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Abstract— This paper investigates the relation between three
different notions of privacy: identifiability, differential pri-
vacy, and mutual-information privacy. Under a unified privacy-
distortion framework, where the distortion is defined to be the
expected Hamming distance between the input and output data-
bases, we establish some fundamental connections between these
three privacy notions. Given a maximum allowable distortion D,
we define the privacy-distortion functions ε∗

i (D), ε∗
d(D), and

ε∗
m(D) to be the smallest (most private/best) identifiability level,

differential privacy level, and mutual information between the
input and the output, respectively. We characterize ε∗

i (D) and
ε∗

d(D), and prove that ε∗
i (D) − εX ≤ ε∗

d(D) ≤ ε∗
i (D) for D

within certain range, where εX is a constant determined by the
prior distribution of the original database X , and diminishes to
zero when X is uniformly distributed. Furthermore, we show
that ε∗

i (D) and ε∗
m(D) can be achieved by the same mechanism

for D within certain range, i.e., there is a mechanism that
simultaneously minimizes the identifiability level and achieves
the best mutual-information privacy. Based on these two connec-
tions, we prove that this mutual-information optimal mechanism
satisfies ε-differential privacy with ε∗

d(D) ≤ ε ≤ ε∗
d(D)+2εX . The

results in this paper reveal some consistency between two worst
case notions of privacy, namely, identifiability and differential
privacy, and an average notion of privacy, mutual-information
privacy.

Index Terms— Differential privacy, Hamming distance, identi-
fiability, mutual information, rate-distortion.

I. INTRODUCTION

PRIVACY has been an increasing concern in the emerging
big data era, particularly with the growing use of personal

data such as medical records or online activities for big data
analysis. Analyzing these data results in new discoveries in
science and engineering, but also puts individual’s privacy
at potential risks. Therefore, privacy-preserving data analysis,
where the goal is to preserve the accuracy of data analysis
while maintaining individual’s privacy, has become one of
the main challenges of this big data era. The basic idea of
privacy-preserving data analysis is to add randomness in the
released information to guarantee that an individual’s informa-
tion cannot be inferred. Intuitively, the higher the randomness
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is, the better privacy protection individual users get, but the
less accurate (useful) the output statistical information is.
While randomization seems to be inevitable, for the privacy-
preserving data analysis it is of great interest to quantita-
tively define the notion of privacy. Specifically, we need
to understand the amount of randomness needed to protect
privacy while preserving usefulness of the data. To this end,
we consider three different notions: identifiability, differential
privacy and mutual-information privacy, where identifiability
is concerned with the posteriors of recovering the original
data from the released data, differential privacy is concerned
with additional disclosures of an individual’s information due
to the release of the data, and mutual information measures
the average amount of information about the original database
contained in the released data.

While these three different privacy notions are defined
from different perspectives, they are fundamentally related.
The focus of this paper is to investigate the fundamental
connections between these three different privacy notions in
the following setting:

• We consider a non-interactive database releasing
approach for privacy-preserving data analysis, where a
synthetic database is released to the public. The synthetic
database is a sanitized version of the original database,
on which queries and operations can be carried out as if
it was the original database. It is then natural to assume
that the synthetic database and the original database are
in the same “universe” so the entries have the same
interpretation. Therefore we focus on mechanisms that
map an input database to an output synthetic database in
the same universe. Specifically, we consider a database
consisting of n rows, each of which takes values from a
finite domain D of size m. In this paper, the database
is modeled as a discrete random variable X drawn from
Dn with prior distribution pX . A mechanism M takes a
database X as input and outputs a database Y , which is
also a random variable with alphabet Dn .

• We define the distortion between the output database and
the input database to be the expected Hamming distance.
When the input and output are in the same universe,
the Hamming distance measures the number of rows two
databases differ in, which directly points to the number
of rows that need to be modified in order to guarantee a
given privacy level.

In this paper, we use a unified privacy–distortion framework
to understand the relation between the three privacy notions.
Given a maximum allowable distortion D, we define the
privacy–distortion functions ε∗

i (D), ε∗
d (D), and ε∗

m(D) to be
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Fig. 1. Relation between identifiability, differential privacy and mutual-information privacy.

the smallest identifiability level, differential privacy level, and
mutual information between the input and output, respectively.
Then we have the following main results, which are also
summarized in Fig. 1.

• We derive the exact form of the privacy–distortion func-
tion ε∗

i (D) under the notion of identifiability, for certain
range of the distortion values, by showing that ε∗

i (D) =
h−1(D) regardless of the prior distribution, where

h−1(D) = ln
( n

D
− 1

) + ln(m − 1).

We further show that for the privacy–distortion function
ε∗

d (D) under the notion of differential privacy,

ε∗
i (D) − εX ≤ ε∗

d (D) ≤ ε∗
i (D).

The constant εX is determined by the prior distribution
pX only, given by

εX = max
x,x ′∈Dn :x∼x ′ ln

pX (x)

pX (x ′)
,

where x ∼ x ′ denotes that x and x ′ differ in exactly
one row. When the input database has a uniform distri-
bution, we have that ε∗

i = ε∗
d , i.e., differential privacy

is equivalent to identifiability. Note that for εX to be
finite, the prior pX needs to have full a support on
Dn , i.e., pX (x) > 0 for any x ∈ Dn . When εX is
large, differential privacy provides only weak guarantee
on identifiability. In other words, when εX is large, it is
possible to identify some entries of the database with
non-trivial accuracy even if the differential privacy is
satisfied. This is because differential privacy provides
a relative guarantee about disclosures, which ensures
that limited additional information of an individual is
leaked in the released data in addition to the knowledge
that an adversary has known. Identifiability, on the other
hand, requires an absolute guarantee about disclosures
when individuals’ data is being inferred from the output
database assuming that the prior pX and the mechanism
are both known to the adversary.

• The privacy–distortion functions ε∗
i (D) and ε∗

m(D) under
the notions of identifiability and mutual-information pri-
vacy, respectively, can be achieved by the same mecha-
nism for D within certain range, i.e., there is a mechanism
that simultaneously minimizes the identifiability level and
the mutual information between X and Y . We further

prove that this mutual-information optimal mechanism
satisfies ε-differential privacy that is within a constant
difference from the optimal differential privacy level for
the given maximum allowable distortion:

ε∗
d (D) ≤ ε ≤ ε∗

d (D) + 2εX .

These results reveal certain consistency between identifia-
bility and mutual-information privacy, and between differ-
ential privacy and mutual-information privacy when the
prior pX is uniform, although identifiability and differen-
tial privacy are defined based on “pairwise” requirements
on distinguishability and can be viewed as “worst-case”
guarantee of privacy, while mutual-information privacy is
defined by “global” requirements and is considered to be
an “average” notion of privacy. The value of ε∗

m(D) is
in bits and thus is not directly comparable with ε∗

i (D)
and ε∗

d (D), but the fact that identifiability and mutual-
information privacy can be optimized simultaneously in
the setting studied in this paper reveals the fundamental
connections between these three privacy notions.

