The Case for Phase-Aware Scheduling of Parallelizable Jobs

Parallelizable jobs typically consist of multiple phases of computation, where the job is more parallelizable
in some phases and less parallelizable in others. For example, in a database, a query may consist of a highly
parallelizable table scan, followed by a less parallelizable table join. In the past, this phase-varying paralleliz-
ability was summarized by a single sub-linear speedup curve which measured a job’s average parallelizability
over its entire lifetime. Today, however, a wide range of modern systems have fine-grained knowledge of the
exact phase each job is in at every moment in time. Unfortunately, these systems do not know how to best use
this real-time feedback to schedule parallelizable jobs. Current systems scheduling is largely heuristic, while
theory has failed to produce practical phase-aware scheduling policies.

A phase-aware scheduling policy must decide, at every moment in time, how many servers or cores to
allocate to each job in the system, given knowledge of each job’s current phase. This paper provides the first
stochastic model of a system processing parallelizable jobs composed of phases. Using our model, we derive
the optimal phase-aware scheduling policy which minimizes the mean response time across jobs. Our provably
optimal policy, Inelastic-First (IF), gives strict priority to jobs which are currently in less parallelizable phases.
We validate our results using a simulation of a database running queries from the Star Schema Benchmark. We
compare IF to a range of policies from both systems and theory and show that IF can reduce mean response
time by up to a factor of 3.

ACM Reference Format:
. 2021. The Case for Phase-Aware Scheduling of Parallelizable Jobs. Proc. ACM Meas. Anal. Comput. Syst. 1, 1
(September 2021), 25 pages.

1 INTRODUCTION

Parallelizable workloads are ubiquitous and appear across a diverse array of modern computer sys-
tems. Data centers, supercomputers, machine learning clusters, distributed computing frameworks,
and databases all process jobs designed to be parallelized across many servers or cores. Unlike the
jobs in more classical models, such as the M/G/k, which each run on a single server, parallelizable
jobs are capable of running on multiple servers simultaneously. A job will receive some speedup
from being parallelized across additional servers or cores, allowing the job to complete more quickly.

When scheduling parallelizable jobs, a scheduling policy must decide how to best allocate servers
or cores among the jobs in the system at every moment in time. This paper describes and analyzes
scheduling policies for systems which process an online stream of incoming parallelizable jobs.
Given a set of K servers, we seek scheduling policies that minimize the mean response time across
jobs — the average time from when a job arrives to the system until it is completed.

The difficulty in scheduling parallelizable jobs arises largely from the fact that a job’s paralleliz-
ability is not constant over time. Across a wide variety of systems, jobs typically consist of multiple
phases, each of which has its own scalability characteristics.

For example, in databases, a single query typically alternates between highly parallelizable phases
and non-parallelizable phases. Specifically in modern databases, queries are translated by the system

Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2476-1249/2021/9-ART $15.00

https://doi.org/

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2021.

https://doi.org/

Query 2.1 Query 2.2

0.03% 6.32% 93.41% 0.03% 0.2% 0.01% 1.69% 97.36% 0.04% 0.89%
S 40 S 40
=] =]
k5 3
& 201 & 20 /
o] / o P ———
o 0 o 0
0 20 400 20 400 20 400 20 400 20 40 0 20 400 20 400 20 400 20 400 20 40
Threads Threads
Query 4.1 Query 4.2
3.95% 95.74% 0.01% 0.13% 0.17% 1.09% 98.58% 0.01% 0.13% 0.19%
Q o
S 40 540
E 204 / 'QD, 20 /
(7] 17
Q] | P /_—_ Q. R —— /_
@ o g g ' i T | T ' ' d @0 g g ' i T 3 ' i T .
0 20 400 20 400 20 400 20 400 20 40 0 20 400 20 400 20 400 20 400 20 40
Threads Threads

Fig. 1. Speedup functions for each phase of four queries from the Star Schema Benchmark. Queries were
executed using the Noisepage database[1]. Phases are generally either elastic (highly parallelizable) or inelastic
(highly sequential). The percentages denote the fraction of time spent in each phase when the query was
run on a single core. Despite the queries spending most of their time in elastic phases, the overall speedup
function of each query is highly sublinear due to Amdah[’s law.

into a pipeline composed of multiple phases corresponding to different database operations [1]. A
phase which corresponds to a sequential table scan will be elastic, capable of perfectly parallelizing
and completing k times faster when run on k cores. On the other hand, a phase corresponding to
a table join will be inelastic, receiving a severely limited speedup from additional cores. Figure 1
shows that this phenomenon holds for a variety of queries from the Star Schema Benchmark [27].

Our Problem

In practice, many system schedulers are aware of each job’s current phase [26, 34]. The phases of
a database query pipeline are invoked explicitly during query execution [38]. Cluster schedulers
[10], distributed computing platforms such as Hadoop [31] and Apache Spark [9, 37], distributed
machine learning frameworks [24], and supercomputing centers all process jobs composed of a
mixture of highly parallelizable and highly sequential phases.

While the above systems have the capability to detect the current phase of each running job, they
do not effectively leverage this information to make optimal scheduling decisions. In this paper, we
address the problem of phase-aware scheduling — using the available phase information to allocate
resources efficiently across jobs. Given a stream of parallelizable jobs composed of multiple phases,
our goal is to design scheduling policies which decide, at every moment in time, how many cores
or servers to allocate to each job.

Why Phase-Aware Scheduling has not Been Solved

The systems community, theoretical computer science (TCS) community, and stochastic perfor-
mance modeling community have all done significant work on the problem of parallel job scheduling.
However, we will see that both existing theoretical results and state-of-the-art systems schedulers
can be improved by the use of phase-aware scheduling policies.

The typical approach of the systems community is to defer scheduling decisions to the user
by relying on reservation-based systems [20, 30, 35]. Here, users reserve the number of cores or
servers on which they want to run their jobs. Unfortunately, it is well-known that users tend to
conservatively over-provision resources, leading to suboptimal resource allocations [10, 35].

While phase-aware systems schedulers do exist, they often make suboptimal scheduling decisions.
For instance, database schedulers use phase knowledge to avoid over-allocating cores to queries
which are in an inelastic phase, but otherwise process queries in first-come-first-served (FCFS) order
[22]. We refer to this policy as Phase-Aware FCFS (PA-FCFS), to distinguish it from a naive FCFS
policy that over-allocates to inelastic phases. We will see that PA-FCFS can be far from optimal.

The approach of the TCS community has been to analyze the problem through the lens of
competitive analysis, where it is assumed that the arrival sequence of jobs is chosen adversarially.
This work either assumes that jobs consist of phases with different degrees of scalability or that
each job is encoded as a directed acyclic graph (DAG) [3, 11]. In these adversarial settings, strong
lower bounds have been obtained on the achievable competitive ratio. In particular, no scheduling
policy can perform within a constant factor of the optimal policy in the worst case [23]. The
TCS community has also found policies that match these lower bounds, such as the EQUI policy
[11, 21] which divides servers evenly between all jobs currently in the system. This has led the TCS
community to conclude that the problem of scheduling parallelizable jobs is solved, even though
these policies frequently perform worse than PA-FCFS (see Section 7).

The stochastic community has thus far largely assumed that all jobs follow the same, single
speedup function that dictates how parallelizable the jobs are [4]. However, this work has not
addressed how to schedule jobs whose parallelizability changes over time.

Optimal Phase-Aware Scheduling

In summary, although real-world systems process jobs composed of phases, and these systems are
often aware of the current phase of each job, phase-aware scheduling remains an open problem.
Hence, our first contribution is a stochastic model of jobs composed of multiple phases with different
levels of parallelizability. Under this model we derive a provably optimal scheduling policy. The
policy we derive, IF, is non-obvious and greatly outperforms both the PA-FCFS policy used in
real systems and the EQUI policy proposed in the worst-case literature. Because our model makes
some simplifying assumptions, we validate the performance of IF through a range of simulations
including a simulation of a database running queries from the Star Schema Benchmark [27].

Contributions of This Paper

o In Section 3, we develop a novel model of parallelizable jobs composed of elastic and inelastic
phases where the scheduler knows, at all times, what phase a job is in. Our model is far more
general than prior work from the stochastic community which has assumed that all jobs
follow the same, single speedup function.

e We prove that the Inelastic First (IF) policy, which defers parallelizable work by giving strict
priority to jobs which are in an inelastic phase, is optimal under our model. Because the
proof of optimality requires a complex coupling argument, we break this claim down by
considering special cases which are easier to understand. We begin by proving the optimality
of IF in simpler models in Section 5 before proving our more general claim in Section 6.

e In Section 7, we perform an extensive simulation-based performance evaluation, illustrating
that IF outperforms a range of scheduling policies. Even in settings that violate the assump-
tions of our model, IF can perform nearly 30% better than the PA-FCFS policy used in modern
databases and a factor of 3 better than the EQUI policy advocated by the TCS community.

e Finally, in Section 8, we perform a case study on scheduling in databases where queries
consist of elastic and inelastic phases. In this setting, the scheduler sometimes has additional
information about each query beyond just the query’s current phase. We show how IF can
be generalized to leverage this additional information. This generalization improves upon
state-of-the-art database scheduling by roughly 50% in simulation.

2 PRIOR WORK

It is easiest to understand the prior theoretical work on scheduling parallelizable jobs in terms of the
model of parallelism considered. We will therefore discuss several theoretical models of parallelism
before considering prior work from the systems community on scheduling parallelizable jobs.

