilibrium,

and the expected payment to each individual i at this equilibrium is upper bounded by VLB (ϵ ) +
O (e−N d ).

Comparing this upper bound with the lower bound VLB (ϵ ) in Theorem 4.1, we can see that
the gap between the lower and upper bounds is just the term O (e−N d ), which diminishes to zero
exponentially fast as N goes to infinity.

We present the payment mechanism R (N ,ϵ ) in Section 4.2.1. We will show that under R (N ,ϵ ) , the
strategy profile σ (ϵ ) consisting of ϵ-strategies is a Nash equilibrium. Therefore, R (N ,ϵ ) is a member
of R (i; ϵ ), and the payment to individual i at σ (ϵ ) gives an upper bound on the value of privacy.

The design of R (N ,ϵ ) is enlightened by the hypothetical payment mechanism R̂
(ϵ )

defined in
Equation (6). But without direct access to the stateW , the mechanism R (N ,ϵ ) relies on the reported
data from an individual i’s peers, i.e., individuals other than individual i , to obtain an estimate of
W . We borrow the idea of the peer-prediction method [23], which rewards more for the agreement
between an individual and his or her peers to encourage truthful reporting. However, unlike the
peer-prediction method, the individuals here have privacy concerns, and they will weigh the pri-

vacy cost against the payment to choose the best privacy level. We modify the payments in R̂
(ϵ )

to ensure that the ϵ-strategy is still a best response of each individual in R (N ,ϵ ) , given that other
individuals also follow the ϵ-strategy, which yields the desired Nash equilibrium σ (ϵ ) .

The equilibrium payment to each individual in R (N ,ϵ ) converges to the lower bound in Theo-
rem 4.1 as the number of individuals N goes to infinity. The intuition behind this is that as the
number of individuals N goes to infinity, the majority of the reported data from other individuals
converges to the underlying stateW , and thusR (N ,ϵ ) works similarly to the genie-aided mechanism

R̂
(ϵ )

, whose equilibrium payment to each individual equals to the lower bound in Theorem 4.1.

4.2.1 A Payment MechanismR (N ,ϵ ) . The payment mechanismR (N ,ϵ ) is designed for purchasing
private data from N privacy-aware individuals, parameterized by a privacy parameter ϵ , where
N ≥ 2 and ϵ > 0.

(1) Each individual reports his or her data (which can be the decision of not participating).
(2) The data collector counts the number of participants, which is denoted by n.
(3) For non-participating individuals, the payment is zero.
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(4) If there is only one participant, then pay zero to this participant. Otherwise, for each
participating individual i , the data collector computes the variable

M−i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

∑
j :X j�⊥, j�i

X j ≥
⌊n − 1

2

⌋
+ 1,

0 otherwise,

which is the majority of other participants’ reported data. Then the data collector pays
individual i the following amount of payment according to his or her reported data Xi

and M−i :

R (N ,ϵ )
i (X ) =

д′(ϵ ) (eϵ + 1)2

2eϵ
AXi ,M−i

,

where the parameters A1,1,A0,0,A0,1,A1,0 are defined in Section 4.2.2.

4.2.2 Payment Parameterization. Let

α = θ
eϵ

eϵ + 1
+ (1 − θ )

1

eϵ + 1
. (16)

The physical meaning of α can be seen by considering the strategy profile σ (ϵ ) , where given the
stateW , the reported data X1,X2, . . . ,XN are i.i.d. with

P
σ

(ϵ )
i

(Xi = 1 |W = 1) = P
σ

(ϵ )
i

(Xi = 0 |W = 0) = α .

Given that the number of participants is n with n ≥ 2, define the following quantities. Consider
a random variable that follows the binomial distribution with parameters n − 1 and α . Let β (n)

denote the probability that this random variable is greater than or equal to � n−1
2 � + 1. Let

γ (n) =

⎧⎪⎪⎨⎪⎪⎩
1 −

(
n − 1

n−1
2

)
α

n−1
2 (1 − α )

n−1
2 if n − 1 is even,

1 if n − 1 is odd.
(17)

To see the physical meaning of β (n) and γ (n) , still consider σ (ϵ ) , where the number of participants
is n = N . Then for an individual i ,

Pσ (ϵ ) (M−i = 1 |W = 1) = β (N ),

Pσ (ϵ ) (M−i = 1 |W = 0) = γ (N ) − β (N ) .

With the introduced notation, the parameters A1,1, A0,0, A0,1, A1,0 used in the payment mecha-
nism R (N ,ϵ ) are defined as follows:

A1,1 =
PW (1) (1 − β (n) ) + PW (0) (1 − (γ (n) − β (n) ))

(2β (n) − γ (n) ) (2θ − 1)PW (1)PW (0)
,

A0,0 =
PW (1)β (n) + PW (0) (γ (n) − β (n) )

(2β (n) − γ (n) ) (2θ − 1)PW (1)PW (0)
,

A0,1 = 0,

A1,0 = 0.