A. Related Work

Differential privacy, as an emerging analytical foundation
for privacy-preserving data analysis, was developed by a line
of work [1]–[3], and since then both interactive model (e.g.,
[1], [4]–[9]) and non-interactive model (e.g., [8], [10]–[15])
have been studied in the literature. There is a vast and growing
body of work on differential privacy, which we do not attempt
to survey but refer interested readers to a thorough introduction
by Dwork and Roth [16].

The privacy guarantee of differential privacy does not
depend on the prior distribution of the original database, since
it captures the additional disclosure caused by an information
releasing mechanism on top of any given disclosure. With the
prior taken into account, privacy notions based on the posterior
have also been proposed. The seminal work of differential
privacy [1] also proposed a semantically flavored definition of
privacy, named semantic security, and showed its equivalence
to differential privacy. This definition measures privacy by
the difference between an adversary’s prior knowledge of
the database and the posterior belief given the output of the
mechanism. Differential identifiability [17] and membership
privacy [18] assume that a database entry can be traced back
to the identify of an individual, and they quantify the leakage
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of the information on whether an individual participates the
database or not. Differential identifiability is defined to be the
posterior probability for any individual to be the only unknown
participant of a database given the entries of all the known
participants and the output of the mechanism. This proba-
bility cannot be directly translated to a differential privacy
level. Membership privacy is defined based on the difference
between the prior and the posterior probability for an entity
to be included in the database. Choosing appropriate prior
distribution families makes differential privacy and differential
identifiability instantiations of membership privacy under their
database model. In this paper, the notion of identifiability is
defined based on the indistinguishability between the posterior
probabilities of neighboring databases given the output of the
mechanism, which measures the hardness of identifying the
data content of a database entry rather than the identity of
the individual who contributes the data.

Information-theoretic privacy measures including mutual
information, min-entropy, equivocation, etc, are relatively clas-
sical and have a rich history (e.g., [19]–[31]). When mutual
information is used as the privacy notion, the problem of
finding the optimal tradeoff between privacy and distortion
can usually be formulated as a rate–distortion problem in the
field of information theory (see [32] for an introduction) [25],
[27]–[31]. In this paper, we also utilize results from the
celebrated rate–distortion theory to characterize the optimal
privacy–distortion tradeoff. However, we are more interested
in the relation between the optimal privacy–distortion tradeoffs
with different privacy notions: mutual information, differential
privacy, and identifiability, and we quantify the impact of the
prior explicitly. The work of du Pin Calmon and Fawaz [27]
and Makhdoumi and Fawaz [28] showed that when a mech-
anism satisfies ε-information privacy (defined based on the
difference between the prior of the database and the pos-
terior given the output), it is 2ε-differentially private, and
the mutual information between the database and the output
is upper bounded by ε/ ln 2. But differential privacy alone
does not imply a bound on the mutual information if the
possible values and sizes of the database and the output
and the prior can be chosen freely. McGregor et al. [33]
and De [34] showed that ε-differential privacy implies upper
bounds on the mutual information in the order of O(εn)
and O(εd), respectively, where n is the size of the database
and d is the dimension of the data entry. Alvim et al. [26]
showed that differential privacy implies a bound on the min-
entropy leakage. The above relations between information-
theoretic privacy notions and differential privacy, however,
are not for the optimal privacy with distortion constraint,
although they can contribute to building relations between
the optimal tradeoffs. Sarwate and Sankar [31] showed
that the result in [33] indicates a one direction bound
between the optimal differential privacy and the optimal
mutual information given the same distortion constraint.
Mir [29] pointed out that the mechanism that achieves the
optimal rate–distortion also guarantees a certain level of
differential privacy. However, whether this differential pri-
vacy level is optimal or how far it is from optimal was
not answered.

II. MODEL

Consider a database consisting of n rows, each of which
corresponds to the data of a single individual. Each individ-
ual’s data contains some sensitive information such as the
individual’s health status. Suppose that each row takes values
from a domain D. Then Dn is the set of all possible values
of a database. Two databases, denoted by x, x ′ ∈ Dn , are said
to be neighbors if they differ in exactly one row. Let x ∼ x ′
denote the neighboring relation. In this paper, we assume that
the domain D is a finite set and model a database as a discrete
random variable X with alphabet Dn and probability mass
function (pmf) pX . Suppose |D| = m, where m is an integer
and m ≥ 2. A (randomized) mechanism M takes a database
x as the input, and outputs a random variable M(x).

Definition 1 (Mechanism): A mechanism M is specified by
an associated mapping φM : Dn → F , where F is the set of
multivariate cdf’s on some range R. Taking database X as the
input, the mechanism M outputs a R-valued random variable
Y with φM(x) as the multivariate conditional cdf of Y given
X = x .

In this paper, we focus on mechanisms for which the range
is the same as the alphabet of X , i.e., R = Dn . Then the
output Y is also a discrete random variable with alphabet Dn ,
which can be interpreted as a synthetic database. Denote the
conditional pmf of Y given X = x defined by the cdf φM(x)
as pY |X (· | x). Then a mechanism in this setting is fully
specified by pY |X . When using this mechanism, the database
curator samples from pY |X (· | x) to generate a synthetic
database Y . The form of the mechanism is assumed to be
public since it may be of interest to data analysts.

Throughout this paper we use the following basic notation.
We denote the set of real numbers by R, the set of nonnegative
real numbers by R

+, and the set of nonnegative integers by
N. Let R

+ = R
+ ∪ {+∞}.

A. Different Notions of Privacy

In addition to the output database Y , we assume that
the adversary also knows the prior distribution pX , which
represents the side information the adversary has, and the
privacy-preserving mechanism M. The three notions of pri-
vacy studied in this paper are defined next.

Definition 2 (Identifiability): A mechanism M satisfies
ε-identifiability for some ε ∈ R

+
if for any pair of neighboring

elements x, x ′ ∈ Dn and any y ∈ Dn ,

pX |Y (x | y) ≤ eε pX |Y (x ′ | y). (1)

The notion of identifiability is defined based on the indis-
tinguishability between any two neighboring databases from
a Bayesian view. When a mechanism satisfies ε-identifiability
for a small ε, two close (neighboring) databases cannot be
distinguished from the posterior probabilities after observing
the output database, which makes any individual’s data hard
to identify. To see the semantic implications of identifiability,
we consider the following “worst-case” type of adversaries,
who are called informed adversaries [1]. An adversary of this
type knows n − 1 database entries and tries to identify the
value of the remaining one. The notation of identifiability
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is defined based on neighboring databases to reflect this
worst-case scenario. Consider adversaries who know X−i ,
i.e., all the database entries except Xi . The requirement (1) of
ε-identifiability indicates that for any xi , x ′

i ∈ D, any x−i ∈
Dn−1 and any y ∈ Dn ,

Pr{Xi = xi | X−i = x−i , Y = y}
≤ eε Pr{Xi = x ′

i | X−i = x−i , Y = y}.
Therefore, when ε-identifiability is satisfied, even for such a
worst-case adversary, the probability of correctly identifying
the value of Xi is still no greater than 1

1+(m−1)e−ε , which is

close to randomly guessing when ε is small. We say that identi-
fiability provides an absolute guarantee about disclosures since
when it is satisfied, the probability of correctly identifying
some individual’s data is limited, and thus no bad disclosure
can occur. This will become more clear when we discuss the
relative guarantee provided by differential privacy.