Jobs with Parallelizable Phases

The closest theoretical work to ours comes from the worst-case scheduling community [11-14].
This work similarly considers the problem of scheduling parallelizable jobs composed of phases of
differing parallelizability. Due to the worst-case nature of the analysis, this work is forced to either
consider an offline problem where all jobs arrive at time 0 [13], or to rely on resource augmentation?
[11, 12, 14] to provide an algorithm which is within a (potentially large) constant factor of the
optimal policy. This work concludes that the EQUI policy, as well as a generalization of it, is constant
competitive given a small constant resource augmentation.

A related work from the parallel scheduling community [5] recognizes that jobs have elastic
and inelastic phases. However, for analytical tractability, [5] assumes that jobs consist of only a
single phase, and are therefore either fully elastic or fully inelastic. Even in this limited setting, [5]
requires that the inelastic jobs are smaller on average than the elastic jobs. By contrast, our model
allows each job to have any number of phases, with different jobs having different numbers of
phases. Furthermore, our model does not make any assumptions about the relative sizes of elastic
and inelastic phases.

Jobs with Speedup Curves

Other theoretical work has also considered a model where, instead of consisting of phases, each
job follows a single speedup function, s(k), that describes the speedup a job receives from running
on k servers. Here, s(k) is some positive, concave, non-decreasing function. Work using this model
from the worst-case scheduling literature finds that, when job sizes are known, a generalization of
EQUI is O(log p)-competitive with the optimal policy, where p is the ratio of the largest job size to
the smallest job size [21]. Moreover, EQUI is again shown to be constant competitive with constant
resource augmentation [12, 14]. In an analogous result using this model from the performance
modeling community, [4] finds that EQUI is the optimal policy when job sizes are unknown and
exponentially distributed.

Overall, the general consensus from both the worst-case scheduling community and the per-
formance modeling community is that EQUI should be used to achieve good or possibly optimal
mean response time. However, as we will see, EQUI is far from optimal when jobs are composed of
elastic and inelastic phases (see Figure 7). This discrepancy is largely due to the overly pessimistic
nature of the prior theory work, which all assumes that the system is incapable of determining
how parallelizable a job is at each moment in time. We assume that the scheduler knows whether a
job is in an elastic phase or an inelastic phase, which is reasonable for a wide range of systems
[9, 17, 25, 29]. As a result, we are able to provide the optimal policy with respect to mean response
time in a variety of cases.

DAG Jobs

A separate branch of theoretical work on scheduling parallel jobs that developed concurrently
with the above models considers every parallel job as consisting of a set of tasks with precedence
constraints specified by a Directed Acyclic Graph (DAG). In this model, introduced in [7], a task
can only run on a single server, but any two tasks that do not share a precedence relationship can
be run in parallel. Much of the work in this area is concerned with how to efficiently schedule
a single DAG job onto a set of servers [6-8]. When multiple DAG jobs arrive online, there are
strong lower bounds on the competitive ratio of any online algorithm for mean response time [23].
Recently, [3] considered the online problem of scheduling a stream of DAG jobs to minimize the

1Resource augmentation analysis is a relaxation of competitive analysis that, for some s > 1, compares an algorithm using
speed s processors against the optimal policy using speed 1 processors.

worst case mean response time. Using a resource augmentation argument, they show that EQUI
and its generalization are constant competitive with constant resource augmentation.

Systems Literature

The need to schedule jobs with sublinear speedup functions has been corroborated across a wide
range of systems. Perhaps most famously, the computer architecture community identified Amdahl’s
law [19] around the advent of multicore architectures. The problem of scheduling parallelizable
jobs is similarly known in the context of data center scheduling [10], supercomputing [28, 33],
distributed machine learning [24], databases [15], and distributed computing frameworks such
as MapReduce [9, 36]. Existing schedulers in these contexts are highly dependent on heuristics
[10, 18, 25, 29], often require significant parameter tuning, and do not provide formal guarantees
about performance. Our goal is to improve upon these state-of-the-art heuristic policies by providing
practical policies with provably optimal or near-optimal performance.

3 MODEL

In this section, we develop a model of jobs composed of distinct phases running in a system
consisting of K homogeneous servers.

Multi-phase Jobs

We begin by noting that, in a wide range of systems applications, job phases are either highly
parallelizable or highly sequential. This can be clearly seen in the case of database queries in Figure
1. A similar phenomenon applies in systems using a map-reduce paradigm [9] where parallelizable
map stages are interlaced with sequential reduce stages. Machine learning training jobs also consist
of highly parallelizable iterations of distributed gradient descent followed by a sequential step
which coalesces the results on a central parameter server [24]. Hence, while job phases could
potentially experience intermediate parallelizability, we will consider the highly practical case
where job phases are either elastic, perfectly parallelizable, or inelastic, totally sequential.

To model the duration of each job phase, we define a phase’s inherent size to be the amount of
time it takes the phase to complete when run on a single server. For analytical tractability, we will
assume that inelastic phase sizes are distributed as Exp(yy) and elastic phase sizes are distributed as
Exp(pE), and that all phase sizes are independently distributed. Although the scheduler often knows
the current phase of each job in the system, it is less common in real systems for the scheduler to
know the full sequence of phases comprising each job, or the size of each phase. Hence, we will
generally assume that the scheduler knows the current phase of each job, but that the scheduler
does not know the future phases or any of the phase sizes of a job. In Section 8, we will consider
the specific case of scheduling in databases, where it is common for the database to have additional
information about the phases and phase sizes of each job.

Only elastic phases can be parallelized across multiple servers. An elastic phase of size x, when
run on k servers, takes 7 time to complete. Equivalently, the running time of an elastic phase on
k servers can be viewed as a random variable which is distributed as Exp(kug). By contrast, an
inelastic phase cannot be parallelized and runs on at most one server at any moment in time.

Because the sizes of a job’s phases are assumed to be exponentially distributed and unknown
to the system, we can model a multi-phase job via a continuous-time Markov chain, as seen in
Figure 2. We will model each job via a Markov chain consisting of three states: an E state that
denotes that the job is in an elastic phase, an I state that denotes that the job is in an inelastic
phase, and an absorbing state, C, that denotes that the job has been completed. Each arriving job
can either start in the E state or in the I state. We will assume that a job can only transition to the
completion state from the inelastic state. This is realistic for a wide range of systems where the

results of a parallel computation must be sequentially coalesced and returned to the user [9, 16, 37].
It also simplifies our analysis without weakening our results (see Remark 3). We define g to be
the probability that a job completes after an inelastic phase; with probability 1 — q the job will
transition to an elastic phase.

HE qur
(1 —q)ur

Fig. 2. The Markov chain governing the evolution of a multi-phase job when running on a single server. E
refers to the elastic phase, I refers to the inelastic phase, and C is the completion state.

We assume that all jobs are modeled by the same underlying Markov chain. However the exact
number of phases and the sizes of the phases belonging to each job can be different. Under this
model, the expected total inherent size of a job depends on whether the job begins with an E phase
or an I phase, and is given by the following expressions:

1 1\1
E[Job size if startin E] = (— + —) ht

HE H1) 4

1 1\1 1
E[Job size if startin I] = (— + _) -

HE H1) 9 HE

We refer to the completion of a job’s final inelastic phase as a job completion. We refer to the
completion of any of the job’s phases as a transition. An inelastic transition occurs when an inelastic
phase is completed and an elastic transition occurs when an elastic phase is completed.

Scheduling Policies

A scheduling policy, 7, determines how to allocate the K servers to the present jobs at every moment
in time. While our policies are fully preemptive, we assume that policies only change their allocation
at times of job arrivals, transitions, or job completions. When a job is in its inelastic phase, it can be
allocated up to 1 server, i.e., fractional allocations are admitted. When a job is in its elastic phase, it
can be allocated any number of servers up to K.

We will only consider policies that do not idle servers unnecessarily. It was shown in [5] that
there exists a non-idling optimal scheduling policy for scheduling jobs consisting of either a single
elastic phase or a single inelastic phase, and this proof can be trivially extended to the case where
jobs consist of multiple phases. Hence, to find the optimal scheduling policy in this paper, it suffices
to consider non-idling policies.

Because the sizes of a job’s phases are exponentially distributed and unknown to the system, we
will generally only consider policies that make allocation decisions based on the type each job’s
current phase. In Section 8.1, however, we will discuss the case where scheduling policies may have
additional information about the sizes of each job’s phases.

This paper will focus on the analysis of the Inelastic First (IF) policy. The key property of IF
is that it defers parallelizable work. That is, at every moment in time, IF gives strict priority to
jobs which are in inelastic phases. Specifically, if there are i jobs in the system that are in their
inelastic phase, then IF will allocate min{i, K} servers to these jobs. Any remaining servers will be
allocated to a job in an elastic phase if such a job exists, otherwise these extra servers will remain

Inelastic
Phases

Phases

K = 4 Servers

XXX,
. /0|00

Fig. 3. The central queue and servers for our system. Jobs 1-7 are all modeled by the Markov chain presented
in Figure 2. We use solid orange to illustrate the elastic phases of jobs, and crosshatched blue to illustrate the
inelastic phases. While we assume the number of remaining phases is unknown to the scheduler, we have
drawn out the remaining phases to illustrate job structure. Here, there are K = 4 servers. At this moment,
servers 1 and 2 are allocated to jobs in an inelastic phase (Jobs 1 and 2), and servers 3 and 4 are allocated to a
single job in the elastic phase (Job 3).

idle. Deferring parallelizable work tends to increase system efficiency by keeping flexible elastic
phases in the system, ensuring that a policy can make use of all K servers.

