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Abstract—We consider the design of an incentive mechanism
for a principal, who is assumed to be not trustworthy, to collect
informative data from privacy-sensitive individuals. The princi-
pal offers payments to incentivize participation and informative
data reporting. The individuals are strategic and take into
account both the payment and the cost for privacy loss during
data reporting. Due to privacy concerns, an individual may be
willing to report only a “noisy” version of the private data,
resulting in quality degradation. To achieve desirable accuracy
of data analysis, it is imperative for the principal to have an
incentive mechanism under which the quality of the collected
data is controllable.

In this paper, we exploit a game-theoretic approach to
the design of a payment mechanism such that the quality
of the collected data is controllable through a parameter ε
by making sure that each individual’s strategy in a Nash
equilibrium is to participate and symmetrically randomize her
data, while guaranteeing ε-differential privacy. With this design,
the principal can achieve any given accuracy objective by using
the payment mechanism associated with an appropriate ε. In
contrast to most of the existing work, which considers trusted
principal and thus focuses on designing truthful mechanisms,
this work is the first one to consider untrustworthy principal in
private data collection and quality control mechanisms in such
a scenario. We also show that the total expected payment of the
designed mechanism at equilibrium is asymptotically optimal in
the high data quality regime.

I. INTRODUCTION

With the rapid advancement of information technology,
massive amounts of human-related data, such as health
records, web browsing history, and opinions towards contro-
versial issues, can be analyzed to uncover important findings
in various areas, and to provide better understandings of
human behaviors. However, the increasing concern of privacy
poses a great challenge to this emerging field. Several serious
privacy breach incidents [1]–[3] have made people more
aware of the potential harm caused by privacy breach, and
more cautious about giving away their data. Consequently,
human-related data collection is impeded by the apparent
obstacles of privacy concern and requires a systematic treat-
ment.

We consider the problem of eliciting data from privacy-
sensitive individuals. Specifically, an entity, who is named
the principal, would like to collect data from individuals for
big-data analytics. To incentivize individuals to participate
and report informative data, the principal offers payments to
participating individuals for their reported data. However, due

to privacy concerns, an individual may be willing to report
only a “noisy” version of the data for the sake of protecting
her privacy (we will use “she” as a generic singular pronoun
in this paper). The noise level is intimately tied with both
the level of privacy protection and the quality of the reported
data. We consider a model in which individuals take into
account privacy loss during the data reporting stage, i.e.,
we do not assume the principal to be trustworthy, which
differentiates our work from most of the existing work on
privacy-aware surveys [4]–[10]. This model is meaningful in
two aspects. First, after the witness of several privacy breach
incidents, in which data holders like Netflix failed to protect
the privacy of the individuals who contributed their data [2],
individuals tend to consider the principal not trustworthy and
prefer to control privacy by themselves. On the other hand, in
some applications, such as collecting certain browsing history
records to enhance the phishing and malware protection of
web browsers [11], [12], the principal may not want to store
individuals’ original data either, to avoid subpoena risks. As
a result, individuals are expected to report privacy-preserving
data.

To quantify the privacy loss of individuals during data re-
porting, we consider the notion of (local) differential privacy
[13]–[16]. Individuals need to randomize their data and then
report the altered data for privacy protection measured by
this notion. To make use of the reported data, the principal
needs to know how the data has been randomized, i.e.,
the randomization strategies of individuals. However, this
information is not verifiable, and individuals are not obligated
to truthfully tell the principal what randomization strategies
have been used. Then a challenge faced by the principal
when collecting privacy-preserving data is: how to design the
payment mechanism such that individuals randomize their
data in a predictable way? The randomization procedure
adds distortion to the data and thus degrades the quality of
the reported data, whereas the accuracy objective for data
analytics needs certain requirements on the data quality to be
satisfied. Therefore, the above challenge can be taken a step
further. How can the payment mechanism be designed such
that individuals randomize their data with a desired level of
quality? Successfully addressing this challenge will give the
principal control over data quality when collecting privacy-
preserving data from privacy-sensitive individuals.

In this paper, we take the first step towards addressing this
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Fig. 1. Model of eliciting data from privacy-sensitive individuals. Each
individual i has a private bit Si and reports Xi, which is generated based
on Si using a randomized strategy.

important problem and consider the following model, which
is illustrated in Fig. 1. There are N individuals and each
individual i has a private bit Si, e.g., her rating of a movie,
which is either “good” or “bad” like in the rotten tomatoes
website. The joint probability distribution of S1, S2, . . . , SN
is common knowledge. The principal is interested in learning
the proportion of 1’s in the private bits, which can be viewed
as the popularity of a movie. This learning problem has
been studied intensively in the literature (see, e.g., [4], [10],
[17]). The principal uses a payment mechanism to determine
the amount of payment to each individual based on their
reported data X1, X2, . . . , XN . When an individual i uses an
ε-differentially private randomization algorithm to generate
her reported data Xi, the privacy loss incurred is ε, and her
cost of privacy is a function of ε. The form of this function
is also publicly known.