It is easy to verify that these parameters are nonnegative. Thus R (N ,ϵ ) is a nonnegative payment
mechanism. The proof of the equilibrium properties of R (N ,ϵ ) in Theorem 4.5 is given below.
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4.2.3 Proof of Theorem 4.5.

Proof. It suffices to prove that the strategy profile σ (ϵ ) is a Nash equilibrium in R (N ,ϵ ) and

the expected payment to each individual i at this equilibrium satisfies that Eσ (ϵ ) [R
(N ,ϵ )
i (X )] ≤

VLB (ϵ ) +O (e−N d ), where recall that VLB (ϵ ) is defined in Reference [5]. For conciseness, in the
remainder of this proof, we suppress the explicit dependence on N and ϵ and write R and σ to
represent R (N ,ϵ ) and σ (ϵ ) , respectively.

We first prove that the strategy profile σ is a Nash equilibrium in R; i.e., for any individual i ,
the ϵ-strategy is a best response of individual i when other individuals follow σ−i . Following the
notation in the proof of Lemma 4.2, for any individual i we consider any strategy σ ′i of individual i
and let

p1 = Pσ ′i
(Xi = 1 | Si = 1), q1 = Pσ ′i

(Xi = 0 | Si = 1),

p0 = Pσ ′i
(Xi = 1 | Si = 0), q0 = Pσ ′i

(Xi = 0 | Si = 0).

Then, by the proof of Lemma 4.2, the best response satisfies either p1 = p0,q1 = q0, or p1 = q0,p0 =

q1,p1 + q1 = 1, depending on the form of the utility functionUi (p1,p0,q1,q0), which is the expected
utility of individual i at the strategyσ ′i when other individuals followσ−i . Thus, we derive the form

of Ui (p1,p0,q1,q0) next. Recall that we let Ri (xi ;w ) denote E(σ ′i ,σ−i )[Ri (X ) | Xi = xi ,W = w] for
xi ,w ∈ {0, 1}. Then

Ui (p1,p0,q1,q0)

= E(σ ′i ,σ−i )[Ri (X ) − д(ζ (σ ′i ))]

= K1p1 + K0p0 + L1q1 + L0q0 − д(ζ (p1,p0,q1,q0)),

with

K1 = {Ri (1; 1)PW (1)θ + Ri (1; 0)PW (0) (1 − θ )},

K0 = {Ri (1; 1)PW (1) (1 − θ ) + Ri (1; 0)PW (0)θ },

L1 = {Ri (0; 1)PW (1)θ + Ri (0; 0)PW (0) (1 − θ )},

L0 = {Ri (0; 1)PW (1) (1 − θ ) + Ri (0; 0)PW (0)θ }.

In the designed mechanism R, the payment to individual i only depends on Xi and M−i . Thus
we write Ri (Xi ;M−i ) = Ri (X ). Then the value of Ri (xi ;w ) is calculated as follows:

Ri (1; 1) = E(σ ′i ,σ−i )[Ri (X ) | Xi = 1,W = 1]

= β (N )Ri (1; 1) + (1 − β (N ) )Ri (1; 0),

Ri (1; 0) = E(σ ′i ,σ−i )[Ri (X ) | Xi = 1,W = 0]

= (γ (N ) − β (N ) )Ri (1; 1) + (1 − (γ (N ) − β (N ) ))Ri (1; 0),

Ri (0; 1) = E(σ ′i ,σ−i )[Ri (X ) | Xi = 0,W = 1]

= (1 − β (N ) )Ri (0; 0) + β (N )Ri (0; 1),

Ri (0; 0) = E(σ ′i ,σ−i )[Ri (X ) | Xi = 0,W = 0]

= (1 − (γ (N ) − β (N ) ))Ri (0; 0) + (γ (N ) − β (N ) )Ri (0; 1),

and it can be verified that K1, K0, L1, and L0 are all positive. Therefore, by the proof of Lemma 4.2,
the possibility for the best response to be p1 = p0,q1 = q0, 0 < p1 + q1 < 1 can be eliminated, and
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the best response strategy must be in one of the following three forms:

p1 = p0 = q1 = q0 = 0, (18)

p1 = p0, q1 = q0, p1 + q1 = 1, (19)

p1 = q0, p0 = q1, p1 + q1 = 1. (20)

The strategy in Equation (18) is to always not participate, which yields a utility of zero. For strate-
gies in the form of Equation (19) or Equation (20), we can write the expected utility as a function
of p1 and p0 as follows:

U i (p1,p0) = K1p1 + K0p0 + K − д(ζ (p1,p0)),

where K1 = K1 − L1, K0 = K0 − L0, K = L1 + L0, and with a little abuse of notation, ζ (p1,p0) =

max{| ln p1

p0
|, | ln 1−p1

1−p0
|}. Inserting the value of Ri (Xi ;M−i ) gives

K1 =
д′(ϵ ) (eϵ + 1)2

2eϵ
, K0 = −

д′(ϵ ) (eϵ + 1)2

2eϵ
.