We will show that IF is optimal with respect to minimizing mean response time. Intuitively, IF
is a good policy because it is able to both favor jobs with smaller expected remaining sizes, and
defer parallelizable work. Observe that IF does not require any knowledge of the job parameters
(u1, pE, and q). Thus, optimally scheduling multi-phase jobs can be done regardless of whether these
parameters are known to the system.

Arrival Processes and Metrics

We allow for an arbitrary arrival process. To be precise, we first define an arrival time sequence as
two fixed, infinite sequences, (t,),>1 and (£,),>1, where t, is the time at which the nth job arrives
and ¢, € {E, I} denotes whether the arriving job begins with either an E phase or an I phase. We
define an arrival time process as a distribution over arrival sequences.

We define the response time of the nth job under policy 7 to be the time from when the job
arrives until it completes. We denote this quantity by the random variable T,E"). We let T,; denote
the the steady-state response time whenever this quantity exists.

As an example, consider the case where the arrival time process is a Poisson process with rate A
and each job starts with an E phase with probability rg and with an I phase with probability r;.
Then we can define the system load as:

A-E[Job size]

= System load = ,
p = System loa K

where
E[Job size] = rg - E[Job size if start in E] + ry - E[Job size if start in I] .

In this setting, if p < 1, the steady-state mean response time under policy 7 exists and is denoted
by E[T,].

Stochastically Minimizing the Number of Jobs in System

Our goal is to show that IF minimizes the steady-state mean response time across jobs. To show
this, we will prove a series of claims about the number of jobs in the system at any point in time.
Namely, we will argue that IF stochastically maximizes the number of jobs completed by any point
in time. This is equivalent to saying IF stochastically minimizes the the number of jobs in system
at any point in time.

To reason about the number of completions by time ¢, we will count the number of elastic and
inelastic transitions as well as the number of job completions. We define C,(t) to be the number of
job completions by time ¢ under policy 7. We define I;(t) (and E,(t)) to be the number of inelastic
(resp. elastic) transitions under policy 7z by time ¢. Finally, we define I, (s, t) to be the number of
inelastic transitions under 7 on the interval (s, t] and we define E, (s, t) and C, (s, t) analogously.

With respect to the number of jobs in system, let N;(¢) denote the number of jobs present at
time ¢, under policy 7. We define NZ(t) to be the number of jobs in an elastic phase at time ¢ under
m and we define N (t) to be the number of jobs in an inelastic phase at time ¢ under 7.

4 OVERVIEW OF THEOREMS

In this section, we provide an overview of the theoretical results in Sections 5 and 6.

4.1 Main Result

We first state the main theorem in full generality. At a high level, the theorem states that IF is
the most effective policy in terms of completing jobs. More specifically, we show that the number
of jobs completed by any point in time under IF stochastically dominates the number of jobs
completed by the same time under any other algorithm.

THEOREM 1. Consider a K server system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy A, let C4(t)
denote the number of jobs completed by time t and let Na(t) denote the number of jobs in the system
at t. Then under any arbitrary arrival time process, Cie (t) >5; Ca(t) for all timest > 0. Consequently,
Nie(t) <5t Na(t) for all timest > 0.

We can leverage Theorem 1 to derive far-reaching results about job response time. In particular,
if the arrival time process is a renewal process?, we can show that IF minimizes the steady-state
mean response time. We formalize this idea in the following immediate corollary of Theorem 1.

COROLLARY 2. Suppose the same system setup as in Theorem 1. For any arbitrary policy A, let Ty be
the steady-state job response time when it exists. Then, if the arrival time process is a renewal process,
we have E [T¢] < E [T4].

Proor. By Theorem 1, we know IF stochastically minimizes the number of jobs in the system at
any point in time. Since the arrival time process is a renewal process, this implies IF minimizes the
steady-state mean number of jobs in the system. By Little’s law, minimizing the mean number of
jobs in the system suffices for minimizing the steady-state mean response time.]

Theorem 1 and its corollary show that IF succeeds by both deferring parallelizable work and
working on jobs with smaller expected remaining sizes. Specifically, while elastic phases can be
completed quickly by parallelizing across all servers, there are benefits to keeping elastic phases in
the system. These elastic phases are flexible and can keep the system running at high efficiency.
It is also possible to allocate some servers to inelastic phases without significantly increasing the

?Here, by a renewal process, we mean the inter-arrival times t,, — t,,—; are i.i.d.,, and that the initial phases of jobs p,, are
iid. as well.

runtime of an elastic phase. Furthermore, jobs in inelastic phases have smaller expected remaining
sizes. Hence, deferring parallelizable work also results in favoring shorter jobs. For these reasons,
the optimal policy, IF, defers as much parallelizable work as possible without over-allocating to
inelastic phases.

Remark 3. One might assume that that IF benefits not from deferring parallelizable work, but
rather from how we have defined our model, where jobs in inelastic phases have smaller expected
remaining sizes. This is a misconception. As we show in Section 8, simply favoring jobs with
smaller remaining sizes (as done by the PA-SRPT policy) is not nearly as important as deferring
parallelizable work in real-world settings.

4.2 How We Prove Theorem 1

We now provide a road map for how we prove Theorem 1. The high-level picture is that it suffices to
find a coupling between two systems, one running IF and one running an arbitrary policy A, under
which Cir () = Ca(t),Vt = 0. However, finding such a coupling is difficult due to the complicated
job structure in Figure 2. In particular, the inherent size distributions are different between the two
phases and jobs are composed of an unknown number of elastic and inelastic phases.

1 1 h 1 1 ant

& U @
(1= q)m

(a) Two-phase job with (b) Two-phase job with un- (c) Multi-phase job

equal rate equal rates

Fig. 4. The three job structures we consider. E refers to the elastic state, I refers to the inelastic state, and C
refers to the completion state. In Figure 4(a), jobs just have two phases, both with inherent size distributed as
Exp(y). In Figure 4(b), jobs still have two phases. Phase I has size distributed as Exp(pr), and phase E has
size distributed as Exp(ug). In Figure 4(c), we add in potential transitions from phase I to phase E.

We therefore begin by considering several simpler job structures, as seen in Figure 4. The simplest
job structure has elastic and inelastic phases with the same size distribution, and no transitions from
the inelastic phase to the elastic phase. We then add the complexities gradually back to the model.
In each case, we argue that studying the number of inelastic transitions suffices to understand the
total number of job completions. Recalling that I4(t) is the number of inelastic transitions under
A by time ¢, we prove results of the form: “For any policy A, there exists a coupling under which
Le(t) > L4(¢) for all £ > 0. Consequently, I (t) =5 La(t) forallt > 0”

In Section 5.1, we start with the simplest job structure as shown in Figure 4(a). In this structure,
jobs consist of a single elastic phase followed by a single inelastic phase. Moreover, we assume the
inherent sizes of both the elastic and inelastic phases are identically distributed as Exp (). We refer
to such jobs as two-phase jobs with equal rates. We are able to couple two systems experiencing jobs
of this structure by (1) having them experience the same sequence of arrivals and (2) splitting time
into roughly uniform chunks of length Exp(Kp). At the end of each chunk of time, the systems
will both potentially experience a job transition. By splitting time into “busy” and “idle” periods
under this coupling (as defined in the proof of Lemma 4), we prove the desired result.

We then consider the slightly more complicated job structure shown in Figure 4(b) in Section 5.2.
In this job structure, jobs again consist of a single elastic phase followed by a single inelastic
phase. However, we now assume the inherent sizes of the elastic and inelastic phases are no longer
identically distributed. We refer to such jobs as two-phase jobs with unequal rates. While having

unequal rates between phases complicates splitting time into roughly equal blocks, we work around
this by leveraging a trick called uniformization. More specifically, we reformulate this more general
job structure via a Markov chain in which the elastic and inelastic phases have the same inherent
size distribution, but some additional self-loop transitions are added to the chain. We then expand
our existing coupling argument by coupling the transition outcomes of the two systems.

Finally, we consider the general job structure as shown in Figure 4(c) in Section 6. In this job
structure, jobs can have alternating elastic and inelastic phases, each with a different service rate.
We refer to such jobs as multi-phase jobs. This case may seem very different from the previous
settings, since now an inelastic transition can produce an elastic phase. However, we show that
such a transition can be viewed as a job completion followed immediately by an arrival of a job
beginning with an elastic phase. Using this argument, we show how a coupling in the general case
follows from our coupling in the cases with two-phase jobs.

The above arguments each leverage the fact that, for a given sample path under our model, the
policy which has completed more inelastic phases by time t will also have completed more jobs.
This is a direct result of our assumption that the final phase of each job will be an inelastic phase.
In the case where jobs may finish with an elastic phase, an optimal policy may be willing to give
priority to a job in an elastic phase if the job has a very small expected remaining size. We examine
the case where jobs finish with elastic phases in Section 7 and find that IF still frequently performs
well in these cases.

5 TWO-PHASE JOBS
5.1 Two-Phase Jobs with Equal Rates

We first consider two-phase jobs with equal rates. These are jobs that consist of a single elastic
phase followed by a single inelastic phase where both phases have inherent size distributed as
Exp(p), as illustrated in Figure 4(a).