We remark that in some cases, not all values of ε are achiev-
able for ε-identifiability. The smallest achievable identifiability
level is constrained by the prior pX , since an adversary can
always identify the values of the database entries based on the
prior. When the prior itself is very disclosive, no mechanism
can make the database entries less identifiable. To illustrate,
we give the following example.

Example 1: Consider a database X with a single binary
entry, i.e., D = {0, 1} and n = 1. Suppose the prior is given
by pX (0) = 0.55 and pX (1) = 0.45. Consider the mechanism
M specified by

pY |X (0 | 0) = pY |X (1 | 1) = 0.6,

pY |X (1 | 0) = pY |X (0 | 1) = 0.4.

Then the mechanism M satisfies ε-identifiability for ε ≈ 0.6.
Therefore, the probability of correctly identifying X is guar-
anteed to be no greater than 1

1+e−ε ≈ 0.65. The smallest
identifiability level that can be achieved for this prior is
ε = ln(0.55/0.45) ≈ 0.2. Now consider another prior that is
given by pX (0) = 0.9 and pX (1) = 0.1. Then the mechanism
M satisfies ε-identifiability for ε ≈ 2.6. In this case, no matter
what mechanism is used, guessing that X = 0 yields a
probability of correctness that is no less than 0.9. For an
adversary with this prior, which indicates that the adversary
has very good knowledge about the entry, no mechanism can
achieve ε-identifiability for ε < ln(0.9/0.1) ≈ 2.2.

Definition 3 (Differential Privacy [1], [2]): A mechanism
M satisfies ε-differential privacy for some ε ∈ R

+
if for any

pair of neighboring elements x, x ′ ∈ Dn and any y ∈ Dn ,

pY |X (y | x) ≤ eε pY |X (y | x ′). (2)

Note that Definition 3 is equivalent to the definition of
differential privacy in the seminal work [1], [2] under the
model in this paper, although the languages used are slightly
different. The differential privacy property of a mechanism
is only determined by the associated mapping represented by
pY |X and does not depend on the prior.

In contrast to identifiability, differential privacy provides
a relative guarantee about disclosures [2]. If some privacy
disclosure were to happen with certain probability, differential

privacy guarantees that this disclosure probability increases
by at most a multiplicative factor after the output of the
mechanism is published. So only limited additional risk will
be caused by the mechanism. To illustrate, we give the
following example.

Example 2: We again consider the database X and the
mechanism M in Example 1. The mechanism M satisfies
ε-differential privacy for ε = ln(0.6/0.4) ≈ 0.4 regardless
of the prior pX . If the prior is given by pX (0) = 0.9 and
pX (1) = 0.1, then before seeing the output Y , the probability
of correctly identifying X is 0.9. Suppose that the adversary
observes an output Y = 0. Then the probability of correctly
identifying X becomes Pr(X = 0 | Y = 0) ≈ 0.93,
which improves by a factor of approximately e0.03. Differential
privacy guarantees that this multiplicative factor is at most eε .
Note that differential privacy is not intended to reverse the
previous disclosure. In this example, the adversary is able to
identify X with probability 0.9 using her prior information.
After observing Y , the adversary is still able to identify X with
a high probability (≈ 0.93), but only a small multiplicative
factor is caused by the mechanism M.

Definition 4 (Mutual-Information Privacy): A mechanism
M satisfies ε-mutual-information privacy for some ε ∈ R

+

if the mutual information between X and Y satis-
fies I (X; Y ) ≤ ε, where

I (X; Y ) =
∑

x,y∈Dn

pX,Y (x, y) log
pX,Y (x, y)

pX (x)pY (y)
.

The notion of mutual information is an information-
theoretic notion of privacy, which measures the average
amount of information about X contained in Y . The mutual
information is minimized and equal to 0 when X and Y
are independent, and it is maximized and equal to H (X)
when Y = X .

B. Distortion

In this paper, we measure the usefulness of a mechanism
by the distortion between the input database X and the
output Y , where smaller distortion corresponds to greater use-
fulness. Consider the (generalized) Hamming distance d : Dn×
Dn → N, where the distance d(x, x ′) between any two
elements x, x ′ ∈ Dn is the number of rows they differ in.
We define the distortion between X and Y to be the expected
Hamming distance

E[d(X, Y )] =
∑

x∈Dn

∑

y∈Dn

pX (x)pY |X(y | x)d(x, y).

The Hamming distance also characterizes the neighboring
relation on Dn . Two elements x, x ′ ∈ Dn are neighbors if
and only if d(x, x ′) = 1.

C. Privacy–Distortion Function

A privacy–distortion pair (ε, D) is said to be achievable
if there exists a mechanism M with output Y such that M
satisfies ε-privacy level and E[d(X, Y )] ≤ D. The privacy–
distortion function ε∗ : R

+ → R
+

is defined by

ε∗(D) = inf{ε : (ε, D) is achievable},
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which is the smallest privacy level given the distortion
constraint E[d(X, Y )] ≤ D. We are only interested in
the range [0, n] for D since this is the meaningful range
for distortion. The privacy–distortion function depends on
the prior pX , which reflects the impact of the prior on
the privacy–distortion tradeoff. To characterize the privacy–
distortion function, we also consider the distortion–privacy
function D∗ : R

+ → R
+ defined by

D∗(ε) = inf{D : (ε, D) is achievable},
which is the smallest achievable distortion given privacy
level ε.

In this paper we consider three different notions of privacy:
identifiability, differential privacy and mutual-information pri-
vacy, so we denote the privacy–distortion functions under these
three notions by ε∗

i , ε∗
d and ε∗

m, respectively.

III. IDENTIFIABILITY VERSUS DIFFERENTIAL PRIVACY

In this section, we establish a fundamental connection
between identifiability and differential privacy. We charac-
terize their privacy–distortion functions through studying the
distortion–privacy functions. Given privacy level εi and εd,
the minimum distortion level is the solution to the following
optimization problems.