Then a strategy in the form of Equation (19) yields a utility of K > 0. A strategy in the form of
Equation (20) can be written as

p1 = q0 =
eξ

eξ + 1
, p0 = q1 =

1

eξ + 1
.

Then the expected utility can be further written as a function f of ξ as follows:

f (ξ ) = K1
eξ

eξ + 1
+ K0

1

eξ + 1
− д( |ξ |) + K .

Therefore, to prove that the ϵ-strategy is a best response of individual i , it suffices to prove that ϵ
maximizes f (ξ ) and f (ϵ ) ≥ K . For any ξ < 0, it is easy to see that

K1
eξ

eξ + 1
+ K0

1

eξ + 1
< 0 < K1

e−ξ

e−ξ + 1
+ K0

1

e−ξ + 1
.

Thus f (ξ ) achieves its maximum value at some ξ ≥ 0. For any ξ ≥ 0,

f ′(ξ ) = (K1 − K0)
eξ

(eξ + 1)2
− д′(ξ ),

f ′′(ξ ) = −(K1 − K0)
eξ (eξ − 1)

(eξ + 1)3
− д′′(ξ ) ≤ 0,

where the second inequality is due to the convexity of the cost function д. Therefore, f is concave.
Since f ′(ϵ ) = 0, ϵ maximizes f (ξ ). The optimal value is

f (ϵ ) = д′(ϵ )
eϵ − e−ϵ

2
− д(ϵ ) + K .

By the convexity of д, д(ϵ ) ≤ д′(ϵ )ϵ ≤ д′(ϵ ) eϵ−e−ϵ

2 . Thus f (ϵ ) ≥ K , which completes the proof for
the ϵ-strategy to be a best response of individual i .

Next we calculate the expected payment to individual i at σ , which can be written as

Eσ [Ri (X )] = −(K1 − K0)
1

eϵ + 1
+ K1 + K .
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By definition,

K1 + K

=
д′(ϵ ) (eϵ + 1)2

2eϵ

1

(2β (N ) − γ (N ) ) (2θ − 1)

·
(
2
(
β (N )

)2
+ (4θ − 2 − 2γ (N ) )β (N ) + 2(1 − θ )γ (N ) + β (N ) (1 − β (N ) )

PW (1)

PW (0)

+ (γ (N ) − β (N ) ) (1 − (γ (N ) − β (N ) ))
PW (0)

PW (1)

)

=:
д′(ϵ ) (eϵ + 1)2

2eϵ
h(β (N ) ).

Then

Eσ [Ri (X )] =
д′(ϵ ) (eϵ + 1)

eϵ

(
1

2
h(β (N ) ) (eϵ + 1) − 1

)

= VLB (ϵ ) +
д′(ϵ ) (eϵ + 1)2

2eϵ

(
h(β (N ) ) − 2θ

2θ − 1

)
.

To derive an upper bound on the expected payment, we first analyze the functionh. Rearranging
terms gives

h(β (N ) ) =
1

2θ − 1

1

2β (N ) − γ (N )

· ��(2 − t )
(
β (N )

)2
+

(
4θ − 2 − 2γ (N ) +

PW (1)

PW (0)
+ (2γ (N ) − 1)

PW (0)

PW (1)

)
β (N )

+ 2(1 − θ )γ (N ) + γ (N ) (1 − γ (N ) )
PW (0)

PW (1)

�,

where t = (PW (1))2+(PW (0))2

PW (1)PW (0) ≥ 2. Taking derivative yields

h′(β (N ) ) =
1

2θ − 1

1

(2β (N ) − γ (N ) )2

·
(
2(2 − t )

(
β (N ) − γ (N )

2

)2
−

(
γ (N )

)2
− γ (N )t

2
(2 − γ (N ) ) − 2γ (N ) (1 − γ (N ) )

)
.

Therefore, h′(β (N ) ) ≤ 0 and h is a non-increasing function.
Next we derive a lower bound on β (N ) . Let Y1,Y2, . . . ,YN−1 be i.i.d. Bernoulli random variables

with parameter α . Then by the definition of β (N ) :

β (N ) = P��
N−1∑
l=1

Yl ≥
⌊
N − 1

2

⌋
+ 1
�

= γ (N ) − P��
N−1∑
l=1

(1 − Yl ) ≥ N − 1 −
⌈
N − 1

2

⌉
+ 1
�

≥ γ (N ) − P��
N−1∑
l=1

(1 − Yl ) ≥ N − 1

2

�

≥ γ (N ) − e−(N−1)d ,
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where d = 1
2 ln 1

4α (1−α ) > 0 is the parameter defined in Equation (15) and the last inequality follow
from the Chernoff bound [28].