We study this problem with a game-theoretic approach,
where we assume the individuals are strategic and hence the
quality of data an individual reports is determined by her
best response that takes into account both the payment and
the privacy loss. A primary goal of the principal is to design
a payment mechanism in which an individual’s best response
(or the Nash equilibrium of the game) has the desired level
of quality. To design such a payment mechanism, we borrow
ideas from the peer prediction method [18], which makes use
of the correlation among private data (which is called signals
in their context) to induce truthful reporting from individuals
who have no privacy concern. We should caution that differ-
ent from the peer prediction method, the privacy concern of
individuals in this study fundamentally changes the structure
of the game and gives the following distinctive features to
our problem. First, since the notion of differential privacy is
adopted, the privacy loss of an individual i is determined by
both the strategy for Si = 1 and that for Si = 0. Therefore,
when choosing the randomization strategy, an individual
needs to perform joint optimization over the two possibilities
and make a contingent plan. Second, the mechanism in this
paper is not intended to elicit truthful data reporting. The
principal is satisfied with the data quality as long as the
accuracy objective can be achieved. In fact, truthful reporting
may even not be preferred since it would otherwise cost
the principal unnecessary additional payments. Consequently,
when we build this study upon the peer prediction method,
the prediction should be made on the randomized data instead
of the original data.

Taking these features into consideration, we design a pay-
ment mechanism in which the randomized response strategy
[19] that generates the reported data by flipping the private
bit with probability 1

eε+1 , where ε > 0, proves to be an equi-
librium. This equilibrium strategy is ε-differentially private,
so the collected data itself is privacy preserving. By adjusting
the corresponding parameter in the mechanism, the principal
can control the privacy level ε and thus control the data
quality to achieve any given accuracy objective. In contrast
to most of the existing work, which considers a trusted
principal and thus focuses designing truthful mechanisms, our
designed mechanism addresses individuals’ privacy concern
where the principal may not be trusted, and is the first one
that considers quality control in such a scenario to suit the
principle’s accuracy objective.

II. RELATED WORK

Most previous work on privacy-aware surveys [4]–[10],
[20] assumes that there is a trusted entity that plays the role
of the principal in this paper, who is expected to only use
individuals’ data in the announced way. The private data
is either already kept by the principal, or is elicited using
mechanisms that are designed with the aim of truthfulness.

In the seminal work by Ghosh and Roth [4], individuals’
data is known to the principal, but when using the data
for analysis, the analyst needs to pay the individuals to
compensate their cost of privacy loss caused by the data
usage, where each individual’s privacy cost is modeled as
a linear function of ε if her data is used in an ε-differentially
private manner. The goal of the mechanism design there is to
elicit truthful bids of individuals’ cost functions, i.e., the co-
efficients. Subsequent work [5]–[7], [9] explores models for
individuals’ valuation of privacy, especially the correlation
between the coefficients and the private bits.

This line of work has been extended to the scenario that
the data is not available yet and need to be reported by the
individuals to the trusted principal [8], [10]. Notably, Ghosh,
Ligett and Roth [10] study the model in which the collected
data is non-verifiable. The goal of the mechanism design
there is to incentivize truthful data reporting from individuals.
The problem of designing truthful mechanisms with players
who have explicit value for privacy has also been studied in
settings other than eliciting data for statistical analysis [21]–
[23]. For example, Chen, Chong, Kash et al. [22] design
an election mechanism that truthfully elicits votes from
privacy-sensitive individuals and maximizes social welfare.
For more work on the interplay between differential privacy
and mechanism design, please see [24] for a comprehensive
survey by Pai and Roth. Ours differs from these existing work
by considering an untrustworthy principal.

The local model of differential privacy, which is a general-
ization of randomized response [19] and is formalized in [15],
has been studied in the literature [13], [14], [16], [25]–[29]. In
practice, Google’s Chrome web browser has implemented the
RAPPOR mechanism [11], [12] to collect users’ data, which
guarantees that only limited privacy of users will be leaked
by using randomized response in a novel manner. However,



users may still not be willing to report data in the desired
way due to the lack of an incentive mechanism.

III. MODEL

In this section, we present our model for the problem
of eliciting data from privacy-sensitive individuals, which
is illustrated Fig. 1. In this model, a principal collects data
from individuals and offers payments to incentivize them to
provide informative data. The payments can be monetary, or
some privileges for individuals’ accounts. For each individ-
ual, a cost for privacy loss, measured by the same unit as the
payment, is incurred when reporting the data. Each individual
strategically decides whether to report or not, and what to
report, according to her own utility, which is the difference
between the payment and the privacy cost. The individuals
will be referred to as players in the remainder of this paper.

Consider a population of N players and denote the set of
players by N = {1, 2, . . . , N}. As a standard notion in game
theory, we denote all players except player i by “−i”. Each
player i has a private bit Si, and let S = (S1, S2, · · · , SN ).
The joint probability distribution of S1, S2, · · · , SN is com-
mon knowledge. We assume that this distribution is symmet-
ric over players; i.e., for any binary sequence s ∈ {0, 1}N
and any of its permutations s′, P(S = s) = P(S = s′).

Let Xi denote the data reported by player i and let
X = (X1, X2, . . . , XN ). The acceptable values for reported
data are 0 and 1. So Xi takes values in the set X = {0, 1,⊥},
where ⊥ indicates that player i declines to participate.
A strategy of player i for data reporting is a mapping
σi : {0, 1} → D(X ), where D(X ) is the set of probability
distributions on X . Let σ = (σ1, σ2, . . . , σN ). The strategy
σi prescribes a distribution to Xi for each possible value of
Si, which defines the conditional distribution of Xi given Si.
Since we will discuss different strategies of player i, we let
Pσi(Xi = xi | Si = si), where xi ∈ X and si ∈ {0, 1},
denote the conditional probabilities given strategy σi.