The Privacy–Distortion Problem Under
Identifiability (PD-I):

min
pX |Y ,pY

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y)

subject to pX |Y (x | y) ≤ eεi pX |Y (x ′ | y),

∀x, x ′ ∈ Dn : x ∼ x ′, y ∈ Dn, (3)
∑

x∈Dn

pX |Y (x | y) = 1, ∀y ∈ Dn, (4)

pX |Y (x | y) ≥ 0, ∀x, y ∈ Dn, (5)
∑

y∈Dn

pX |Y (x | y)pY (y) = pX (x),

∀x ∈ Dn, (6)

pY (y) ≥ 0, ∀y ∈ Dn . (7)

The Privacy–Distortion Problem Under Differential
Privacy (PD-DP):

min
pY |X

∑

x∈Dn

∑

y∈Dn

pX (x)pY |X (y | x)d(x, y)

subject to pY |X (y | x) ≤ eεd pY |X (y | x ′),
∀x, x ′ ∈ Dn : x ∼ x ′, y ∈ Dn, (8)
∑

y∈Dn

pY |X (y | x) = 1, ∀x ∈ Dn, (9)

pY |X (y | x) ≥ 0, ∀x, y ∈ Dn . (10)

Note that to obtain the distortion–privacy functions, we need
to find a mechanism pY |X to minimize the distortion subject
to privacy constraints. However, for identifiability, since it is
defined based on pX |Y , we change the optimization variable
from pY |X to (pX |Y , pY ) in PD-I, and the constraints (4)–(7)

Fig. 2. The privacy–distortion functions ε∗
i under identifiability and ε∗

d under

differential privacy satisfy ε∗
i (D)−εX ≤ ε∗

d (D) ≤ ε∗
i (D) for D within certain

range.

ensure that PD-I is equivalent to the original distortion–privacy
problem.

For convenience, we first define two constants εX and ε̃X

that are determined by the prior pX . Let

εX = max
x,x ′∈Dn:x∼x ′ ln

pX (x)

pX (x ′)
, (11)

which is the maximum prior probability difference between
two neighboring databases. For εX to be finite, the prior
distribution pX needs to have full support on Dn ,
i.e., pX (x) > 0 for any x ∈ Dn . To define ε̃X , note that
the prior pX puts constraints on the posterior probabilities,
as given by the constraint (6) in PD-I. We say {pX |Y (x | y),
y,∈ Dn} is feasible if there exists a pmf pY such that it is
the marginal pmf of Y . Let ε̃X be the smallest ε such that the
following posterior probabilities are feasible:

pX |Y (x | y) = e−εd(x,y)

(
1 + (m − 1)e−ε

)n , x, y ∈ Dn .

We will see that the pX |Y in the above form plays an important
role in solving PD-I. For any pX , ε̃X is finite since when
ε → +∞, the pmf pY = pX is the marginal pmf of Y .
Finally we define the function

h−1(D) = ln
( n

D
− 1

)
+ ln(m − 1).

Recall that ε∗
i (D) and ε∗

d (D) denote the minimum iden-
tifiability level and minimum differential privacy level for a
maximum allowable distortion D. The connection between
the privacy–distortion functions ε∗

i and ε∗
d is established in

the following theorem. See Fig. 2 for an illustration.
Theorem 1: For identifiability, the privacy–distortion

function ε∗
i of a database X with εX < +∞ satisfies

{
ε∗

i (D) = h−1(D), 0 ≤ D ≤ h(̃εX ),

ε∗
i (D) ≥ max{h−1(D), εX }, h(̃εX ) < D ≤ n.

(12)

For differential privacy, the privacy–distortion function ε∗
d

of a database X satisfies the following bounds for any
D with 0 ≤ D ≤ n:

max{h−1(D) − εX , 0} ≤ ε∗
d (D) ≤ max{h−1(D), 0}. (13)

From the theorem above, we can see that 0 ≤ ε∗
i (D) −

ε∗
d (D) ≤ εX when 0 ≤ D ≤ h(̃εX ). The lemmas needed in

the proof of this theorem can be found in the appendix. Here
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Fig. 3. Both PD-I and PD-DP boil down to R-PD through different
relaxations.

we give a sketch of the proof, which consists of the following
key steps:

• The first key step is to show that both PD-I and PD-DP,
through (respective) relaxations as shown in Fig. 3, boil
down to the same optimization problem.
Relaxed Privacy–Distortion (R-PD):

min
pX |Y ,pY

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y)

subject to pX |Y (x | y) ≤ eε pX |Y (x ′ | y),

∀x, x ′ ∈ Dn : x ∼ x ′, y ∈ Dn, (14)
∑

x∈Dn

pX |Y (x | y) = 1, ∀y ∈ Dn, (15)

pX |Y (x | y) ≥ 0, ∀x, y ∈ Dn, (16)
∑

y∈Dn

pY (y) = 1, (17)

pY (y) ≥ 0, ∀y ∈ Dn . (18)

Relaxing the constraint (6) in PD-I to the constraint (17)
gives R-PD. Now consider PD-DP. For any neighboring
x, x ′ ∈ Dn , pX (x) ≤ eεX pX (x ′) according to the defini-
tion of εX , and a necessary condition for the constraint (8)
to be satisfied is

pX (x)pY |X(y | x) ≤ eεd+εX pX (x ′)pY |X (y | x ′). (19)

Therefore, replacing constraint (8) with (19) and letting
ε = εd + εX , we obtain R-PD. So R-PD can be regarded
as a relaxation of both PD-I and PD-DP.

• To solve R-PD, it suffices to solve the following opti-
mization problem for any fixed y ∈ Dn :

min
pX |Y

∑

x∈Dn

pX |Y (x | y)d(x, y)

subject to pX |Y (x | y) ≤ eε pX |Y (x ′ | y),

∀x, x ′ ∈ Dn : x ∼ x ′,∑

x∈Dn

pX |Y (x | y) = 1,

pX |Y (x | y) ≥ 0, ∀x ∈ Dn .

Intuitively, to minimize the objective function, which is
the average distortion between X and y, we should assign
larger probability to pX |Y (x | y) with smaller d(x, y), and
smaller probability to pX |Y (x | y) with larger d(x, y). For
the x such that x = y, we should assign the largest value
to pX |Y (x | y) since d(x, y) = 0, and as x goes far way
from y, we should assign smaller and smaller values to

pX |Y (x | y). However, the privacy constraint limits the
decreasing rate we can use as x goes far away from y
due to the neighboring relations. In Lemma 1, we prove
that the optimal solution is given by

pX |Y (x | y) = e−εd(x,y)

(
1 + (m − 1)e−ε

)n , x, y ∈ Dn, (20)

where the probability pX |Y (x | y) decreases with rate eε

as d(x, y) increases. This is the fastest possible decreas-
ing rate with the privacy constraint, so this solution gives
the smallest distortion.