By the monotonicity of h,

h(β (N ) ) − 2θ

2θ − 1

≤ h
(
γ (N ) − e−(N−1)d

)
− 2θ

2θ − 1

=
1

2θ − 1

1

γ (N ) − 2e−(N−1)d

· ��(2 − t )e−2(N−1)d +

(
2(1 − γ (N ) ) + 2γ (N )t − PW (1)

PW (0)
− (2γ (N ) − 1)

PW (0)

PW (1)

)
e−(N−1)d

+ γ (N ) PW (1)

PW (0)
+

(
γ (N )

)2 PW (0)

PW (1)
−

(
γ (N )

)2
t
�

≤ 1

2θ − 1

1

γ (N ) − 2e−(N−1)d

·
(
(2 − t )e−2(N−1)d + (2(1 − γ (N ) ) + t )e−(N−1)d + γ (N ) (1 − γ (N ) )

PW (1)

PW (0)

)
.

Notice that

1 − γ (N ) =

⎧⎪⎪⎨⎪⎪⎩
(
N − 1

N−1
2

)
α

N−1
2 (1 − α )

N−1
2 if N − 1 is even,

0 if N − 1 is odd.

Then when N − 1 is odd, γ (N ) = 1, and when N − 1 is even,

1 − γ (N ) =

(
N − 1

N−1
2

)
α

N−1
2 (1 − α )

N−1
2

= e−(N−1)d ·
(
N − 1

N−1
2

)
2−(N−1),

where limN→∞ ( N−1
N−1

2
)2−(N−1) = 0. Thus 1 − γ (N ) = O (e−N d ) as N → ∞.

Therefore,

Eσ [Ri (X )] ≤ VLB (ϵ ) +
д′(ϵ ) (eϵ + 1)2

2eϵ

(
h
(
γ (N ) − e−(N−1)d

)
− 2θ

2θ − 1

)

≤ VLB (ϵ ) +
д′(ϵ ) (eϵ + 1)2

2eϵ

1

2θ − 1

1

γ (N ) − 2e−(N−1)d

·
(
(2 − t )e−2(N−1)d + (2(1 − γ (N ) ) + t )e−(N−1)d +O (e−N d )

)

= VLB (ϵ ) +O (e−N d ),

as N → ∞, which completes the proof. �

4.3 Extensions to Heterogeneous Cost Functions and Heterogeneous Privacy Levels

Our results on the value of privacy are also valid in the scenario where individuals’ privacy cost
functions are heterogeneous and known. In this case, the value of ϵ units of privacy is still measured
by the minimum payment of all nonnegative payment mechanisms under which an individual’s
best response in a Nash equilibrium is to report the data with a privacy level of ϵ . However, with
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heterogeneous cost functions, this value differs from individual to individual. Following similar
notation, we letVi (ϵ ) denote the value of ϵ units of privacy to individual i and letдi denote the cost
function of individual i . Then the following lower and upper bounds, which are almost identical
to those in Theorem 4.1 and 4.5 except for the heterogeneous cost function дi (ϵ ), hold,

д′i (ϵ )
eϵ + 1

eϵ

(
θ

2θ − 1
(eϵ + 1) − 1

)
≤ Vi (ϵ ) ≤ д′i (ϵ )

eϵ + 1

eϵ

(
θ

2θ − 1
(eϵ + 1) − 1

)
+O (e−N d ).

The lower bound above can be derived directly from the proof of Theorem 4.1, since the proof
does not depend on whether the cost functions are homogeneous or not. The upper bound above

is given by a payment mechanism that works similarly to R (N ,ϵ ) , with the д′ in R (N ,ϵ )
i replaced

by д′i . In this mechanism, the strategy profile σ (ϵ ) is still a Nash equilibrium, and the expected
payment to individual i at this equilibrium can still be upper bounded as in Theorem 4.5 but again
with д′ replaced by д′i .