The principal is interested in learning the proportion of
1’s in S1, S2, . . . , SN , i.e., S̄ = 1

N

∑N
i=1 Si. Let µ̂ be an

estimate of S̄ from the reported data X1, X2, . . . , XN . Then
we measure the accuracy of µ̂ by the following definition,
which has been used in the literature (e.g., [4], where a fixed
number 1

3 is used instead of δ).

Definition 1. An estimate µ̂ of S̄ is (α, δ)-accurate if |S̄−
µ̂| ≤ α holds with probability at least 1− δ.

The principal uses a payment mechanism R : XN → RN
to determine the amount of payment to each individual, where
Ri(x) is the payment to player i when the reported data is
X = x. We are interested in payment mechanisms in which
the payment to each player is nonnegative, i.e., Ri(x) ≥ 0
for any player i and any x ∈ XN , which we call nonnegative
mechanisms. This constraint is motivated by the fact that in
many practical applications such as surveys, the principal
has no means to charge users and can only use payments to
incentivize user participation.

To evaluate the cost of privacy loss during data reporting,
a quantitative measure of privacy is needed. We define the

privacy loss incurred when a strategy is used to be the level of
(local) differential privacy, given in the following definition
[13]–[16].

Definition 2. The level of (local) differential privacy, or
simply the privacy level, of a strategy σi, denoted by ζ(σi),
is defined as

ζ(σi) = max

{
ln

(
Pσi(Xi ∈ E | Si = si)

Pσi(Xi ∈ E | Si = 1− si)

)
:

E ⊆ {0, 1,⊥}, si ∈ {0, 1}
}
, (1)

where we follow the convention that 0/0 = 1.

We assume that different players experience the same cost
of privacy loss if their strategies have the same privacy level.
Thus, we model each player’s cost of privacy loss by a
function g of the privacy level. We call g the cost function
and the cost the privacy cost. We say the cost function g is
proper if it satisfied the following three conditions:

g(ξ) ≥ 0, ∀ξ ≥ 0, (2)
g(0) = 0, (3)
g is non-decreasing, (4)

where (2) means that a privacy cost is nonnegative, (3)
means that the privacy cost is 0 when the reported data
is independent of the private data, and (4) means that the
privacy cost will not decrease when the privacy loss becomes
larger. In this paper, we will focus on a proper cost function
that is convex and continuously differentiable. With a little
abuse of notation, we also use g(σi) to denote g(ζ(σi)),
which is the privacy cost to player i when the strategy σi
is used.

The utility of each player is the difference between her
payment and her privacy cost. We assume that the players
are risk neutral, i.e., they are interested in maximizing their
expected utility. We focus on the Nash equilibrium of a
payment mechanism, where each player has no incentive to
unilaterally change her strategy given other players’ strate-
gies. Formally, a Nash equilibrium in our model is defined
as follows.

Definition 3. A strategy profile σ is a Nash equilibrium in a
payment mechanism R if for any player i and any strategy
σ′i,

Eσ[Ri(X)− g(σi)] ≥ E(σ′i,σ−i)
[Ri(X)− g(σ′i)], (5)

where the expectation is over the reported data X , and the
subscripts σ and (σ′i, σ−i) indicate that X is generated by
the strategy profile σ and (σ′i, σ−i), respectively.

IV. A PAYMENT MECHANISM FOR QUALITY CONTROL

We wish to design mechanisms such that the quality of
the collected data in equilibrium is controllable. Then the
principal can achieve her accuracy objective by adjusting
parameters in the mechanism. In this section, we present our
design of the payment mechanism. Consider the following
payment mechanism R(N,ε) for collecting privacy-preserving



data from N players, parameterized by a data quality param-
eter ε, where N ≥ 2 and ε > 0.

The payment mechanism R(N,ε)

1) Each player reports her data (which can also be the
decision of not participating).

2) For non-participating players, the payment is zero.
3) If there is only one participant, pay zero to this par-

ticipant. Otherwise, for each participating player i, ar-
bitrarily choose another participating player j and pay
player i according to Xi and Xj as follows:

R
(N,ε)
i (X) =

g′(ε)(eε + 1)2

2eε
AXi,Xj , (6)

where parameters A1,1, A0,0, A0,1, A1,0 are calculated
in the next section.

After the collection of data, the principal estimates S̄ =
1
N

∑N
i=1 Si by

µ̂ =
eε + 1

eε − 1

(
1

n

∑
i : Xi 6=⊥

Xi

)
− 1

eε − 1
, (7)

where n is the number of participants.

A. Payment Parameterization

Recall that we assume that the joint distribution of
S1, S2, . . . , SN is symmetric over players. As a consequence,
the private bits of the players have the same marginal
distribution. Denote this marginal distribution as follows:

P1 = P(Si = 1), P0 = P(Si = 0). (8)

Due to symmetry, the marginal distribution of any two private
bits Si and Sj with i 6= j does not depend on the specific
identities i and j either. Denote the marginal distribution of
Si and Sj with i 6= j as follows:

P1,1 = P(Si = 1, Sj = 1), P0,0 = P(Si = 0, Sj = 0),

P0,1 = P(Si = 0, Sj = 1) = P1,0 = P(Si = 1, Sj = 0).
(9)

We further define a constant D as follows:

D = P(Sj = 1, Si = 1)P(Sj = 0, Si = 0)

− P(Sj = 0, Si = 1)P(Sj = 1, Si = 0)

= P1,1P0,0 − P0,1P1,0,

(10)

which can be verified to equal to the covariance of Si and Sj .
We assume that D 6= 0, which is equivalent to the case that
Si and Sj are not independent for any two distinct players i
and j (See Appendix A for the proof of the equivalence).