• By Lemma 1, the minimum distortion of R-PD is
D∗

relaxed(ε) = h(ε), which gives lower bounds on
the distortion–privacy functions under identifiability and
under differential privacy. By the connection between
distortion–privacy function and privacy–distortion func-
tion, Lemma 2 shows that ε∗

i (D) ≥ h−1(D) and ε∗
d (D) ≥

h−1(D) − εX for any D with 0 ≤ D ≤ n. Lemma 3
shows another lower bound on ε∗

i , combining which with
the lower bound in Lemma 2 gives the lower bound in
Theorem 1.
Next we design achievable mechanisms to prove the
upper bounds in Theorem 1. Notice that when the pos-
terior probabilities given by the solution pX |Y in (20)
is feasible, the mechanism that corresponds to this pX |Y
satisfies ε-identifiability. Therefore, the lower bound for
identifiability is achievable in this case. Consider the
mechanism Eε

i specified by

pY |X (y | x) = pY (y)e−εd(x,y)

pX (x)
(
1 + (m − 1)e−ε

)n , x, y ∈ Dn,

(21)

where ε ≥ ε̃X and pY is the corresponding pmf of Y .
The mechanism Eε

i corresponds to the posterior distrib-
utions given by pX |Y in (20). Lemma 4 shows that the
mechanism Eε

i guarantees an identifiability level of ε with
distortion h(ε) when ε ≥ ε̃X , which yields the equality
in (12) when combining with the lower bound above.

• For differential privacy, consider the mechanism Eε
d spec-

ified by the conditional probabilities

pY |X (y | x) = e−εd(x,y)

(
1 + (m − 1)e−ε

)n , x, y ∈ Dn, (22)

where ε ≥ 0. Note that in contrast with the mechanism
Eε

i , the mechanism Eε
d itself has the same form as the

solution pX |Y in (20). Lemma 5 shows that the mech-
anism Eε

d satisfies ε-differential privacy with distortion
h(ε), which provides the upper bound in (13). We remark
that the mechanism Eε

d has the same form as an expo-
nential mechanism with score function q = −d [35],
where the score function has a sensitivity �q = 1.
In general, an exponential mechanism with parameter ε is
2ε�q-differentially private. However, the mechanism Eε

d
is ε-differentially private without the factor 2 since the
normalizing term in the denominator of (22) does not
depend on x . The mechanism Eε

d can also be cast as a
randomized response [36].
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IV. MUTUAL-INFORMATION PRIVACY VERSUS

IDENTIFIABILITY AND DIFFERENTIAL PRIVACY

In this section, we first discuss the relation between mutual-
information privacy and identifiability. Then based on this
relation and the relation between identifiability and differential
privacy derived in the last section, we further establish a con-
nection between mutual-information privacy and differential
privacy.

Theorem 2: For any D with 0 ≤ D ≤ h(̃εX ), the iden-
tifiability optimal mechanism Eε

i with ε = h−1(D) is also
mutual-information optimal.

By this theorem, the privacy–distortion functions ε∗
i (D)

and ε∗
m(D) under the notions of identifiability and mutual-

information privacy, respectively, can be achieved by the same
mechanism for D within certain range. This theorem indicates
a consistency between identifiability and mutual-information
privacy under the privacy–distortion framework since they can
be optimized simultaneously.

Recall that given a maximum allowable distortion D,
the privacy–distortion function ε∗

m(D) under mutual-
information privacy for an input database X with prior
pX is given by the optimal value of the following convex
optimization problem.

The Privacy and Distortion Problem Under
Mutual-Information Privacy (PD-MIP):

min
pY |X

I (X; Y )

subject to
∑

x∈Dn

∑

y∈Dn

pX (x)pY |X(y | x)d(x, y) ≤ D, (23)

∑

y∈Dn

pY |X (y | x) = 1, ∀x ∈ Dn, (24)

pY |X (y | x) ≥ 0, ∀x, y ∈ Dn . (25)

Note that this formulation has the same form as the formula-
tion in the celebrated rate–distortion theory (e.g., see [32]), and
thus the privacy–distortion function under mutual-information
privacy is identical to the rate–distortion function in this
setting. Studies on the rate–distortion function [32], [37] have
revealed the structure of an optimal solution of PD-MIP using
Karush-Kuhn-Tucker (KKT) conditions [38]. We utilize these
results to prove Theorem 2.

Proof of Theorem 2: By the KKT conditions for PD-MIP,
the mutual information is minimized by

pY |X (y | x) = pY (y)e−λd(x,y)

∑
y′∈Dn pY (y ′)e−λd(x,y′) , x, y ∈ Dn,

if there exists a pmf pY of Y and λ ≥ 0 such that

∑

x∈Dn

pX (x)e−λd(x,y)

∑
y′∈Dn pY (y ′)e−λd(x,y′) = 1, if pY (y) > 0, (26)

∑

x∈Dn

pX (x)e−λd(x,y)

∑
y′∈Dn pY (y ′)e−λd(x,y′) ≤ 1, if pY (y) = 0, (27)

λ

( ∑

x∈Dn

∑

y∈Dn

pX (x)pY (y)e−λd(x,y)

∑
y′∈Dn pY (y ′)e−λd(x,y′) d(x, y) − D

)
= 0,

(28)

where λ is the Lagrange multiplier for the distortion con-
straint (23). This optimal solution has an exponential form.
Recall that the identifiability optimal mechanism Eε

i in (21)
also has an exponential form. In what follows we prove that
for properly chosen λ, the conditions (26)–(28) are satisfied
under Eε

i .
For any 0 ≤ D ≤ h(̃εX ), consider the mechanism Eε

i with
ε = h−1(D). Let λ = ε. Recall that under Eε

i ,

pY |X (y | x) = pY (y)e−εd(x,y)

pX (x)
(
1 + (m − 1)e−ε

)n , x, y ∈ Dn .

Since pY |X satisfies that
∑

y′∈Dn

pY |X (y ′ | x) = 1,

we have
∑

y′∈Dn

pY (y ′)e−εd(x,y′) = pX (x)
(
1 + (m − 1)e−ε

)n
.

Then for any y ∈ Dn ,

∑

x∈Dn

pX (x)e−εd(x,y)

∑
y′∈Dn pY (y ′)e−εd(x,y′)

=
∑

x∈Dn

pX (x)e−εd(x,y)

pX (x)
(
1 + (m − 1)e−ε

)n

= 1,

which indicates that (26) and (27) are satisfied. We can verify
that

∑

x∈Dn

∑

y∈Dn

pX (x)pY (y)e−εd(x,y)

∑
y′∈Dn pY (y ′)e−εd(x,y′) d(x, y)

=
∑

y∈Dn

pY (y)
∑

x∈Dn

pX (x)e−εd(x,y)d(x, y)

pX (x)
(
1 + (m − 1)e−ε

)n

= h(ε)

= D,

which indicates that (28) is satisfied. Therefore, the mechanism
Eε

i with ε = h−1(D) gives an optimal solution of PD-MIP,
which completes the proof. �

Next, we establish a connection between differential privacy
and mutual-information privacy based on Theorem 2 and
Theorem 1.