We are also able to induce data reporting with different privacy levels from different individu-
alsby modifying the mechanism R (N ,ϵ ) properly. Suppose that we want a Nash equilibrium where
individual i uses the ϵi -strategy. Then we modify the payments as follows. Recall that in the mech-

anism R (N ,ϵ ) , the payment to individual i is д′ (ϵ )(eϵ+1)2

2eϵ AXi ,M−i
. We first replace the ϵ in the term

д′ (ϵ )(eϵ+1)2

2eϵ with ϵi . We then modify the term AXi ,M−i
. Recall that to calculate AXi ,M−i

, we have

defined β (n) and γ (n) . Here we still define

β (n) = P(M−i = 1 |W = 1),

γ (n) − β (n) = P(M−i = 1 |W = 0),

where M−i is the majority of the other n − 1 participants’ reported data. Note that the probability
is calculated assuming that each participant uses his or her own ϵi . Using arguments similar to
those used in the proof of Theorem 4.5, we can show that this modified mechanism has a Nash
equilibrium where individual i uses the ϵi -strategy.

5 PAYMENT VS. ACCURACY

In this section, we apply the fundamental bounds on the value of privacy to the payment–accuracy
problem, where the data collector aims to minimize the total payment while achieving an accuracy
target in learning the state. The solution of this problem can be used to guide the design of review
systems. For example, to evaluate the underlying value of a new product, a review system can
utilize the results in this section to design a payment mechanism for eliciting informative feedback
from testers.

5.1 Payment–Accuracy Problem

The data collector learns the state W from the reported data X1,X2, . . . ,XN , which is collected
through some payment mechanism, by performing hypothesis testing between the following two
hypotheses:

H0 : W = 0,

H1 : W = 1.

The conditional distributions of the reported data given the hypotheses are specified by the
strategy profile in a Nash equilibrium of the payment mechanism. According to Lemma 4.2,

we can write an equilibrium strategy profile in the form of (σ (ϵi )
i ) = (σ (ϵ1 )

1 ,σ (ϵ2 )
2 , . . . ,σ (ϵN )

N
) with

ϵi ∈ R \ {0} ∪ {�}, where recall that σ (ϵi )
i is the ϵi -strategy. For ease of notation, a non-informative
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strategy is also called an ϵ-strategy but with ϵ =�. Let R (ϵ1, ϵ2, . . . , ϵN ) denote the set of nonneg-

ative payment mechanisms in which (σ (ϵi )
i ) is a Nash equilibrium.

We consider an information-theoretic approach based on the Chernoff information [4] to mea-
sure the accuracy that can be achieved in hypothesis testing. For each individual i , let D (ϵi ) denote
the Chernoff information between the conditional distributions ofXi givenW = 1 andW = 0. The
largerD (ϵi ) is, the more possible that the two hypotheses can be distinguished. In later discussions,
we will see that the Chernoff information is closely related to the best achievable probability of
error.

The data collector aims to minimize the total payment while achieving an accuracy target. The
design choices include the number of individualsN , the parameters ϵ1, ϵ2, . . . , ϵN , and the payment

mechanism R in which the strategy profile (σ (ϵi )
i ) is a Nash equilibrium. Then we formulate the

mechanism design problem as the following optimization problem, which we call the payment–

accuracy problem:

min
N ∈N, ϵi ∈R\{0}∪{�},∀i

R∈R (ϵ1,ϵ2, . . .,ϵN )

N∑
i=1

E
(σ

(ϵi )
i )

[Ri (X )]

subject to e−
∑N

i=1 D (ϵi ) ≤ τ ,

where the accuracy target is represented by τ , which is related to the maximum allowable error.
We focus on the range τ ∈ (0, 1) for nontriviality. Let F (τ ) denote the optimal payment in this
problem, i.e., the infimum of the total payment while satisfying the accuracy target τ .

5.2 Bounds on the Payment–Accuracy Problem

We present bounds on F (τ ) in Theorem 5.1 below. For convenience, we define

ϵ̃ = inf

{
arg max

{
D (ϵ )

VLB (ϵ )
: ϵ > 0

}}
, Ñ =

⌈
ln(1/τ )

D (ϵ̃ )

⌉
, (21)

where recall that VLB (ϵ ) is the lower bound in Theorem 4.1.

Theorem 5.1. The optimal payment F (τ ) in the payment–accuracy problem for a given accuracy

target τ ∈ (0, 1) is bounded as: (Ñ − 1)VLB (ϵ̃ ) ≤ F (τ ) ≤ ÑVLB (ϵ̃ ) +O (τ ln(1/τ )), where the O (·) is

for τ → 0.

The upper bound in Theorem 5.1 is given by the designed mechanism R (N ,ϵ ) with parameters
chosen as ϵ = ϵ̃ and N = Ñ . Note that ϵ̃ can be proved to have a well-defined finite value indepen-
dent of τ . By the lower and upper bounds on the value of privacy, the payment to each individual

in R (Ñ , ϵ̃ ) is roughly equal to the lower bound VLB (ϵ̃ ). Then Theorem 5.1 indicates that the total

payment of the designed mechanism R (Ñ , ϵ̃ ) is at most one individual’s payment away from the
minimum, with the diminishing term O (τ ln(1/τ )) omitted. Figure 2 shows an illustration of the
lower and upper bounds.