The parameters A1,1, A0,0, A0,1, A1,0 used in the payment
mechanism R(N,ε) are defined as follows:
• If D > 0,

A1,1 =
(eε + 1)2

e2ε − 1

1

D

(
1

eε + 1
P1 +

eε

eε + 1
P0

)
, (11)

A0,0 =
(eε + 1)2

e2ε − 1

1

D

(
eε

eε + 1
P1 +

1

eε + 1
P0

)
, (12)

A0,1 = 0, (13)

A1,0 = 0. (14)

• If D < 0,

A1,1 = 0, (15)
A0,0 = 0, (16)

A0,1 = − (eε + 1)2

e2ε − 1

1

D

(
1

eε + 1
P1 +

eε

eε + 1
P0

)
, (17)

A1,0 = − (eε + 1)2

e2ε − 1

1

D

(
eε

eε + 1
P1 +

1

eε + 1
P0

)
. (18)

From the above definition of these parameters we can see the
intuition behind the design of mechanism R(N,ε). When the
private bits of two players are positively correlated (D > 0),
they tend to be the same. Thus, the mechanism rewards
agreement on the reported data to encourage informative data
reporting. Similarly, when the private bits of two players are
negatively correlated (D < 0), they tend to be different, and
thus correspondingly, the mechanism rewards disagreement
to encourage informative data reporting. However, the more
informative the reported data is, the more privacy cost a
player will experience. This tension will make each player
choose a compromise, which is telling truth to some extent.

B. Nash Equilibrium

Theorem 1. The strategy profile, consisting of the following
strategy of player i that is denoted by σ∗i , is a Nash
equilibrium under the payment mechanism R(N,ε):

Pσ∗i (Xi = 1 | Si = 1) = Pσ∗i (Xi = 0 | Si = 0) =
eε

eε + 1
,

Pσ∗i (Xi = 0 | Si = 1) = Pσ∗i (Xi = 1 | Si = 0) =
1

eε + 1
,

Pσ∗i (Xi =⊥ | Si = 1) = Pσ∗i (Xi =⊥ | Si = 0) = 0,
(19)

i.e., each player generates her reported data by flipping the
private bit with probability 1

eε+1 .

Proof. See Appendix B.

By Theorem 1, the parameter ε of the payment mechanism
R(N,ε) plays two roles in the equilibrium σ∗. On one hand,
the strategy each player uses to randomize her data is ε-
differentially private. Therefore, the parameter ε controls how
much privacy each player is willing to trade for payment. On
the other hand, the parameter ε describes the quality of the
reported data of each player i, since ε controls the probability
that the reported data is the same as the true private data as
follows:

Pσ∗i (Xi = Si) =
eε

eε + 1
. (20)

Therefore, the larger ε is, the more privacy each player is
willing to sell, and the higher data quality the principal
obtains. With the payment mechanism R(N,ε), the principal
is not only able to know how the data has been randomized,
but also able to control the quality of the collected data.



C. Estimation Accuracy
In this section, we discuss how the principal should choose

the parameter ε to achieve the accuracy objective of estimat-
ing S̄.

Theorem 2. For any α, δ with α > 0 and 0 < δ < 1, if

ε ≥ ln

(
2 +

1

Nα2δ

)
, (21)

then in the equilibrium σ∗ of the payment mechanism R(N,ε),
the estimate µ̂ given in (7) is (α, δ)-accurate.

Proof. See Appendix C.

Since the parameter ε of the payment mechanism R(N,ε)

describes the quality of the collected data in the equilibrium
σ∗, intuitively, the principal can achieve higher accuracy
objective by increasing ε. Theorem 2 confirms this intuition.
For an accuracy objective (α, δ), the smaller α and δ are,
the higher accuracy is required to achieve according to the
definition of accuracy in Definition 1. However, no matter
how high the accuracy objective is, by Theorem 2, the
principal can always achieve it by choosing large enough
ε, i.e., good enough data quality.

D. Asymptotic Optimality in the High Quality Regime
From the principal’s perspective, the strategy profile σ∗

given in Theorem 1 is very attractive. When players follow
σ∗, the quality of the collected data can be controlled by
a single parameter ε, and S̄ can be estimated by the simple
estimator µ̂. In this section, we focus on nonnegative payment
mechanisms in which σ∗ forms a Nash equilibrium. We study
the optimality of the proposed mechanism in terms of the
total expected payment needed to collect data with a given
quality level ε. We first derive an lower bound on the total
expected payment of a nonnegative payment mechanism in
which σ∗ is an equilibrium. Then we compare the expected
payment of the proposed mechanism with this lower bound
and show that the proposed mechanism is asymptotically
optimal in the high quality regime, i.e., as ε goes to infinity.

Proposition 1. For any nonnegative payment mechanism R
in which σ∗ is a Nash equilibrium, the total expected payment
at σ∗ is lower bounded, given as follows:

Eσ∗
[
N∑
i=1

Ri(X)

]
≥ Ng′(ε)(eε + 1). (22)

Proof. This lower bound is obtained through necessary con-
ditions for the best response to have a noise level ε. The
detailed proof is presented in Appendix D.

Therefore, to have an equilibrium at σ∗, a nonnegative
payment mechanism needs to pay at least Ng′(ε)(eε + 1) to
the players. In the asymptotic regime that ε goes to infinity,
this lower bound is on the order of O(g′(ε)eε).