Corollary 1: For any D with 0 ≤ D ≤ h(̃εX ), the mutual-
information optimal mechanism Eε

i with ε = h−1(D) is
εd-differentially private with ε∗

d (D) ≤ εd ≤ ε∗
d (D) + 2εX .

It has been pointed out in [29] that a mechanism that
achieves the optimal rate–distortion also guarantees a certain
level of differential privacy. However, whether this differential
privacy level is optimal or how far it is from optimal was
not answered. Our result in Corollary 1 further shows that
the gap between the differential privacy level of the mutual-
information optimal mechanism Eε

i and the optimal differential
privacy level is no greater than 2εX , which is a constant deter-
mined by the prior pX . Therefore, given a distortion constraint,
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Fig. 4. Illustration of the characterizations of the privacy–distortion functions. (a) Histogram of εX for 887 databases. (b) The privacy–distortion function
under identifiability is given by ε∗

i (D) = h−1(D) for 0 ≤ D ≤ h (̃εX ), where h (̃εX ) = 0.73n. The identifiability optimal mechanism that achieves this curve
is also mutual-information optimal. The privacy–distortion function under differential privacy, ε∗

d (D), lies between ε∗
i (D) = h−1(D) and h−1(D) − εX ,

where εX = 0.33.

optimizing for mutual information leads to a differentially pri-
vate mechanism whose privacy level is close to the optimal dif-
ferential privacy level. When the prior is uniform, this mutual-
information optimal mechanism achieves exactly the optimal
differential privacy level. Note that differential privacy can be
viewed as providing “worst-case” privacy guarantee since it
is agnostic to prior distributions. Although mutual-information
privacy is an “average” notion of privacy, when the prior is uni-
form, it exhibits certain consistency with differential privacy.

Proof of Corollary 1: By Theorem 2, the mechanism Eε
i

with ε = h−1(D) is mutual-information optimal. According
to its form, we can verify that Eε

i with ε = h−1(D) is
εd-differentially private with εd = h−1(D) + εX . Since ε∗

d (D)
is the minimum differential privacy level with distortion con-
straint given by D, we have εd ≥ ε∗

d (D). By Theorem 1,
h−1(D) ≤ ε∗

d (D) + εX . Thus εd ≤ ε∗
d (D) + 2εX , which

completes the proof. �
An Illustration: We demonstrate the characterizations of

the privacy–distortion functions in Theorem 1 and 2 using
prior distributions based on a Netflix dataset [39]. The dataset
consists of movie ratings from users, with each rating on a
scale from 1 to 5 (integer) stars. We view the ratings of a
movie from active users as a database and generate ratings
uniformly at random for missing entries. We first calculate
the corresponding εX , assuming that entries of a database are
drawn i.i.d. from a distribution. The constant εX bounds the
gap between the upper and lower bounds on ε∗

d (D), and also
bounds ε∗

i (D) − ε∗
d (D). In Fig. 4, we show the histogram of

εX for 887 most reviewed movies (databases). Next, we pick
a database whose prior distribution of each entry is given by

pXi (1) = 0.2533, pXi (2) = 0.1821, pXi (3) = 0.1821,

pXi (4) = 0.1873, pXi (5) = 0.1953.

For this prior, we have εX = 0.33 and ε̃X = 0.41. In Fig. 4,
we draw the privacy–distortion function ε∗

i (D) = h−1(D)
under identifiability for 0 ≤ D ≤ h(̃εX ), where the value
h(̃εX ) = 0.73n is displayed in the figure. The identifiability
optimal mechanism that achieves this curve is also mutual-
information optimal. The curve ε∗

i (D) = h−1(D) gives an
upper bound on the privacy–distortion function ε∗

d (D) under

differential privacy. We also draw the curve max{h−1(D) −
εX , 0}, which is a lower bound on ε∗

d (D).

V. CONCLUSIONS

In this paper, we investigated the relation between three
different notions of privacy: identifiability, differential privacy
and mutual-information privacy, where identifiability guaran-
tees indistinguishability between posterior probabilities, dif-
ferential privacy guarantees limited additional disclosures, and
mutual information is an information-theoretic notion. Under
a unified privacy–distortion framework, where the distortion
is defined to be the expected Hamming distance between the
input and output databases, we established some fundamental
connections between these three privacy notions. Given a max-
imum allowable distortion D within certain range, the smallest
identifiability level ε∗

i (D) and the smallest differential privacy
level ε∗

d (D) are proved to satisfy ε∗
i (D) − εX ≤ ε∗

d (D) ≤
ε∗

i (D), where εX is a constant determined by the prior of
the original database, and diminishes to zero when the prior
is uniform. Next, we showed that there is a mechanism
that simultaneously minimizes the identifiability level and
the mutual information given the same maximum allowable
distortion within certain range. We further showed that this
mechanism satisfies ε-differential privacy with ε∗

d (D) ≤ ε ≤
ε∗

d (D) + 2εX .
Our findings in this study reveal some fundamental con-

nections between the three notions of privacy. With these
three notions of privacy being defined, many interesting issues
deserve further attention. The connections we have established
in this work are based on the distortion measure of Hamming
distance, which is closely tied with the neighboring relations,
and we assume that the output synthetic database and the
original database are in the same universe. It would be
of great interest to study the connections of these privacy
notions under other common distortion measures and other
output formats. We remark that our results for Hamming
distance can be used to prove lower bounds on the distortion
of a differentially private mechanism when the distortion is
measured by the distortion at the worst-case query in a query
class [40]. Some other interesting directions are as follows.
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In some cases, the prior pX is imperfect. Then for privacy
notions depending on the prior such as identifiability and
mutual-information privacy, it is natural to ask how we can
protect privacy with robustness over the prior distribution.
Identifiability and differential privacy impose requirements
on neighboring databases to protect an individual’s privacy.
Then are there any practical scenarios that we would desire
to generalize this “pairwise” privacy to “group” privacy?
The connections between membership privacy and these three
notions of privacy also need to be explored, since membership
privacy has been proposed as a unifying framework for privacy
definitions.

APPENDIX

PROOF OF THEOREM 1

Lemma 1: The minimum distortion D∗
relaxed(ε) of the

relaxed optimization problem R-PD satisfies

D∗
relaxed(ε) = h(ε), (A.1)

where

h(ε) = n

1 + eε

m−1

.

Proof: We first prove the following claim, which gives a
lower bound on the minimum distortion D∗

relaxed(ε).
Claim: Any feasible solution {pX |Y (x | y), x, y ∈ Dn} of

R-PD satisfies
∑

x∈Dn

pX |Y (x | y)d(x, y) ≥ h(ε).