LEmMMA 4. Consider a K server system serving two-phase jobs with equal rates. Consider any policy
A and let the policies IF and A start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and A such that Iz (t) > 14(t) and Ci(t) > Ca(t)
forallt > 0, where I (t) (resp. Ia(t)) is the number of inelastic transitions by time t under IF (resp.
A), and Cy(t) (resp. Ca(t)) is the number of jobs completed by time t under IF (resp. A).

The proof of Lemma 4 can be found in Appendix A. We describe the coupling used in the proof
below in Section 5.1.1, as it serves as a building block for subsequent arguments.

Note that for two-phase jobs with equal rates, every inelastic job transition is also a completion, so
we have I4(t) = C4(2) for all times ¢ > 0 under any policy A. Therefore, to prove Lemma 4, it suffices
to construct a coupling under which L (¢) > L4(t) for all # > 0. Then the claim Ci(¢) > Ca(t)
follows directly.

5.1.1 Coupling IF and A. Let S;; be the system running IF and S be the system running any
arbitrary policy A. The high level intuition of the coupling is as follows. Since both phases, inelastic
and elastic, have inherent size Exp(u), we can parse time into blocks of length Exp(Ky). At the
end of each of these blocks, both systems will potentially experience a job transition. Outside of
these points of time, no job transitions can occur. This makes counting job completions/inelastic
transitions much simpler. Arrivals do not directly impact the number of transitions/job completions,
and hence we do not need assumptions on the arrival time process.

Job arrivals: We assume that the two systems, S;; and S4, have the same number of jobs in each
phase at time 0 (for instance, 7 jobs in an inelastic phase, and 3 jobs in an elastic phase). Formally,
we assume that NE(0) = Nf(O) and NL(0) = NA(O).

10

We fix an arrival time sequence which is shared between S; and S4. Recall that an arrival

sequence is just a fixed sequence of arrival times (t,),>; and a corresponding binary sequence
(£2)n>1, where t, is the time the nth overall job arrival occurs in both systems and ¢, € {E, I}
determines which phase a job starts in.
Job transitions and departures: Suppose the current time is t. We generate a random variable
X ~ Exp(Kp), that is shared by both systems. Suppose s is the next unrealized arrival time in the
arrival sequence. If s < t + X, we allow the arrival to occur simultaneously into both systems. We
then set t < s, and return to the beginning of this paragraph. If s > ¢ + X, then we set the current
time to be t < t+ X, and then select one of the K servers uniformly at random® (we select the same
server in both systems). If a system is running a job in its inelastic phase on this randomly selected
server, it is assumed to depart. Likewise, if the server is running a job in its elastic phase, the system
experiences an elastic transition, producing an inelastic phase. Lastly, if the server selected is idling,
nothing happens. This general event (which may or may not result in a transition/departure) will be
referred to as a potential transition. In general, a time where either an arrival or potential transition
occurs will be referred to as an event time.

Additionally, if a system, at time ¢, is serving i inelastic jobs, we assume they are running on
servers 1 through i. If an elastic job is being served, it is run on servers i + 1 through e, where e is
some number less than or equal to K. The remaining servers are left idle.

5.2 Two-Phase Jobs with Unequal Rates

We now consider two-phase jobs with unequal rates, as illustrated in Figure 4(b). In this case,
the inherent sizes of elastic phases are distributed as Exp(ug), and the inherent sizes of inelastic
phases are distributed as Exp(yy). In this section, we will show how to generalize the coupling in
Section 5.1.1 to establish Lemma 5, below.

LEmMMA 5. Consider aK server system serving two-phase jobs with unequal rates. Consider any policy
A and let the policies IF and A start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and A such that Iz (t) > I4(t) and C(t) > Ca(t)
for allt > 0, where L (t) (resp. La(t)) is the number of inelastic transitions by time t under IF (resp.
A), and Ci (1) (resp. C4(t)) is the number of jobs completed by time t under IF (resp. A).

At first glance, it is not clear how to apply the coupling in Section 5.1.1 to the situation where
different phases (elastic and inelastic) have different exponential rates (ug and pr). The key compo-
nent of our coupling in Section 5.1.1 was that we could parse time into blocks of length Exp(Kp)
to keep both systems in sync. Now, the size of the blocks could depend on which types of phases
(elastic or inelastic) are being served, and thus may be unequal between the two systems.

To tackle this problem, we leverage the technique of Markov chain uniformization. In uniformiza-
tion, we find a rate y which is larger than the transition rates at any state of the Markov chain. For
instance, if pg > py, we take p := pp. We then set the transition rates of both states to be y. Since
ur < p, we add a self-loop at the inelastic state. This self-loop occurs with probability 1 — py, where

pr = #_sz With complementary probability py, the job will complete and exit the system. Figure 5(a)

T
shows the resulting uniformized Markov chain. It is easy to confirm that the uniformized Markov
chain is equivalent to the original Markov chain (Figure 4(b)). The case where g < y; is symmetric

and the uniformized Markov chain for this case is shown in Figure 5(b).

3Here, for the sake of simplicity, we assume that jobs can only be allocated an integral number of servers. However, our
result generalizes to the case where allocations are fractional. When allocations are fractional, we treat the servers as a
continuous interval, [0, K] and generate U ~ Unif[0, K]. The type of phase running at the corresponding point in the
interval [0, K] determines what type of transition occurs.

W@m

(1—pr)p (1—pe)u

(a) Two-phase job, unequal rates, yg > pr (b) Two-phase job, unequal rates, ug < pr

Fig. 5. Two cases of uniformizing two-phase jobs with unequal rates. In Figure 5(a), ug > py, so we take our
dominating rate as p := pg. We then take py := ”; and set the inherent size of the inelastic phase to be
Exp(p). With probability 1 — py, after completing the inelastic phase, we immediately start another one. With

probability py, the job completes and exits the system. The description of Figure 5(b) is analogous.

Going forward, when we refer to inelastic transitions by time ¢, I4(t), we refer to the number of
transitions in the uniformized job model. This holds analogously for E4 (). In some cases, I (t) can
differ from the total number of job completions, C4(¢). However, under the coupling we present, the
number of inelastic transitions can be used to directly recover the total number of job completions.

5.2.1 System Coupling. Our goal in the coupling is twofold. Once again, we want to chop up
time into blocks of length Exp(Kp) to keep Sz and S4 roughly in sync. Additionally, we want to
construct a coupling where reasoning about the number of inelastic transitions, I4(t), suffices for
reasoning about total job completions, C4(t). More specifically, we want to find a coupling under
which I (t) > I4(t), Yt > 0 implies Ci¢(t) = Ca(t), Vi > 0.

Job arrivals: S;; and Sy share the same arrival time sequence, and start with the same initial
conditions.

Job transitions and departures: Our coupling in this case closely follows the coupling in Sec-
tion 5.1.1. Specifically, the current time ¢ is updated in the same manner as in Section 5.1.1. However,
we handle potential transitions slightly differently, due to uniformization. We only discuss the case
Ur < pg, as the reverse case can be handled symmetrically.

When p; < pg, we take our dominating rate to be y := pup. We generate an infinite sequence,
(Xn)n>1, of iid. Bern(pr) random variables, where p; = ﬁ—é The realizations of (X},),>1 are shared
between the two systems. These coin flips will determine whether an inelastic transition results in
a self-loop or in a job completion.

Throughout time, both systems keep track of the total number of inelastic transitions which
have occurred. More concretely, each system starts with its own counter, n, which is initialized to
0. For each system, if we randomly select a server holding an inelastic job while experiencing a
potential transition, we increment this system’s counter (n < n + 1). We then check position n of
the shared infinite sequence of coin flips. If X}, = 1, the inelastic job completes and exits the system.
Otherwise, we have a self-loop transition and no job exits the system. Hence, for any policy, 7, at
time t, we have

Le(2)
Cr(t) = Z X;.
i=1

Since Sir and Sy share a common sequence of coin flips, I¢ (t) > I4(t) implies Cie (¢) > Ca(t).

5.22 Proof of Lemma 5. Since we just need to show I;¢(t) > I4(t),Vt > 0, we can use the proof
of Lemma 4 found in Appendix A verbatim to prove Lemma 5.

6 OPTIMALITY IN THE GENERAL CASE

We now consider the fully general multi-phase job structure, as seen in Figure 4(c). In order to
prove Theorem 1, it suffices to prove Lemma 6 below.

LEMMA 6. Consider a K server system serving multi-phase jobs. Consider any policy A and let the
policies IF and A start from the same initial conditions and have the same arrival time process. Then
there exists a coupling between IF and A such that Iz (t) > Ia(t) and Ci(t) = Ca(t) forallt > 0,
where I¢ (t) (resp. I (1)) is the number of inelastic transitions by time t under IF (resp. A), and Cy (1)
(resp. Ca(t)) is the number of jobs completed by time t under IF (resp. A).