In the equilibrium σ∗ of the payment mechanism R(N,ε),
the total expected payment is given by

Eσ∗
[
N∑
i=1

R
(N,ε)
i (X)

]

= Ng′(ε)(eε + 1) (23)

+
Ng′(ε)(eε + 1)2

2eε
(eε + 1)2

e2ε − 1

1

|D|
(24)

·
(

e2ε

(eε + 1)2
P0,1 +

eε

(eε + 1)2
(P 2

1 + P 2
0 ) (25)

+
1

(eε + 1)2
(P1P1,1 + P0P0,0)

)
, (26)

which can be obtained from the proof of Theorem 1.
In the asymptotic regime that ε goes to infinity, the total

expected payment of mechanism R(N,ε) is dominated by the
first term, which is identical to the lower bound Ng′(ε)(eε+
1), so the mechanism is asymptotically optimal in the high-
quality regime.

V. CONCLUSION

In this paper we have shown how to design the payment
mechanism to achieve quality control when collecting data
from privacy-sensitive individuals. We considered a model
in which individuals do not trust the principal and take into
account a privacy cost that depends on the level of the
(local) differential privacy of the data reporting strategy. Due
to privacy concerns, an individual may be only willing to
report a noisy version of the private data, which degrades
the quality of the collected data. Our proposed mechanism
incentives individuals to use a randomized response strategy
with a desired noise level in the Nash equilibrium. This
strategy generates the reported data by flipping the private
data with probability 1

eε+1 , where ε > 0 is a parameter
of the mechanism. Therefore, the quality of the collected
data is controllable by adjusting ε. We also showed that
the total expected payment of the designed mechanism is
asymptotically optimal in the high quality regime. Note that
the model of the private data in this work is a very general
one. Considering some specific but well motivated structure
for the model of the private data to find better mechanisms
is an exciting direction for future work.
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APPENDIX A

In this section we prove that D 6= 0 is equivalent to the
statement Si and Sj are not independent for any two distinct
players i and j. The direction that D 6= 0 implies dependence
is obvious since D is the covariance of Si and Sj .

For the other direction, suppose by contradiction that D =
0. Consider any two distinct players i and j. Recall that

P1 = P(Si = 1), P0 = P(Si = 0).

First notice that P1 6= 0 and P0 6= 0 since otherwise Si and
Sj are independent. Then D = 0 implies that

P(Sj = 1 | Si = 1)P(Sj = 0 | Si = 0)

= P(Sj = 0 | Si = 1)P(Sj = 1 | Si = 0).
(27)



Since P(Sj = 0 | Si = 1) = 1 − P(Sj = 1 | Si = 1) and
P(Sj = 1 | Si = 0) = 1 − P(Sj = 0 | Si = 0), (27) further
implies that

P(Sj = 1 | Si = 1) = 1− P(Sj = 0 | Si = 0)

= P(Sj = 1 | Si = 0).

Similarly,

P(Sj = 0 | Si = 1) = P(Sj = 0 | Si = 0).

Therefore, Si and Sj are independent, which contradicts with
the assumption that they are not independent. This completes
the proof.

APPENDIX B
PROOF OF THEOREM 1

We write R to represent the mechanism R(N,ε) for con-
ciseness in this proof. For any player i and any strategy σ′i,
let

p1 = Pσ′i(Xi = 1 | Si = 1), p0 = Pσ′i(Xi = 1 | Si = 0),

q1 = Pσ′i(Xi = 0 | Si = 1), q0 = Pσ′i(Xi = 0 | Si = 0).

We consider the case that D > 0. The proof for the case that
D < 0 is similar.

Suppose that other players follow σ∗−i. Let the payment
of player i be computed using the reported data Xj of some
other player j. Then the expected payment of player i can
be written as

E(σ′i,σ
∗
−i)

[Ri(X)]

=
∑

xi,xj∈{0,1}

Ri(xi, xj)P(σ′i,σ
∗
−i)

(Xi = xi, Xj = xj)

=
∑

xi,si∈{0,1}

(
Pσ′i(Xi = xi | Si = si)

·
∑

xj∈{0,1}

Ri(xi, xj)Pσ∗j (Xj = xj , Si = si)

)
= K1p1 +K0p0 + L1q1 + L0q0,

where

K1 =
g′(ε)(eε + 1)2

2eε
A1,1 · Pσ∗j (Xj = 1, Si = 1),

K0 =
g′(ε)(eε + 1)2

2eε
A1,1 · Pσ∗j (Xj = 1, Si = 0),

L1 =
g′(ε)(eε + 1)2

2eε
A0,0 · Pσ∗j (Xj = 0, Si = 1),

L0 =
g′(ε)(eε + 1)2

2eε
A0,0 · Pσ∗j (Xj = 0, Si = 0).

Note that K1, K0, L1 and L0 are all positive and they do
not depend on p1, p0, q1 and q0.

The privacy level of σ′i can be written as

ζ(σ′i) = max

{∣∣∣∣ln p1p0
∣∣∣∣, ∣∣∣∣ln 1− p1

1− p0

∣∣∣∣, ∣∣∣∣ln q1q0
∣∣∣∣, ∣∣∣∣ln 1− q1

1− q0

∣∣∣∣,∣∣∣∣ln 1− p1 − q1
1− p0 − q0

∣∣∣∣, ∣∣∣∣ln p1 + q1
p0 + q0

∣∣∣∣}.