Theorem 5.1 is proved by Lemma 5.2 and Lemma 5.3 below, where the lower bound is given by

the lower bound on the value of privacy, and the upper bound is given by R (Ñ , ϵ̃ ) .

5.2.1 Lower Bound. First, notice that it suffices to limit the choice of each ϵi to (0,+∞) in the
payment–accuracy problem, since when ϵi =�, D (ϵi ) = 0, and when ϵi < 0, D (ϵi ) = D ( |ϵi |) and
there exists another nonnegative payment mechanism with the same payment property and a

Nash equilibrium at (σ ( |ϵi |)
i ) by Lemma 4.3.
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Fig. 2. Illustration of the lower and upper bounds in Theorem 5.1 on the minimum total payment for achiev-

ing an accuracy target τ , where the upper bound is given by the designed mechanismR (Ñ , ϵ̃ ) . In this example,

the state has the following prior PMF: PW (1) = 0.7, PW (0) = 0.3. The quality of signals is θ = 0.8. The cost

function is д(ϵ ) = ϵ . The range of τ shown in the figure is 0.001–0.4.

Now we use the lower bound on the value of privacy to prove the lower bound on F (τ ). By
Theorem 4.1,

inf
R ∈R (ϵ1,ϵ2, ...,ϵN )

N∑
i=1

E
(σ

(ϵi )
i )

[Ri (X )] ≥
N∑

i=1

VLB (ϵi ).

Therefore, the optimal payment F (τ ) is lower bounded by the optimal value of the following op-
timization problem (P1):

min
N ∈N, ϵi ∈(0,+∞),∀i

N∑
i=1

VLB (ϵi )

subject to e−
∑N

i=1 D (ϵi ) ≤ τ .

(P1)

Lemma 5.2. Any feasible solution (N , ϵ1, ϵ2, . . . , ϵN ) of (P1) satisfies

N∑
i=1

VLB (ϵi ) ≥ (Ñ − 1)VLB (ϵ̃ ),

where ϵ̃ and Ñ are defined in Equation (21).

Lemma 5.2 states that the total expected payment of the data collector is at least (Ñ − 1)VLB (ϵ̃ ).

Note that the value given by the genie-aided payment mechanism R̂
(ϵ̃ )

for Ñ individuals is ÑVLB (ϵ̃ ),
which is at most oneVLB (ϵ̃ ) away from the optimal value of (P1). We can think ofVLB (ϵ ) as the price
for ϵ units of privacy and D (ϵ ) as the quality that the data collector gets from ϵ units of privacy
due to its contribution to the accuracy. Then the intuition for (Ñ , ϵ̃, . . . , ϵ̃ ) to be a near-optimal
choice is that the privacy level ϵ̃ gives the best quality/price ratio and Ñ is the fewest number of
individuals to meet the accuracy target. The proof of Lemma 5.2 is presented is Appendix D. With
this lemma, the lower bound on F (τ ) in Theorem 5.1 is straightforward.

5.2.2 Upper Bound.

Lemma 5.3. Choose the parameters in the payment mechanism R (N ,ϵ ) defined in Section 4.2.1 to

be ϵ = ϵ̃ and N = Ñ , where ϵ̃ and Ñ are defined in Equation (21). Then in the Nash equilibrium σ (ϵ̃ )
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of R (Ñ , ϵ̃ ) , the accuracy target τ can be achieved, and the total expected payment is upper bounded as

Eσ (ϵ̃ )

⎡⎢⎢⎢⎢⎣
Ñ∑

i=1

R (Ñ , ϵ̃ )
i (X )

⎤⎥⎥⎥⎥⎦ ≤ ÑVLB (ϵ̃ ) +O (τ ln(1/τ )).

This lemma follows from Theorem 4.5 and we omit the proof here. Since the payment mecha-
nismR (N ,ϵ ) together with ϵ = ϵ̃ andN = Ñ is a feasible solution of the payment–accuracy problem,
the upper bound in this lemma gives the upper bound on F (τ ) in Theorem 5.1.

5.3 Discussions on the Accuracy Metric

When we study the relation between payment and accuracy, the accuracy can also be measured
by the best achievable probability of error, defined as

pe = inf
ψ
P

(σ
(ϵi )
i )

(ψ (X ) �W ),

where ψ (x ) is a decision function, with ψ (x ) = 0 implying that H0 is accepted and ψ (x ) = 1 im-
plying that H1 is accepted. However, pe is difficult to deal with analytically, since its exact form in
terms of ϵ1, ϵ2, . . . , ϵN is intractable.