As in Section 5.2, we use uniformization to rewrite the job structure of Figure 4(c) so that the
elastic and inelastic phase transitions have equal rates. There are two possible uniformizations here,
once again depending on how g and py relate. Determining the dominating rate y and transition
probabilities p; or pg is the same as in Section 5.2, and the two possible uniformized Markov chains
are shown in Figure 6. With these job structures in mind, we present the system coupling which
allows us to prove the optimality of IF.

qapri
(1= q)prp () () (1—=q)p
(1 =pr)p (1—pp)n
(a) Multi-phase job, pg > pr (b) Multi-phase job, pg < pr

Fig. 6. Two cases of uniformizing multi-phase jobs. In Figure 6(a), ug > py, so we take our dominating rate as
yt := pug. We then take pr := ”—;, and set the inherent size of the inelastic phase to be Exp(y). With probability
1—py, after completing the inelastic phase, we immediately start another one. With complementary probability
pI, the job does one of two things. With probability g, it completes. Otherwise, with probability 1 — g, it begins
an elastic phase. Figure 6(b) can be described similarly.

6.1 System coupling

As in Section 5.1.1, we wish to construct a coupling that keeps systems S4 and Si¢ in sync with
respect to potential transition times and that allows us to use I4(¢) to reason about C4(?).

Job arrivals: Asin Sections 5.1.1 and 5.2.1, we let Sz and S4 share the same arrival time sequence
and start with the same initial conditions.

Job transitions and departures: For the most part, the transition process is similar to the
uniformized case presented in Section 5.2.1. However, while we previously only needed a single
infinite sequence of i.i.d. Bernoulli random variables, here we will need two. We state the two cases
(ug < pr and pg > py) separately, as they differ slightly in their construction.

First, we consider pg < pj (Figure 6(b)). Here, instead of a single sequence of coin flips, we have
two shared sequences of coin flips. The first sequence, (X,),>1, is an i.i.d. sequence of Bern(pg)

13

random variables. If X;, = 1, the nth elastic transition results in an elastic phase completion,
producing an inelastic phase. Otherwise, if X;, = 0, the elastic transition does not result in a phase
completion. The second sequence, (Y,),>1, is a sequence of i.i.d. Bern(q) random variables. Recall
that q is the probability that the completion of an inelastic phase will result in a job completion.
If Y,, = 0, the nth inelastic transition results in the creation of an elastic phase. If Y,, = 1, the nth
inelastic transition results in a job completion.

The case when pg > pj (Figure 6(a)) is slightly more complex. Here, we do not have any self-loops
for elastic phases. However, there are three possible outcomes for inelastic phases. We therefore
keep track of two sequences of i.i.d. Bernoulli random variables, (X,,)n>1 and (Y;)n>1. In the first
sequence, X, is distributed as Bern(pr). In the second sequence, Y, is distributed as Bern(q).

If X;, = 0, the nth inelastic transition does not result in the completion of an inelastic phase. If
Xn = 1, the nth inelastic transition results in a phase completion, and we then examine the sequence
(Y,). If the nth inelastic transition results in the mth overall inelastic phase completion, we check
Y. If Y, = 1, the job completes, and if Y, = 0, the job transitions to an elastic phase.

Because S;r and Sa share the same sequence of coin flips, comparing the number of inelastic
transitions between systems is equivalent to comparing the number of job completions. That is, if
Le(t) = Ia(t),Vt > 0, then Cir () > Ca(2).

6.2 Proof of Lemma 6

Multi-phase jobs add an extra layer of complexity which prevents us from directly leveraging the
arguments used in Lemmas 4 and 5. When an inelastic phase completes, there are two possible
outcomes: either an elastic phase will be produced or a job will complete. Our insight is that we
can view the creation of an elastic phase as a job completion immediately followed by an arrival of
a job in an elastic phase. This reduction puts us back in the case of two-phase jobs with unequal
rates, allowing us to invoke Lemma 5. We formalize this argument in the proof of Lemma 6 below.

Proor oF LEMMA 6. First, we replace each inelastic transition that produces an elastic phase with
a different type of transition. Namely, we replace these transitions with a job completion followed
immediately by an arrival of a job in an elastic phase. We will refer to this replacement as our
re-framing of the problem. Observe that the schedules produced in S;r and S4 remain the same under
the re-framing. While the number of job completions by any point ¢, C¢ (¢) and C4(t), may change
under this re-framing, the key insight is that the number of inelastic transitions, I1¢ (¢) and I (t)
respectively, remains identical. Thus, if we can argue that IF maximizes the number of inelastic
transitions by any point in time under the re-framing, it does so in the original environment as
well. This is sufficient for proving that Ci¢(t) > Ca(t), V¢ > 0 in the original system.

Second, observe that our proof of Lemma 5 still holds if we allow additional arrivals at potential
transition times, so long as these arrivals occur simultaneously in both systems. However, under our
re-framing, the arrivals we add may not occur simultaneously in S;r and Sy since they are generated
by inelastic transitions to elastic phases. We address this issue by establishing the following claim.

CramM. Let the sequence of additional arrival times under the re-framing be (t,) in Sz and (s,) in
Sa. Foranyn > 1, we have t,, < s,, i.e. the nth additional arrival occurs in Si¢ before it occurs in S,.

We will prove this claim below, allowing us to complete the proof of Lemma 6. Specifically,
for any time ¢, let n be the index such that t,, < t < t,4;. The claim tells us that S4 experiences
additional arrivals at s; > 1,83 > t2,. .., Sp41 = tpe1. However, we can view Sy as a system that has
additional arrivals at ty, s, . . ., th41, but chooses to not schedule these additional arrivals until after
$1,2; - - - Sp+1. Then by Lemma 5, we have ¢ (t) > I4(t), which completes the proof of Lemma 6. m

We now prove the above claim.

Proor. We will show inductively that the nth additional arrival occurs in Si before it does is
Sa. We first argue that #; < s;. Observe that, on the time interval [0, t; A s1], S;r and S4 experience
precisely the same sequence of arrivals. Hence, IF maximizes the number of inelastic transitions
by any time ¢t € [0,# A s1]. In particular, it maximizes the number inelastic transitions by time
t; A s1. Since Sir and S4 share the same sequences of Bernoulli random variables, it must be that
the system with more inelastic transitions experiences the first inelastic to elastic transition, and
hence t; < s;. Now note that the schedule produced by Sy is identical to that produced by a policy
which receives the additional arrival at time #; instead of time sy, but just chooses to ignore its
existence until later on. This allows us to assume the extra arrival into S4 occurs at t; instead of s;.
We then observe that, on the interval [0, s; A t;], systems S;r and Sy experience the same sequence
of arrivals. Hence, by Lemma 5, we have that t, < s,.

Using the same iterative argument, it follows that S4 and S;¢ experience the same sequence of
arrivals up to time s, A t,, and thus by Lemma 5 we have that t,, < s,,.]

Having proven Lemma 6, we can now prove Theorem 1.

THEOREM 1. Consider a K server system serving multi-phase jobs. The policy IF stochastically
maximizes the number of jobs completed by any point in time. Specifically, for a policy A, let Ca(t)
denote the number of jobs completed by time t and let N5(t) denote the number of jobs in the system
at t. Then under any arbitrary arrival time process, Cie (t) 25; Ca(t) for all timest > 0. Consequently,
Nie(t) <st Na(2) forall timest > 0.

Proor. Lemma 6 implies the existence of a coupling such that Cir(t) > Cx(#),Vt > 0. Con-
sequently, Ci¢(t) >5 Ca(t),Vt > 0. Since the number of jobs in the system at time ¢ is just the
total number of arrivals by time ¢ minus the total number of completions by time t, the claim
Ni(t) <t Na(t),Vt > 0 also readily follows from Lemma 6. [|

7 EVALUATION

The analysis of Section 6 has shown that, when jobs have the structure presented in Figure 2, IF is
optimal. In particular, IF minimizes the steady-state mean response time for any settings of pg, yy,
¢, and any arrival time process such that the system is stable.

The purpose of this section is three-fold. First, we examine the benefit of doing IF as opposed to
other scheduling policies used in real-world systems or proposed in the literature. Second, we will
relax the assumption that the phases are exponentially distributed and consider a range of phase
size distributions from low-variability to high-variability. Third, we will consider jobs that consist
of a deterministic number of phases and may end with an elastic phase, relaxing our assumption
that jobs follow the underlying structure illustrated in Figure 2. We find that, even with these
relaxed assumptions, IF is almost always a great choice compared to all other competitor policies.

We begin by describing the competitor policies in Section 7.1. Then we show the comparisons to
IF via simulation in Sections 7.2 and 7.3.

7.1 Competitor Scheduling Policies

We compare IF to three competitor policies.

EQUI is a policy for scheduling parallelizable jobs that has been widely advocated for in both the
worst-case [11-13] and stochastic [4] theoretical literature. EQUI divides severs equally among all
jobs in the system. If the number of jobs in the system exceeds the number of servers, K, EQUI
allocates 1 server to each of the K earliest arriving jobs.

Phase-Aware First-Come-First-Served (PA-FCFS) is a popular policy in systems applications
because it is easy to implement with little space or time overhead. PA-FCFS proceeds by iteratively

15

02505075 1 02505075 1 02505075 1 0.250.50.75 1
System Load

£ b= b=l hi=10 bi=100

2 31

O

S .

o 24 Policy
IS ~ EF
p M o EQUI
S I P = ™ 2 Rt Ik
2 PA-FCFS
£

Q.