With a little abuse of notation, we consider ζ(σ′i) as a
function ζ(p1, p0, q1, q0).

The expected utility of player i can thus be written as

E(σ′i,σ
∗
−i)

[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)).

Let this utility define a function U(p1, p0, q1, q0). Now we
find the best response of player i, i.e., the (p1, p0, q1, q0) that
maximizes U(p1, p0, q1, q0). If player i does not participate,
then p1 = p0 = q1 = q0 = 0 and U(0, 0, 0, 0) = 0.
Otherwise, we find an optimal solution of the following
optimization problem:

max
p1,p0,q1,q0

U(p1, p0, q1, q0) (P)

subject to 0 ≤ p1 ≤ 1, 0 ≤ q1 ≤ 1, (28)
0 ≤ p1 + q1 ≤ 1, (29)
0 ≤ p0 ≤ 1, 0 ≤ q0 ≤ 1, (30)
0 ≤ p0 + q0 ≤ 1, (31)
p1 + q1 + p0 + q0 > 0, (32)

by the following three steps.
Step 1. First, we prove that an optimal solution

(p∗1, p
∗
0, q
∗
1 , q
∗
0) must satisfy that p∗1 + q∗1 = p∗0 + q∗0 . Suppose

not. Without loss of generality we assume that p∗1 + q∗1 <
p∗0 + q∗0 . We will find another solution (p′1, p

∗
0, q
′
1, q
∗
0) that

yields better utility, which contradicts the optimality of
(p∗1, p

∗
0, q
∗
1 , q
∗
0).

Since we assume that p∗1 + q∗1 < p∗0 + q∗0 , then at least
one of the following two inequality holds: p∗1 < p∗0, q∗1 < q∗0 .
Still without loss of generality we assume that p∗1 < p∗0.
Then if q∗1 < q∗0 , let p′1 = p∗0 and q′1 = q∗0 . Since K1 and
L1 are positive, (p′1, p

∗
0, q
′
1, q
∗
0) yields higher payment. It is

easy to verify that ζ(p′1, p
∗
0, q
′
1, q
∗
0) < ζ(p∗1, p

∗
0, q
∗
1 , q
∗
0). Thus

(p′1, p
∗
0, q
′
1, q
∗
0) yields better utility. For the other case that

q∗1 ≥ q∗0 , let p′1 = p∗0 + q∗0 − q∗1 and q′1 = q∗1 . Then p∗1 <
p′1 ≤ p∗0. Since K1 is positive, (p′1, p

∗
0, q
′
1, q
∗
0) yields higher

payment. To check the privacy cost, notice that

ζ(p∗1, p
∗
0, q
∗
1 , q
∗
0) = max

{
ln
p∗0
p∗1
, ln

1− p∗1
1− p∗0

, ln
q∗1
q∗0
, ln

1− q∗0
1− q∗1

,

ln
1− p∗1 − q∗1
1− p∗0 − q∗0

, ln
p∗0 + q∗0
p∗1 + q∗1

}
,

and

ζ(p′1, p
∗
0, q
′
1, q
∗
0) = max

{
ln
p∗0
p′1
, ln

1− p′1
1− p∗0

, ln
q′1
q∗0
, ln

1− q∗0
1− q′1

}
.

Since p′1 > p∗1 and q′1 = q∗1 , ζ(p′1, p
∗
0, q
′
1, q
∗
0) ≤

ζ(p∗1, p
∗
0, q
∗
1 , q
∗
0). Thus (p′1, p

∗
0, q
′
1, q
∗
0) yields better utility.

Therefore, by contradiction, we must have p∗1+q∗1 = p∗0+q∗0 .
Step 2. Next, we prove that an optimal solution

(p∗1, p
∗
0, q
∗
1 , q
∗
0) must satisfy that p∗1 + q∗1 = p∗0 + q∗0 =

1. Still, suppose not. Then we will find another solution
(p′1, p

′
0, q
′
1, q
′
0) that yields better utility.

Let

p′1 =
p∗1

p∗1 + q∗1
, q′1 =

q∗1
p∗1 + q∗1

,



p′0 =
p∗0

p∗0 + q∗0
, q′0 =

q∗0
p∗0 + q∗0

.

By Step 1, p∗1 + q∗1 = p∗0 + q∗0 . By constraint (32), p∗1 + q∗1 =
p∗0 + q∗0 > 0. Since we assume that p∗1 + q∗1 and p∗0 + q∗0 are
not equal to 1, they must be less than 1. Since K1, K0, L1

and L0 are positive, (p′1, p
′
0, q
′
1, q
′
0) yields higher payment.

It is easy to verify that ζ(p′1, p
′
0, q
′
1, q
′
0) ≤ ζ(p∗1, p

∗
0, q
∗
1 , q
∗
0).

Thus (p′1, p
′
0, q
′
1, q
′
0) yields better utility, which contradicts

the optimality of (p∗1, p
∗
0, q
∗
1 , q
∗
0).

Step 3. By Step 1 and Step 2, the optimization problem
(P) can be written as:

max
p1,p0∈[0,1]

K̄1p1 + K̄0p0 − g(ζ(p1, p0, 1− p1, 1− p0)) + K̄,

(P1)

where

K̄1 = K1 − L1 =
g′(ε)(eε + 1)2

2eε
,

K̄0 = K0 − L0 = −g
′(ε)(eε + 1)2

2eε
,

K̄ = L1 + L0

=
g′(ε)(eε + 1)2

2eε
(eε + 1)2

e2ε − 1

1

D

·
(

eε

eε + 1
P1 +

1

eε + 1
P0

)(
1

eε + 1
P1 +

eε

eε + 1
P0

)
.