We measure the accuracy based on the Chernoff information, which is an information-theoretic
metric closely related to pe . It can be proved by the Bhattacharyya bound [17] that at the strategy

profile (σ (ϵi )
i ),

pe ≤ e−
∑N

i=1 D (ϵi ) . (22)

Therefore, if we want to guarantee that pe ≤ pmax
e for some maximum allowable probability of

error pmax
e , then we can choose τ = pmax

e in the payment–accuracy problem. In fact, the metric
based on the Chernoff information is very close to the metric pe , since the upper bound (22) is tight
in exponent when all the ϵi are the same, i.e., when the reported data is i.i.d. given the hypothesis.

6 EQUILIBRIUM ANALYSIS OF MECHANISM R (N ,ϵ )

We have showed that our designed mechanism R (N ,ϵ ) given in Section 4.2.1 has a desired Nash
equilibrium σ (ϵ ) , where every individual uses the ϵ-strategy. Besides this equilibrium, the mech-
anism R (N ,ϵ ) also has other equilibria. For example, the strategy profile where every individual
reports the same data disregard of their signals is also a Nash equilibrium. In this section, we fur-
ther analyze R (N ,ϵ ) to give a more in-depth characterization of its Nash equilibria. We have the
following main results:

• Homogeneity. Any Nash equilibrium of the mechanism R (N ,ϵ ) is homogeneous, i.e., all the
individuals use the same strategy in a Nash equilibrium.

• Convergence. For the mechanism R (N ,ϵ ) , consider a Nash equilibrium where each individual
uses the ϵN -strategy with ϵN > 0. Then the privacy level ϵN converges to the desired level
ϵ as the number of individuals N goes to infinity for non-uniform priors overW .

The multiplicity of Nash equilibria makes it difficult to obtain the outcome of the desired Nash
equilibrium when implementing the mechanism. In practice, the data collector would benefit from
priming the individuals to use the ϵ-strategy. The above results partially address this concern
by guaranteeing that even if the designed mechanism R (N ,ϵ ) may have equilibria with positive
privacy levels different from the desired level ϵ , these levels are close to ϵ when the population
size is large. However, other equilibria still exist and may give every individual a higher payment
than the desired equilibrium σ (ϵ ) . For example, when the prior PMF ofW has PW (0) < PW (1), the
payment to every individual at the non-informative equilibrium where every individual reports 0
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is larger than the payment at σ (ϵ ) . Further, individuals have no privacy loss at a non-informative
equilibrium. This issue has not been resolved in the current article, and we will further investigate
it in future work, possibly by utilizing techniques that mitigate the multiplicity problem in the
peer prediction literature. For example, Kong et al. [20] add punishment when all the individuals
report the same data, which makes the non-informative equilibria give lower payments to every
individual than the truthful equilibrium.

6.1 Homogeneity of Nash Equilibrium

Theorem 6.1. In any Nash equilibrium of the mechanism R (N ,ϵ ) , the equilibrium strategies of the

individuals have the same form.

This homogeneity result is established by the properties of R (N ,ϵ ) ’s Nash equilibria presented in
Lemma 6.2 below, the proof of which is presented in Appendix E. In a Nash equilibrium, we only
need to focus on symmetric randomized response strategies, i.e., ϵ ′-strategies with ϵ ′ � 0, and
non-informative strategies due to Lemma 4.2 in Section 4.1.1. Lemma 6.2 gives three properties of
a Nash equilibrium of R (N ,ϵ ) . The first property indicates that the randomized response strategies
of different individuals in a Nash equilibrium all have the same privacy level. The second property
implies that the non-informative strategies of different individuals in a Nash equilibrium all have
the same form. Then, finally, the third property shows that a Nash equilibrium cannot consist of
both informative and non-informative strategies. Combining these three properties leads to the
homogeneity result in Theorem 6.1.

Lemma 6.2. Any Nash equilibrium of the mechanism R (N ,ϵ ) has the following properties:

(1) Suppose that the equilibrium strategies of two individuals i and j are the ϵi -strategy and

ϵj -strategy with ϵi � 0 and ϵj � 0, respectively. Then ϵi = ϵj .

(2) Suppose that the equilibrium strategies of two individuals are non-informative strategies.

Then these two equilibrium strategies are the same.

(3) Suppose that the equilibrium strategies of two individuals i and j are σi and σj . Then it is

impossible to have that σi is an ϵ ′-strategy with some ϵ ′ � 0 and σj is a non-informative

strategy.