Proof of the Claim: Consider any feasible {pX |Y (x | y),
y ∈ Dn}. For any y ∈ Dn and any integer l with 0 ≤ l ≤ n,
let Nl(y) be the set of elements with distance l to y, i.e.,

Nl(y) = {v ∈ Dn : d(v, y) = l}. (A.2)

Denote Pl = Pr{X ∈ Nl(y) | Y = y}. Then

∑

x∈Dn

pX |Y (x | y)d(x, y) =
n∑

l=0

l Pl .

We first derive a lower bound on Pn . For any u ∈ Nl−1(y),
N1(u)∩Nl(y) consists of the neighbors of u that are in Nl(y).
By the constraint (14), for any v ∈ N1(u) ∩ Nl(y),

pX |Y (u | y) ≤ eε pX |Y (v | y). (A.3)

Each u ∈ Nl−1(y) has n − (l − 1) rows that are the same with
the corresponding rows of y. Each neighbor of u in Nl(y)
can be obtained by changing one of these n − (l − 1) rows
to a different element in D, which is left with m − 1 choices.
Therefore, each u ∈ Nl−1(y) has (n−l+1)(m−1) neighbors in
Nl(y). By similar arguments, each v ∈ Nl(y) has l neighbors
in Nl−1(y). Taking summation of (A.3) over u ∈ Nl−1(y),
v ∈ Nl(y) with u ∼ v yields

∑

u∈Nl−1(y)

(n − l + 1)(m − 1)pX |Y (u | y)

≤ eε
∑

u∈Nl−1(y)

∑

v∈N1(u)∩Nl (y)

pX |Y (v | y).

Thus

(n − l + 1)(m − 1)Pl−1

≤ eε
∑

v∈Nl(y)

∑

u∈N1(v)∩Nl−1(y)

pX |Y (v | y) (A.4)

= eεl Pl . (A.5)

Recall that Nl � |Nl(x)| = (n
l

)
(m − 1)l . Then by (A.5) we

obtain that, for any l with 1 ≤ l ≤ n,

Pl−1

Nl−1
≤ Pl

Nl
eε.

As a consequence, for any l with 0 ≤ l ≤ n,

Pl ≤ Nl

Nn
e(n−l)ε Pn. (A.6)

Since
∑n

l=0 Pl = 1, taking summation over l in (A.6) yields

1 ≤ Pn
1

Nne−nε

n∑

l=0

Nl e
−lε

= Pn

(
1 + (m − 1)e−ε

)n

Nne−nε
,

i.e.,

Pn ≥ Nne−nε

(
1 + (m − 1)e−ε

)n .

This lower bound on Pn gives the following lower bound:
n∑

l=0

l Pl ≥
n∑

l=0

l

(
Pl + a

Nl e−lε

∑n−1
k=0 Nke−kε

)

+ nNne−nε

(
1 + (m − 1)e−ε

)n ,

where a = Pn − Nn e−nε
(

1+(m−1)e−ε
)n .

Consider the following optimization problem:

min
n−1∑

l=0

l Ql

subject to Ql ≥ 0, l = 0, 1, . . . , n − 1,

Ql−1

Nl−1
≤ Ql

Nl
eε, l = 1, 2, . . . , n − 1,

n−1∑

l=0

Ql = 1 − Nne−nε

(
1 + (m − 1)e−ε

)n .

Suppose the optimal solution of this problem is
{Q∗

0, Q∗
1, . . . , Q∗

n−1}. Then

n−1∑

l=0

l

(
Pl + a

Nl e−lε

∑n−1
k=0 Nke−kε

)
≥

n−1∑

l=0

l Q∗
l

as
{

Pl + a Nl e−lε
∑n−1

k=0 Nk e−kε
, l = 0, 1, . . . , n − 1

}
is a feasible

solution. Therefore,

n∑

l=0

l Pl ≥
n−1∑

l=0

l Q∗
l + nNn e−nε

(
1 + (m − 1)e−ε

)n .
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Similar to {Pl , l = 0, . . . , n}, {Q∗
l , l = 0, . . . , n−1} satisfies

Q∗
l ≤ Nl

Nn−1
e(n−1−l)ε Q∗

n−1. (A.7)

Since
∑n−1

l=0 Q∗
l = 1 − Nn e−nε

(
1+(m−1)e−ε

)n , taking summation

over l in (A.7) yields

Q∗
n−1 ≥ Nn−1e−(n−1)ε

(
1 + (m − 1)e−ε

)n .

Using similar arguments we have

n−1∑

l=0

l Q∗
l ≥

n−2∑

l=0

lC∗
l + (n − 1)Nn−1e−(n−1)ε

(
1 + (m − 1)e−ε

)n ,

where {C∗
l , l = 0, . . . , n − 2} is the optimal solution of

min
n−2∑

l=0

lCl

subject to Cl ≥ 0, l = 0, 1, . . . , n − 2,
Cl−1

Nl−1
≤ Cl

Nl
eε, l = 1, 2, . . . , n − 2,

n−2∑

l=0

Cl = 1 − Nn−1e−(n−1)ε

(
1 + (m − 1)e−ε

)n

− Nne−nε

(
1 + (m − 1)e−ε

)n .

Continue this procedure we obtain
n∑

l=0

l Pl ≥
n∑

l=0

l Nl e−(n−l)ε

(
1 + (m − 1)e−ε

)n = n

1 + eε

m−1

= h(ε).

Therefore, for any feasible {pX |Y (x | y), x, y ∈ Dn},
∑

x∈Dn

pX |Y (x | y)d(x, y) =
n∑

l=0

l Pl ≥ h(ε),

which completes the proof of the claim.
By this claim, any feasible solution satisfies

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y) ≥ h(ε).

Therefore

D∗
relaxed(ε) ≥ h(ε). (A.8)

Next we prove the following claim, which gives an upper
bound on the minimum distortion D∗

relaxed(ε).
Claim: Consider

pX |Y (x | y) = e−εd(x,y)

(
1 + (m − 1)e−ε

)n , x, y ∈ Dn,

and any {pY (y), y ∈ Dn} with
∑

y∈Dn

pY (y) = 1, pY (y) ≥ 0, ∀y ∈ Dn .

Then {pX |Y (x | y), x, y ∈ Dn} and {pY (y), y ∈ Dn} form
a feasible solution of R-PD, and

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y) = h(ε).

Proof of the Claim:Obviously the considered {pX |Y (x | y),
x, y ∈ Dn} and {pY (y), y ∈ Dn} satisfy constraints (16)–(18).
Therefore to prove the feasibility, we are left with con-
straint (14) and (15). We first verify constraint (14). Consider
any pair of neighboring elements x, x ′ ∈ Dn and any y ∈ Dn .
Then by the triangle inequality,

d(x, y) ≤ d(x ′, y) − d(x ′, x) = d(x ′, y) − 1.