The above calculation is done by noticing that

e2ε − 1

(eε + 1)2
D = Pσj (Xj = 1, Si = 1)Pσj (Xj = 0, Si = 0)

− Pσj (Xj = 0, Si = 1)Pσj (Xj = 1, Si = 0).

Solving (P1) is equivalent to solving the following opti-
mization problem

max
p1,p0,ξ

K̄1p1 + K̄0p0 − g(ξ) + K̄ (P2)

subject to ln p1 − ln p0 − ξ ≤ 0 (33)
ln p1 − ln p0 + ξ ≥ 0 (34)
ln(1− p1)− ln(1− p0)− ξ ≤ 0 (35)
ln(1− p1)− ln(1− p0) + ξ ≥ 0 (36)
p1 ∈ [0, 1], p0 ∈ [0, 1], ξ ∈ [0,+∞]. (37)

The problem (P2) can be solved as follows: we first fix a ξ ∈
[0,+∞] and maximize the objective function with respect
to p1 and p0; then we find an optimal ξ. For ξ = 0, the
objective function always equals to K̄ for feasible (p1, p0).
For ξ = +∞, the objective function always equal to −∞.
For any fixed 0 < ξ < +∞, the problem (P2) is a linear
programming problem. The optimal solution is

(p
(ξ)
1 , p

(ξ)
0 ) =

(
eξ

eξ + 1
,

1

eξ + 1

)
,

and the optimal value is

−g
′(ε)(eε + 1)2

eε
1

eξ + 1
− g(ξ) + K̄1 + K̄.

Let this optimal value defines a function f of ξ; i.e.,

f(ξ) = −g
′(ε)(eε + 1)2

eε
1

eξ + 1
− g(ξ) + K̄1 + K̄. (38)

To find the optimal ξ of f(ξ), we calculate the derivatives of
f as follows:

f ′(ξ) =
g′(ε)(eε + 1)2

eε
eξ

(eξ + 1)2
− g′(ξ),

f ′′(ξ) = −g
′(ε)(eε + 1)2

eε
eξ(eξ − 1)

(eξ + 1)3
− g′′(ξ) ≤ 0,

where the second inequality is due to the convexity of the
cost function g. Therefore, f is concave. Since f ′(ε) = 0,
the maximum value of f is achieved at ε. The optimal value
is given by

f(ε) = −g
′(ε)(eε + 1)2

eε
1

eε + 1
− g(ε) + K̄1 + K̄

= g′(ε)
eε − e−ε

2
− g(ε) + K̄.

By the convexity of g,

g(ε) ≤ g′(ε)ε ≤ g′(ε)e
ε − e−ε

2
.

Therefore, the optimal value satisfies that f(ε) ≥ K̄, which
is greater than 0, and the optimal solution of (P1) is given
by

p∗1 =
eε

eε + 1
, p∗0 =

1

eε + 1
.

According to the three steps above, the optimal solution
of (P) is given by

p∗1 =
eε

eε + 1
, p∗0 =

1

eε + 1
,

q∗1 =
1

eε + 1
, q∗0 =

eε

eε + 1
,

and the optimal value is greater than 0. Therefore, the best
response of player i is σ∗i , which implies that σ∗ is a Nash
equilibrium of the mechanism R(N,ε).

APPENDIX C
PROOF OF THEOREM 2

In the equilibrium σ∗ of the mechanism R(N,ε), for each
player i, given the private bit Si, the reported data Xi is
independent of S−i and X−i, and for any si ∈ {0, 1},

Pσ∗i (Xi = si | Si = si) =
eε

eε + 1
,

Pσ∗i (Xi = 1− si | Si = si) =
1

eε + 1
.

Therefore, given S = s for any s ∈ {0, 1}N ,
X1, X2, . . . , XN are independent random variables and each
Xi has the distribution:

Pσ∗i (Xi = 1 | S = s) =
esiε

eε + 1
,

Pσ∗i (Xi = 0 | S = s) =
e(1−si)ε

eε + 1
.



Recall that the principal is interested in estimating S̄ =
1
N

∑N
i=1 Si. The mechanism R(N,ε) estimates S̄ by µ̂, which

can be written as follows in the equilibrium σ∗:

µ̂ =
eε + 1

eε − 1

1

N

N∑
i=1

Xi −
1

eε − 1
.

We bound the probability for |S̄− µ̂| > α in the equilibrium
σ∗. First we write this probability as follows:

Pσ∗(|S̄ − µ̂| > α)

=
∑

s∈{0,1}N
Pσ∗(|S̄ − µ̂| > α | S = s)P(S = s)

Given any s ∈ {0, 1}N , notice that

S̄ − µ̂ =
1

N

N∑
i=1

(
eε + 1

eε − 1
Xi − Si −

1

eε − 1

)
is the average of N independent random variables. The
expectation and variance of S̄ − µ̂ can be calculated as

Eσ∗ [S̄ − µ̂] = 0,

Var(S̄ − µ̂) =
1

N

eε

(eε − 1)2
.

Then by Chebyshev’s inequality,

Pσ∗(|S̄ − µ̂| > α | S = s) ≤ 1

α2N

eε

(eε − 1)2
.

Therefore,

Pσ∗(|S̄ − µ̂| > α) ≤ 1

α2N

eε

(eε − 1)2
.