6.2 Convergence of Positive Privacy Levels

In this section, we focus on the Nash equilibria where individuals report data informatively and
with a probability greater than 1/2 the reported data is truthful, i.e., the equilibrium strategies
are ϵ ′-strategies with some ϵ ′ > 0. We consider a general case where PW (1) � PW (0). Consider
the sequence of mechanisms {R (N ,ϵ ),N = 2, 3, . . . }. Let σ (N ,ϵN ) denote the strategy profile where
the population has N individuals and every individual uses the ϵN -strategy. For each N , pick any
ϵN > 0 such that σ (N ,ϵN ) is a Nash equilibrium of the mechanism R (N ,ϵ ) (at least we can pick ϵ).
Then the following theorem guarantees that any such sequence {ϵN ,N = 2, 3, . . . } converges to
the desired privacy level ϵ .

Theorem 6.3. For any sequence of strategy profiles {σ (N ,ϵN ),N = 2, 3, . . . }, where each ϵN > 0
and σ (N ,ϵN ) is a Nash equilibrium of the mechanism R (N ,ϵ ) , we have

lim
N→∞

ϵN = ϵ .

The intuition behind Theorem 6.3 is that when the population size N becomes large, at any Nash
equilibrium with non-diminishing data quality, the majority of the reported data from individuals
except one individual converges to the underlying state W . Then the mechanism R (N ,ϵ ) works
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similar as the genie-aided mechanism R̂
(ϵ )

, which has a unique Nash equilibrium that consists of
ϵ-strategies. So the main proof difficulty is to show that the data quality does not diminish as N
becomes large, i.e., ϵN does not go to zero as N → ∞. A detailed proof of Theorem 6.3 is presented
in Appendix F.

7 DISCUSSIONS ON FURTHER GENERALIZATIONS

The model we study in this article considers binary signals S1, . . . , SN that come from a binary
underlying state W , where the prior is symmetric in the sense that P(Si = 1 |W = 1) = P(Si =

0 |W = 0). A relatively straightforward extension would be to consider asymmetric priors where
P(Si = 1 |W = 1) � P(Si = 0 |W = 0). For this setting, our characterization of individuals’ equi-
librium strategies in Lemma 4.2 and our techniques of establishing a lower bound on the payment
through analyzing genie-aided mechanisms still apply. The mechanism R (N ,ϵ ) we design can also
be adapted according to this prior to make sure that it has a desired Nash equilibrium and thus
gives an upper bound on the payment. However, naively following the steps we have yields a gap
between the lower and upper bounds. It is not immediately clear how we should obtain asymptot-
ically tight lower and upper bounds.

The characterization of individuals’ equilibrium strategies in Lemma 4.2 further applies to more
general probability models of binary signals. For example, we can just assume that S1, . . . , SN

come from a general joint probability distribution over {0, 1}N , without any underlying state in
the model. For this setting, we need to properly model the goal of the data collector, since learning
the state no longer makes sense.

When the signals are beyond binary, e.g., they can be k-ary data with k > 2, we expect it to
require substantially new techniques to study the relation between privacy and payment. To see
this, we consider the data reporting strategy of an individual, which prescribes a distribution to
the reported data for each possible value of the signal. So a strategy can be represented by k2

probabilities. For example, for binary data, these are the p1,p0,q1,q0 in the proof of Theorem 4.5
in Section 4.2.3. Then the privacy loss, measured by the level of local differential privacy, depends
on these k2 probabilities in a complicated, non-convex way. This dependence becomes difficult to
track when k is larger than 2. Therefore, it is hard to characterize an individual’s best response
strategy for k > 2, let alone establish lower and upper bounds on the payment to induce cer-
tain privacy level. This difficulty also illustrates the difference between the problem we study and
the classical setting for peer prediction: We focus on the relation between privacy and payment,
whereas peer prediction aims at eliciting honest report.

8 CONCLUSIONS

In this article, we studied “the value of privacy” under a game-theoretic model, where a data collec-
tor pays strategic individuals to buy their private data for a learning purpose. The individuals do
not consider the data collector to be trustworthy and thus experience a cost of privacy loss during
data reporting. The value of ϵ units of privacy is measured by the minimum payment of all non-
negative payment mechanisms under which an individual’s best response in a Nash equilibrium
is to report the data with a privacy level of ϵ . We derived asymptotically tight lower and upper
bounds on the value of privacy as the number of individuals becomes large, where the upper bound
was given by a designed payment mechanism R (N ,ϵ ) . We further applied these fundamental lim-
its to find the minimum total payment for the data collector to achieve certain learning accuracy
target and derived lower and upper bounds on the minimum payment. The total payment of the
designed mechanism R (N ,ϵ ) with properly chosen parameters is at most one individual’s payment
away from the minimum. A more in-depth analysis of the Nash equilibria of R (N ,ϵ ) was also given,
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which indicates that any Nash equilibrium of R (N ,ϵ ) is homogeneous, and if we focus on the Nash
equilibria where individuals report data informatively and with a probability greater than 1/2 that
the reported data are truthful, then the privacy levels of such equilibria converge to the desired
level ϵ as the number of individuals N becomes large.
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