[oR

<

Fig. 7. The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and IF when compared
with the optimal mean response time. Phases have exponentially distributed inherent sizes. IF is optimal (see
Section 6) and thus has an approximation ratio of 1. In each case, K = 100, ug = 1, ¢ = 0.2, and jobs arrive
according to a Poisson process. All jobs begin with an elastic phase. Results are shown as the duration of the
inelastic phase varies from py = 0.1 (the rare case where inelastic phases are long compared to elastic phases)
to pr = 100 (the more common case where inelastic phases are short compared to elastic phases).

looking at the next earliest arriving job in the system and allocating as many servers as possible to
this job until all servers have been allocated. (A job in an inelastic phase is obviously allocated only
1 server.)

Elastic-First (EF) gives strict priority to the earliest arriving job in an elastic phase. If no jobs are
in an elastic phase, servers are allocated to any jobs in an inelastic phase in FCFS order. Intuitively,
EF seems like it might perform well in cases where elastic phases are smaller than inelastic phases
on average. In this case, EF can be thought of as a greedy policy which continuously minimizes the
expected time until the next phase completion. This is analogous to the GREEDY" policy proposed
in [4]. However, we will see that this intuition is wrong.

7.2 Evaluation of Policies Under Our Job Model

Figure 7 shows the results of simulations comparing the performance of IF, EQUI, PA-FCFS, and EF
under the model defined in Section 3 as we vary yj. Each simulation consists of 100 million job
completions. Although we have already proven the optimality of IF in these cases, Figure 7 shows
that the improvement of IF over the competitor policies is significant. In this small sample of the
parameter space, IF outperforms PA-FCFS by up to 25%, and outperforms EF and EQUI by as much
as a factor of 3. It is interesting to note that IF outperforms EF even when pr > py. Even in this
case, EF suffers from its failure to defer parallelizable work.

7.3 Sensitivity Analysis

Although we have shown that IF is optimal when phase sizes are exponentially distributed, we
wish to further show that IF outperforms other policies under a range of phase size distributions. To
examine the sensitivity of IF’s performance to the underlying phase size distributions, we examine
different distributions with a range of variances. Specifically, we consider the case where phases

are Weibull distributed and the squared coefficient of variation, C2, of the phase size distribution is
both higher and lower than that of an exponential distribution.*

Figure 13 shows the performance of each competitor policy in simulation relative to the perfor-
mance of IF (hence, the performance of IF is always normalized to 1). In most cases, IF is still the
best of the four policies by a wide margin.

When C? = 50 we do find examples where EQUI outperforms IF. Here, when job sizes are highly
variable, EQUI benefits from its insensitivity to the variance of job size distribution [4]. Specifically,
because phase sizes have decreasing failure rates, working on phases with the least attained service
will generally result in completing smaller phases before larger phases [2]. EQUI biases in this
direction by dividing servers equally amongst all jobs in the system.

The relative performance of the competitor policies compared to IF also depends on the distri-
bution of the number of phases comprising each job. For instance, when q = 1 and all jobs begin
with an elastic phase, IF and PA-FCFS are equivalent policies. However, as q decreases, for a given
system load, the gap between IF and PA-FCFS widens, since it becomes increasingly likely that
PA-FCFS will make a mistake and give priority to an elastic phase. Similarly, when considering
Weibull distributed phases, Figure 13 shows that EQUI can outperform IF when q = .2. However, if
we instead consider the case where g = .025, IF again outperforms EQUT at all loads.

To further examine the effect of the job structure on the performance of the policies, we can
also consider cases where jobs do not evolve according to a Markov chain of the form shown in
Figure 2. Specifically we consider the case where the total number of job phases is deterministic.
Furthermore, we allow any of the job phases to be either elastic or inelastic, including the final
phase of each job. The results of these experiments look largely the same as the results in Figure
13, and an example of these results is shown in Appendix B.

8 CASE STUDY: SCHEDULING IN DATABASES

Throughout this paper, we have drawn inspiration for our model from a range of systems including
modern databases. In this section, we consider whether the scheduling policies that we have pro-
posed work well for real database workloads. Because this section specifically considers scheduling
in databases, we will refer to a scheduling policy as allocating cores to queries rather than allocating
servers to jobs. Real database workloads differ from our modeling assumptions in two ways. First,
phase sizes are not exponentially distributed. Second, the sequence of phases for each query is not
determined by an underlying Markov chain. In this case study, we ask whether IF will still perform
well under these real-world conditions.

To answer this question, we perform simulations using a workload consisting of a mixture of
five queries from the Star Schema Benchmark. The ordering of phases and the phase sizes in our
simulations are based on timings of actual queries running in the Noisepage database, as shown in
Figure 1. Each query consists of a deterministic number of elastic and inelastic phases, with each
query consisting of six to seven total phases. Of the five queries we consider, four queries end with
an inelastic phase and one query ends with an elastic phase. The the query sizes have a squared
coefficient of variation of C? = 0.41, meaning that query sizes are not highly variable in this case.
In particular, note that these queries clearly deviate from the job structure illustrated in Figure 2.

Figure 9 shows the results of these simulations. The ordering of the policies with respect to mean
response time is the same as what we observed in Section 7. In particular, IF is again consistently
the best of the policies we consider, and IF outperforms the PA-FCFS policy used in the current
version of Noisepage by up to 30%.

4 A Weibull distribution with shape parameter k = 1 collapses to an exponential distribution (C? = 1). Adjusting k changes
the distribution to have either higher C? (k < 1) or lower C? (k > 1) than an exponential distribution.

LL p.|:0.1 I,l|:1 u|=10 l.l|:100
L 3+
(8]
=
=
@®©
T 2
@
C 1 -abrprbhmbehehetli T e 4 =]
©
S
S
‘C 0-
&) T T T T T T T T T T T T
o 0.25050.75 1 0.25050.75 1 02505075 1 02505075 1
System Load
(@)C?=0.5
LL H.|:0.1 u|:1 I.l|:10 H|:100
@]
—
2
%21
)
o M
(]
Q z — o
c
@®©
S
2 o
Q) T T T T T T T T T T T T
o 0.25050.75 1 0.25050.75 1 02505075 1 02505075 1
System Load
(b)C% =5
LL |J|=O.l u|=l u|=10 u|=100
@]
=
.02-’ 1.5+
ke
)
@
(<))
o
G 0.5
S
S
T 0.0
(D T T T T T T T T T T T T
o 0.250.50.75 1 0.25050.75 1 0.250.50.75 1 0.250.50.75 1

System Load

(c) C% =50

Policy
~ EF
-~ EQUI

=~ IF

< PA-FCFS

IF
PA-FCFS

Fig. 8. The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and IF, all compared with
IF, when phases follow a Weibull distribution. In each case, K = 100, ug = 1, ¢ = 0.2, and jobs arrive according
to a Poisson process. IF typically still outperforms the competitor policies. When jobs are highly variable
(C? = 50), EQUI outperforms IF due to its insensitivity to job size variance.

18

() Load = 0.75 Load = 0.95

£ 25 -

b 6

% 20 A

5 15

S 41

D 10

X 24

c 51

©

o O = T T 0 = T T
= EQUI EF PA-FCFS IF EQUI EF PA-FCFS IF

Fig. 9. The mean response time of EQUI, EF, PA-FCFS, and IF processing a workload consisting of a mixture
of 5 queries from the Star Schema Benchmark. We assume Poisson arrivals. Although this workload violates
our modeling assumptions, IF is still the best policy by a wide margin. IF improves upon the next best policy,
the PA-FCFS policy used in the Noisepage database, by up to 30%.

8.1 Size-Aware Scheduling

Although the focus of this paper has been the setting where job sizes are unknown to the scheduler,
we recognize that schedulers in real-world databases often have knowledge of the size of each
query phase and the number of phases comprising each query. Specifically, the query planner in
the Noisepage database on which we have based our simulations can provide the scheduler with
information about the sequence of phases for each query and an estimate of phase sizes in addition
to information about the current phase.

Historically, when job sizes are known, the performance modeling community has advocated
for reducing mean response time by trying to complete smaller jobs before larger jobs [32]. This
begs the question of whether the phase-aware policies developed in this paper can be improved by
adapting them to favor short jobs. Notably, Noisepage and many other databases use a PA-FCFS
policy, and do not leverage the available information about query sizes to make better scheduling
decisions. Would favoring short queries improve response times in these systems?

Our theorems in Sections 5 and 6 have shown the importance of deferring parallelizable work

by giving priority to inelastic phases in order to maintain the overall efficiency of the system. In
the case where phase sizes are known, it is not immediately clear how to balance the objectives of
favoring shorter queries and deferring parallelizable work.
Size-aware Scheduling Policies. We now consider two size-aware scheduling policies that favor
queries with smaller remaining total size, the sum of the remaining sizes of all of a query’s remaining
phases. As we will see, one of the scheduling policies performs well because it manages to both
favor short queries and grant strict priority to inelastic phases. However, the other policy, which
favors the shortest queries in the system but does not otherwise defer parallelizable work, does
even worse than PA-FCFS.

The first policy we consider is an adaptation of IF to the case where query sizes are known to
the scheduler. We call this new policy Inelastic-First-Shortest-Remaining-Processing-Time (IF-SRPT)
because it combines IF with the ubiquitous SRPT scheduling policy. IF-SRPT gives strict priority
to inelastic phases over elastic phases in the same manner as IF. However, among inelastic phases,
IF-SRPT gives priority to the phases belonging to the queries with the smallest remaining total
sizes. Likewise, when choosing to run an elastic phase, IF-SRPT will choose the elastic phase
belonging to the query with the smallest remaining total size.