Since we choose

ε ≥ ln

(
2 +

1

Nα2δ

)
,

we have
1

α2N

eε

(eε − 1)2
=

1

α2N

1

eε + e−ε − 2

≤ 1

α2N

1

eε − 2
≤ δ.

Therefore, Pσ∗(|S̄ − µ̂| > α) ≤ δ and thus Pσ∗(|S̄ − µ̂| ≤
α) ≥ 1 − δ, which indicates that the estimate µ̂ is (α, δ)-
accurate in the equilibrium σ∗.

APPENDIX D
PROOF OF PROPOSITION 1

Consider any nonnegative payment mechanism R. For any
player i and any strategy σ′i, let

p1 = Pσ′i(Xi = 1 | Si = 1), p0 = Pσ′i(Xi = 1 | Si = 0),

q1 = Pσ′i(Xi = 0 | Si = 1), q0 = Pσ′i(Xi = 0 | Si = 0).

Consider the strategy profile σ∗. Similar to the proof of
Theorem 1, we write the expected payment of player i as

E(σ′i,σ
∗
−i)

[Ri(X)]

=
∑

x∈{0,1}N
Ri(xi, x−i)P(σ′i,σ

∗
−i)

(Xi, X−i)

=
∑

xi,si∈{0,1}

(
Pσ′i(Xi = xi | Si = si)

·
∑

x−i∈{0,1}N−1

Ri(xi, x−i)Pσ∗−i(X−i = x−i, Si = si)

)
= K1p1 +K0p0 + L1q1 + L0q0,

where

K1 =
∑

x−i∈{0,1}N−1

Ri(1, x−i)Pσ−i(X−i = x−i, Si = 1),

K0 =
∑

x−i∈{0,1}N−1

Ri(1, x−i)Pσ−i(X−i = x−i, Si = 0),

L1 =
∑

x−i∈{0,1}N−1

Ri(0, x−i)Pσ−i(X−i = x−i, Si = 1),

L0 =
∑

x−i∈{0,1}N−1

Ri(0, x−i)Pσ−i(X−i = x−i, Si = 0).

Note that K1,K0, L1 and L0 are all nonnegative and they do
not depend on σ′i. Then the expected utility of player i can
be written as

E(σ′i,σ
∗
−i)

[Ri(X)− g(ζ(σ′i))]

= K1p1 +K0p0 + L1q1 + L0q0 − g(ζ(p1, p0, q1, q0)).

Consider the strategy σ(ξ)
i of player i defined as follows

P
σ
(ξ)
i

(Xi = 1 | Si = 1) = P
σ
(ξ)
i

(Xi = 0 | Si = 0) =
eξ

eξ + 1
,

P
σ
(ξ)
i

(Xi = 0 | Si = 1) = P
σ
(ξ)
i

(Xi = 1 | Si = 0) =
1

eξ + 1
.

Then the expected utility of player i can be further written
as

E
(σ

(ξ)
i ,σ∗−i)

[Ri(X)− g(ζ(σ
(ξ)
i ))]

= (K1 − L1)
eξ

eξ + 1
+ (K0 − L0)

1

eξ + 1
+ L1 + L0 − g(ξ)

= K̄1
eξ

eξ + 1
+ K̄0

1

eξ + 1
+ K̄ − g(ξ)

= −(K̄1 − K̄0)
1

eξ + 1
− g(ξ) + K̄1 + K̄,

where

K̄1 = K1 − L1, K̄0 = K0 − L0, K̄ = L1 + L0.

Let this expected utility define a function h of ξ; i.e.,

h(ξ) = −(K̄1 − K̄0)
1

eξ + 1
− g(ξ) + K̄1 + K̄.

Then a necessary condition for σ∗ to be a Nash equilibrium
is that the level ε in σ∗i maximizes h(ξ). Since

h′(ξ) = (K̄1 − K̄0)
eξ

(eξ + 1)2
− g′(ξ),

we must have

K̄1 − K̄0 =
g′(ε)(eε + 1)2

eε
.



Next let us bound K̄1 + K̄. By definitions,

K̄1 − K̄0 =
∑
x−i

(
Ri(1, x−i)−Ri(0, x−i)

)
·
(
Pσ∗−i(X−i = x−i, Si = 1)

− Pσ∗−i(X−i = x−i, Si = 0)
)
.

Let A = {x−i ∈ {0, 1}N−1 : Ri(1, x−i) ≥ Ri(0, x−i)}.
Then

K̄1 + K̄ =
∑
x−i

(
Ri(1, x−i)Pσ∗−i(X−i = x−i, Si = 1)

+Ri(0, x−i)Pσ∗−i(X−i = x−i, Si = 0)
)

≥
∑
x−i∈A

(
Ri(1, x−i)−Ri(0, x−i)

)
· Pσ∗−i(X−i = x−i, Si = 1)

+
∑

x−i∈Ac

(
Ri(0, x−i)−Ri(1, x−i)

)
· Pσ∗−i(X−i = x−i, Si = 0)

≥ K̄1 − K̄0

=
g′(ε)(eε + 1)2

eε
.

Therefore, the expected payment to player i at σ∗ is lower
bounded as

Eσ∗ [Ri(X)] = −(K̄1 − K̄0)
1

eξ + 1
+ K̄1 + K̄

≥ g′(ε)(eε + 1),

and thus the total expected payment at σ∗ is lower bounded
as

Eσ∗
[
N∑
i=1

Ri(X)

]
≥ Ng′(ε)(eε + 1).
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