Therefore,

pX |Y (x | y) = e−εd(x,y)

(
1 + (m − 1)e−ε

)n

≤ e−ε(d(x ′,y)−1)

(
1 + (m − 1)e−ε

)n

= eε pX |Y (x ′ | y).

Next we verify constraint (15). For any y ∈ Dn and any integer
l with 0 ≤ l ≤ n, let Nl(x) be the set of elements with
distance l to y as defined in (A.2). Then it is easy to see that
Nl � |Nl(y)| = (n

l

)
(m − 1)l , and for any y ∈ Dn ,

Dn =
n⋃

l=0

Nl(y).

Therefore, for any y ∈ Dn ,

∑

x∈Dn

pX |Y (x | y) =
∑

x∈Dn

e−εd(x,y)

(
1 + (m − 1)e−ε

)n

= 1
(
1 + (m − 1)e−ε

)n

n∑

l=0

∑

x∈Nl (y)

e−εd(x,y)

= 1
(
1 + (m − 1)e−ε

)n

n∑

l=0

(
n

l

)
(m − 1)l e−εl

= 1.

With feasibility verified, we can proceed to calculate the
distortion. Let gε = 1 + (m − 1)e−ε . Then

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y)

= 1

(gε)n

∑

y∈Dn

pY (y)

n∑

l=0

∑

x∈Nl (y)

e−εd(x,y)d(x, y)

= 1

(gε)n

∑

y∈Dn

pY (y)

n∑

l=0

(
n

l

)
(m − 1)l e−εll

= n(m − 1)e−ε
(
1 + (m − 1)e−ε

)n−1

(gε)n

∑

y∈Dn

pY (y)

= n

1 + eε

m−1
= h(ε),

which completes the proof of the claim.
By this claim, there exists a feasible solution such that

∑

x∈Dn

∑

y∈Dn

pY (y)pX |Y (x | y)d(x, y) = h(ε),
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which implies

D∗
relaxed(ε) ≤ h(ε).

Combining this upper bound with the lower bound (A.8) gives

D∗
relaxed(ε) = h(ε).

�
Lemma 2: The optimal value D∗

relaxed(ε) = h(ε) of R-PD
implies the following lower bounds for any D with 0 ≤ D ≤ n:

ε∗
i (D) ≥ h−1(D), (A.9)

ε∗
d (D) ≥ max{h−1(D) − εX , 0}. (A.10)

Proof: First we derive the lower bound on ε∗
i (D). Let δ

be an arbitrary positive number. For any D with 0 ≤ D ≤ n,
let εD,δ = ε∗

i (D) + δ. Then by the definition of ε∗
i , we have

that (εD,δ, D) is achievable under identifiability. Therefore

D ≥ D∗
i (εD,δ) ≥ D∗

relaxed(εD,δ) = h(εD,δ),

where D∗
i (·) is the optimal value of PD-I. Since h is a decreas-

ing function, this implies that εD,δ ≥ h−1(D). Therefore

ε∗
i (D) ≥ h−1(D) − δ.

Letting δ → 0 yields

ε∗
i (D) ≥ h−1(D).

Next we derive the lower bound on ε∗
d (D) using arguments

similar to those in the proof of the lower bound on ε∗
i (D).

Let δ be an arbitrary positive number. For any D with 0 ≤
D ≤ n, let εD,δ = ε∗

d (D) + δ. Then by the definition of ε∗
d ,

we have that (εD,δ, D) is achievable under differential privacy.
Therefore

D ≥ D∗
d (εD,δ) ≥ D∗

relaxed(εD,δ + εX ) = h(εD,δ + εX ),

where D∗
d (·) is the optimal value of PD-DP. Since h is a

decreasing function, this implies that εD,δ + εX ≥ h−1(D).
Therefore

ε∗
d (D) ≥ h−1(D) − εX − δ.

Letting δ → 0 yields

ε∗
d (D) ≥ h−1(D) − εX .

Since the privacy level is nonnegative, we obtain the lower
bound in (A.10). �

Lemma 3: The privacy–distortion function ε∗
i of a database

X is bounded from below as

ε∗
i (D) ≥ εX

for any D with 0 ≤ D ≤ n, where εX is the constant defined
in (11).

Proof: Suppose by contradiction that there exists a D
with 0 ≤ D ≤ n such that ε∗

i (D) < εX . Let δ be an
arbitrary positive number with 0 < δ < εX − ε∗

i (D), and let
ε = ε∗

i (D) + δ. Then ε < εX and (ε, D) is achievable under
identifiability. Consider the mechanism that achieves (ε, D).
Then by the requirement of identifiability, for any neighboring
x, x ′ ∈ Dn and any y ∈ Dn ,

pX |Y (x | y) ≤ eε pX |Y (x ′ | y). (A.11)

Let pY (·) be the pmf of the output Y . Then pY (y) ≥ 0 for
any y ∈ Dn . Therefore, multiplying both sides of (A.11) by
pY (y) and taking summation over y ∈ Dn yield

∑

y∈Dn

pX |Y (x | y)pY (y) ≤
∑

y∈Dn

eε pX |Y (x ′ | y)pY (y),

which implies

pX (x) ≤ eε pX (x ′).

Then there do not exist neighboring x, x ′ ∈ Dn with pX (x) =
eεX pX (x ′) since ε < εX , which contradicts with the definition
of εX in (11). �

Lemma 4: For ε ≥ ε̃X , the mechanism Eε
i defined in (21)

satisfies ε-identifiability, and the distortion of Eε
i is given by

E[d(X, Y )] = h(ε).
Proof: Consider any ε ≥ ε̃X . Then under the mechanism

Eε
i , the posterior probability for any x, y ∈ Dn is given by

pX |Y (x | y) = pY |X (y | x)pX (x)

pY (y)
= e−εd(x,y)

(
1 + (m − 1)e−ε

)n .

As shown in the proof of Lemma 1, this {pX |Y (x | y), x, y ∈
Dn} and the corresponding {pY (y), y ∈ Dn} form an optimal
solution of the relaxed optimization problem R-PD. Following
the same arguments as in the proof of Lemma 1 we can
conclude that Eε

i satisfies ε-identifiability, and the distortion
of Eε

i is given by E[d(X, Y )] = h(ε). �
Lemma 5: The mechanism Eε

d defined in (22) satisfies ε-
differential privacy, and the distortion of Eε

d is given by
E[d(X, Y )] = h(ε).

Proof: Under mechanism Eε
d , {pY |X (y | x), x, y ∈

Dn} has the same form as the posteriors under mechanism
Eε

i . Therefore still by similar arguments as in the proof of
Lemma 1, Eε

d satisfies ε-differential privacy, and the distortion
of Eε

d is given by E[d(X, Y )] = h(ε). �
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