Load = 0.75 Load = 0.95
25+
g
£ 61
[20+
[}
g 15
S | 4
a 4
4]
@ 10+
c
g 5
=
O -t
EQUI EF PA-SRPT PA-FCFS IF IF-SRPT EQUI EF PA-SRPT PA-FCFS IF IF-SRPT

Fig. 10. Comparison with size-aware policies. The mean response time of EQUI, EF, PA-SRPT, PA-FCFS,
IF and IF-SRPT processing a workload consisting of a mixture of 5 queries from the Star Schema Benchmark.
We assume Poisson arrivals. IF-SRPT can improve upon IF by 33% by leveraging query size information.
Notably, PA-SRPT performs worse than PA-FCFS despite attempting to leverage size information.

Our second policy is a Phase-Aware SRPT policy, which we refer to as PA-SRPT. PA-SRPT gives
strict priority to the phases belonging to the queries with the smallest remaining total sizes,
regardless of whether a phase is elastic or inelastic. However, PA-SRPT is phase-aware in that it
avoids allocating too many cores to inelastic phases. Hence, if the query with the smallest remaining
total size is in an inelastic phase, PA-SRPT will allocate one core to this query. If the next smallest
query is in an elastic phase, PA-SRPT will allocate the remaining K — 1 cores to this second smallest
query. Although PA-SRPT does not explicitly defer parallelizable work, it biases more strongly
towards the shortest queries in the system than IF-SRPT does.

We again evaluate these policies using a workload based on the Star Schema Benchmark, and
the results are shown in Figure 10. Unsurprisingly, IF-SRPT is the best performer. It benefits from
biasing its allocations towards shorter queries while still deferring parallelizable work. This leads
IF-SRPT to achieve a mean response time which can be 33% lower than that of IF, and 47% lower
than that of the PA-FCFS policy used in Noisepage. What is more counter-intuitive is that PA-SRPT
performs quite poorly. In fact, PA-SRPT is worse than PA-FCFS in both of the cases shown in Figure
10, and IF-SRPT outperforms PA-SRPT by up to a factor of 3.

8.2 Why PA-SRPT is worse than PA-FCFS

As seen in this paper, deferring parallelizable work is vital to reducing mean response time. PA-SRPT
suffers from its failure to defer parallelizable work. It is not immediately clear, however, why PA-SRPT
is even worse than PA-FCFS, given that neither policy explicitly defers parallelizable work.
Although neither PA-SRPT nor PA-FCFS explicitly defers parallelizable work, we can see that
PA-SRPT suffers because it inadvertently defers far less parallelizable work than PA-FCFS. We define
the percentage of deferred parallelizable work under a given policy at time ¢ to be the number of
cores allocated to inelastic phases divided by the number of cores that IF would allocate to inelastic
phases. We can then consider the long-run time-average percentage of deferred parallelizable
work under various policies. We normalize this quantity using the allocations under IF because
IF allocates as many cores to inelastic phases as possible without being wasteful. As a result, IF
defers 100% of parallelizable work by definition. Phase-unaware policies, such as EQUI, can defer
more than 100% of parallelizable work by wastefully allocating too many cores to inelastic phases.
Figure 11 shows that PA-SRPT defers far less parallelizable work than PA-FCFS, leading PA-SRPT
to perform poorly. The poor performance of PA-SRPT is due to the structure of one particular query,

20

o

> Load = 0.75 Load = 0.95
x 150 1 150 4

S

=

[0

S 1001 100

N

§ —_3000I° 1%6010

£ s0- 50

o

pe]

(0]

£

(0] = 0-

"5 EQUI EF PA-SRPT PA-FCFS IF IF-SRPT EQUI EF PA-SRPT PA-FCFS IF IF-SRPT
o

Fig. 11. The percentage of deferred parallelizable work under EQUI, EF, PA-SRPT, PA-FCFS, IF and IF-SRPT
given a workload consisting of a mixture of 5 queries from the Star Schema Benchmark. IF-SRPT defers 100%
of parallelizable work, but PA-SRPT defers even less parallelizable work than PA-FCFS.

which is both small in total size and ends with an elastic phase. PA-SRPT tends to give strict priority
to this type of query, while PA-FCFS treats all queries equally. This leads PA-SRPT to defer less
parallelizable work than PA-FCFS. Figure 11 also shows that, while IF-SRPT manages to favor short
jobs, it still defers parallelizable work. IF-SRPT is able to both defer 100% of parallelizable work
and prioritize shorter queries, leading to lower mean response time.

9 CONCLUSION

This paper addresses the optimal scheduling of parallelizable jobs, specifically jobs that consist of
different numbers of elastic and inelastic phases. While optimality results in the literature often
involve asymptotic approximations such as scaling of system size or heavy traffic assumptions,
the results in this paper make no such assumptions. We prove that the IF policy, which defers
parallelizable work, is optimal in a strong sense: for any number of servers, K, for any system
load, p, for any arrival process (including adversarial arrivals), and when jobs can each consist of
an arbitrary number of phases. While our proofs do require that the phases have exponentially
distributed sizes and that jobs all end with inelastic phases, experimental evaluation shows that
the dominance of IF typically extends to cases when jobs sizes and structures deviate from these
assumptions. Furthermore, IF does not need knowledge of the job structure (other than knowing
the current phase), i.e., IF does not require knowledge of the job parameters, py, pig, and q.

We also show that IF performs well in simulation under database workloads where job structures,
phase sizes, and phase types can vary widely. In the setting of scheduling in databases, it is common
that the scheduler not only knows the phase of each job but also has knowledge of the job’s size.
Given that job sizes are known, it is natural to consider scheduling policies which favor short jobs.
We consider two such policies: the PA-SRPT which strictly favors jobs with the shortest remaining
total sizes and the IF-SRPT policy which both defers parallelizable work and also favors short
jobs. We find that IF-SRPT is far superior to PA-SRPT and performs even better than IF. This
somewhat counter-intuitive result underscores the importance of deferring parallelizable work
when scheduling parallelizable jobs composed of phases.

REFERENCES

[1] NoisePage - The Self-Driving Database Management System. https://noise.page.
[2] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. On the Gittins index in the M/G/1 queue. Queueing Systems,
63(1):437-458, 2009.

21

https://noise.page

[3] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs online to minimize average
flow time. In SIAM Symposium on Discrete Algorithms, pages 176-189. SIAM, 2016.

[4] B.Berg, J.P. Dorsman, and M. Harchol-Balter. Towards optimality in parallel scheduling. ACM POMACS, 1(2), 2018.

[5] Benjamin Berg, Mor Harchol-Balter, Benjamin Moseley, Weina Wang, and Justin Whitehouse. Optimal resource
allocation for elastic and inelastic jobs. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, pages 75-87, 2020.

[6] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. Provably efficient scheduling for languages with fine-grained
parallelism. Journal of the ACM (JACM), 46(2):281-321, 1999.

[7] Robert D Blumofe and Charles E Leiserson. Space-efficient scheduling of multithreaded computations. SIAM Journal
on Computing, 27(1):202-229, 1998.

[8] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work stealing. Journal of the
ACM (JACM), 46(5):720-748, 1999.

[9] Jeftrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Communications of the
ACM, 51(1):107-113, 2008.

[10] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware cluster management. ACM
SIGPLAN Notices, 49(4):127-144, 2014.

[11] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 1999.

[12] J. Edmonds and K. Pruhs. Scalably scheduling processes with arbitrary speedup curves. SODA ’09, pages 685-692.
ACM, 2009.

[13] Jeff Edmonds, Donald D Chinn, Tim Brecht, and Xiaotie Deng. Non-clairvoyant multiprocessor scheduling of jobs
with changing execution characteristics. Journal of Scheduling, 6(3):231-250, 2003.

[14] Jeff Edmonds, Sungjin Im, and Benjamin Moseley. Online scalable scheduling for the I-norms of flow time without
conservation of work. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 109-119. SIAM, 2011.

[15] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia Ailamaki, and Babak Falsafi. Database

servers on chip multiprocessors: Limitations and opportunities. In Proceedings of the Biennial Conference on Innovative

Data Systems Research, 2007.

Stavros Harizopoulos and Anastassia Ailamaki. A case for staged database systems. In CIDR, 2003.

Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. Qpipe: A simultaneously pipelined relational

query engine. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 383-394,

2005.

[18] Chen He, Ying Lu, and David Swanson. Matchmaking: A new mapreduce scheduling technique. In 2011 IEEE Third

International Conference on Cloud Computing Technology and Science, pages 40-47. IEEE, 2011.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott Shenker,

and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the data center. In NSDI, volume 11, pages

22-22,2011.

[21] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric Torng. Competitively scheduling tasks with intermediate
parallelizability. TOPC, 3(1):4, 2016.

[22] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven parallelism: A numa-aware query
evaluation framework for the many-core age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD 14, pages 743—-754, 2014.

[23] Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines. Journal of Computer and System
Sciences, 73(6):875-891, 2007.

[24] S. Lin, M. Paolieri, C. Chou, and L. Golubchik. A model-based approach to streamlining distributed training for
asynchronous SGD. In MASCOTS. IEEE, 2018.

[25] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng
Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging Al applications. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages 561-577, 2018.

[26] Thu D Nguyen, Raj Vaswani, and John Zahorjan. Using runtime measured workload characteristics in parallel processor
scheduling. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 155-174. Springer, 1996.

[27] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The Star Schema Benchmark and Augmented
Fact Table Indexing, pages 237—-252. 2009.

[28] Gerald Sabin, Matthew Lang, and P Sadayappan. Moldable parallel job scheduling using job efficiency: An iterative
approach. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 94-114. Springer, 2006.

[29] SchedMD. SLURM workload manager. 2021. https://slurm.schedmd.com/heterogeneous_jobs.html.

[16
[17

—

[19
[20

[i’

22

https://slurm.schedmd.com/heterogeneous_jobs.html

[30] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega: flexible, scalable schedulers
for large compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems, pages 351-364,
2013.

[31] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed file system. In 2010
IEEE 26th symposium on mass storage systems and technologies (MSST), pages 1-10, 2010.

[32] Donald R Smith. A new proof of the optimality of the shortest remaining processing time discipline. Operations
Research, 26(1):197-199, 1978.

[33] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. A robust scheduling strategy for moldable scheduling of parallel
jobs. In Proceedings of the IEEE International Conference on Cluster Computing, CLUSTER ’03, pages 92-99, 2003.

[34] Nathan R Tallent and John M Mellor-Crummey. Effective performance measurement and analysis of multithreaded
applications. In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 229-240, 2009.

[35] A.Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale cluster management at Google
with Borg. In EUROSYS. ACM, 2015.

[36] Rares Vernica, Michael J Carey, and Chen Li. Efficient parallel set-similarity joins using mapreduce. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data, pages 495-506, 2010.

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J Franklin,
Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15-28, 2012.

[38] Jingren Zhou, John Cieslewicz, Kenneth A Ross, and Mihir Shah. Improving database performance on simultaneous
multithreading processors. In Proceedings of the 31st Very Large Data Bases Conference (VLDB), 2005.

Appendices

A PROOF OF LEMMA 4

K K:

Busy Busy 1|
Servers Servers

to T s to T s

Time — Time —
(a) Busy period (b) Idle period

Fig. 12. Examples of busy and idle periods used in the proof of Lemma 4. The figures both show the relative
positions of the times to, 7, and s. The value K refers to the number of servers, and the heights of the boxes
indicate how many servers Si¢ allocates to jobs.

LEMMA 4. Consider a K server system serving two-phase jobs with equal rates. Consider any policy
A and let the policies IF and A start from the same initial conditions and have the same arrival time
process. Then there exists a coupling between IF and A such that Iz (t) > I4(t) and Ciz(t) = Ca(t)
for all t > 0, where L (t) (resp. La(t)) is the number of inelastic transitions by time t under IF (resp.
A), and Cy (t) (resp. Ca(t)) is the number of jobs completed by time t under IF (resp. A).

Proor. We proceed by induction on event times, as defined in Section 5.1.1. We parse time into
two types of periods: busy periods where S utilizes all K of its servers, and idle periods where
Sir idles at least one of its servers at any point in time. Let ¢, be the start of a period (either busy

23

or idle). We show below that, if I (y) > I4(Z), then, at any point of time ¢ during the current
period, I1¢(t) > L4(t). This claim is sufficient for proving Lemma 4 since time can be partitioned
into disjoint alternating busy and idle periods. To get a sense of how time is partitioned, refer to
Figure 12.

As a base case for our induction, observe that I;¢ (0) = I4(0). Depending on the initial conditions,
time t = 0 will serve as either the start of the first busy period or the first idle period.

Busy Periods: We first consider the case where time t; marks the start of a busy period, and
assume inductively that Iz (fp) > La(to). We show that ;¢ (¢) > I4(t) for all times ¢ in the busy
period by contradiction. Assume for contradiction that there is some earliest time s in the busy
period such that I;¢ (s) < I4(s).
First, we argue that
Nz (to) < Nj(to). (1)

If t; = 0, this follows directly from the shared initial conditions of S;z and S4. Now suppose 5 > 0.
Observe that, since #, marks the beginning of a busy period, immediately before time ¢, all of the
jobs in Sz must be in the inelastic phase. That is, N (t—) = 0, and thus NE (p—) < Nf(to—). Lastly,
the event that happens at #, can only be job arriving since t is the start of a busy period. Since the
arrival occurs simultaneously in both systems, it follows that NZ(¢)) < N f (%), as desired.

Next, let 7 be the time for the event preceding the event at s. We claim that

Iir (1) = Ia(7), and Nt (1) = Na(7), (2

where N (1) = Na(7) follows from I (7) = I4(7). This is because the number of inelastic tran-
sitions determines the number of job completions and both systems experience the same arrival
sequence. The claim I;¢(7) = I4(7) is true since ;¢ () is non-decreasing, I4(7) can increase by
at most 1 at time s, and s is the earliest time during the busy period for which I;¢(s) < Ia(s).
More specifically, we can conclude that at time s, Si¢ experiences an elastic transition, whereas S4
experiences an inelastic transition. This holds because I1¢ (s) < I4(s) and Iz () = I4(7) if and only
if s (s) = I (r) and I4(s) = I4(7) + 1. This implies that S4 experiences an inelastic transition at
time s. Furthermore, S; experiences an elastic transition at time s since IF does not idle servers
during a busy period.

Now, we can claim that

Ee(to,s) < Ea(to,s). 3)

Since we have shown that NE(¢,) < Nf(to) in (1), it suffices to show that NE(s) > Nf(s). Per our
coupling, the previous paragraph implies that S;; is running fewer inelastic jobs on the interval [z, s)
than Sa. Since Si; always runs the maximal number of inelastic jobs, we have that NL(7) < N Ifl(r).
Moreover, since Ny (1) = Na(7) by (2), we know that NE(7) > Nf(r), and thus NE(s) > Nf(s).

Finally, let M denote the number of potential transitions during (Zy, s]. Since St is never idling
servers between times t, and s, we have the identities:

M = E(to,s) + Iir (to, 8), and M > Ex(to, s) +1a(to, s).
Consequently, utilizing (3) and rearranging, we have that:
IIF(tO’ S) 2 IA(th S). (4)

Moreover, recall that by definition, I1¢(s) = It¢ (ty) + Iir (%o, s) and I4(s) = I5(fo) + La (2o,). Since we
assumed I (f) > Iir(ty), and we know that Iz (fo,s) > (%o, s) by (4), we have I;¢(s) > I4(s), a
contradiction. This completes the induction step for busy periods.

24

Idle periods: Next, we consider the case that time #, marks the beginning of an idle period, and
again inductively assume that I;z(fp) > I4(%). To show I;; () > I4(¢) for all times ¢ in the idle
period, we once again proceed by contradiction. That is, suppose there is some earliest time s in
the period such that ¢ (s) < Ls(s).

First, observe that, since S always chooses to idle at least one server during the idle period,
there cannot be any elastic phase jobs in the system. That is, NZ(¢) = 0 for all times ¢ in the idle
period.

Letting 7 be defined again as the time for the event preceding the event at s, by a similar reasoning
to before, we must have that

Lie(7) = La(7), (5)
and that, at time s, S;; does not have a transition, whereas S4 experiences an inelastic transition.

Now we show that we have a contradiction. First note that the equality I;r(7) = I4(7) in (5)
implies that Nt (7) = Na(7). Next, since at time s, Sir does not have a transition but S4 experiences
an inelastic transition, per our coupling, Si¢ is running strictly fewer jobs in the inelastic phase
than S4. Since S;r has no elastic jobs, this implies that Ni¢(7) < N4(r), leading to a contradiction.
This completes the induction step for idle periods.

[

B JOBS WITH ALTERNATE STRUCTURES

We now consider the case where the total number of job phases is deterministic and any of the job
phases can be either elastic or inelastic, including the final phase of each job. The results of these
experiments look largely the same as the results in Figure 13. Although IF is not optimal in this
case, it is still frequently the best of the policies we consider.

E |J|=0.1 'J|:1 lJ|:10 |J|=100

o 3

(<)

=

T 2 Polic
3 y
@ ~ EF
8 o E:QUI
% . 3 ' PA-FCFS
£

o

E O- T T T T T T T T T T T T T T T T

o 02505075 1 02505075 1 02505075 1 02505075 1

System Load

Fig. 13. The approximation ratio of mean response time under EQUI, EF, PA-FCFS, and IF, all compared with
IF, when jobs consist of a deterministic number of phases. In each case, K = 100, ug = 1, and jobs arrive
according to a Poisson process. Each job consists of 5 phases whose sizes are Weibull distributed with C? = 5.
Each phase, including the last phase, is chosen to be either elastic or inelastic with probability .5. Although
these changes to the job structure violate our theoretical assumptions, IF is still generally the best of the
policies we consider.

25

	Abstract
	1 Introduction
	2 Prior Work
	3 Model
	4 Overview of Theorems
	4.1 Main Result
	4.2 How We Prove Theorem 1

	5 Two-Phase Jobs
	5.1 Two-Phase Jobs with Equal Rates
	5.2 Two-Phase Jobs with Unequal Rates

	6 Optimality in the General Case
	6.1 System coupling
	6.2 Proof of Lemma 6

	7 Evaluation
	7.1 Competitor Scheduling Policies
	7.2 Evaluation of Policies Under Our Job Model
	7.3 Sensitivity Analysis

	8 Case Study: Scheduling in Databases
	8.1 Size-Aware Scheduling
	8.2 Why PA-SRPT is worse than PA-FCFS

	9 Conclusion
	References
	Appendices
	A Proof of Lemma 4
	B Jobs with Alternate Structures

