Decentralized Scheduling with Data Locality for
Data-Parallel Computation on Peer-to-Peer
Networks

Weina Wang, Matthew Barnard, and Lei Ying
School of Electrical, Computer and Energy Engineering
Arizona State University, Tempe, AZ 85287
{weina.wang, matthew.barnard, lei.ying.2} @asu.edu

Abstract—Despite distributed in computation and data stor-
age, current data-parallel computing systems are centralized in
task scheduling, which results in hierarchies that create single
point of failure, limit scalability, and increase administration
costs. In this paper, we propose a fully decentralized scheduling
algorithm for data-parallel computing systems on peer-to-
peer (P2P) networks. Our scheduling algorithm eliminates the
centralized scheduler by letting each node in the network make
scheduling decisions. To achieve good performance, data local-
ity, which stresses the efficiency of colocating tasks with their
input data, and load-balancing, should be considered jointly,
and in a decentralized fashion. By exploring a backpressure-
based approach, the proposed task scheduling algorithm strikes
the right balance between data locality and load-balancing with
each node only knowing the status information of part of the
nodes in the network, and proves to maximize the throughput.

I. INTRODUCTION

Data-parallel computing systems, such as MapReduce [1]
and Hadoop [2], are widely deployed in large computing
clusters to meet the growing need for big data analysis [3]-
[7]. Current implementations of these systems are usually
specifically for high performance in centralized datacenter
environments, using the master/slave architecture to coor-
dinate the allocation of resources. As the development of
volunteer computing systems that offer low-cost resource for
high-performance computing, accommodating data-parallel
computing systems to heterogeneous or opportunistic envi-
ronments has attracted attention. However, despite of tak-
ing into account the possible unavailability of computation
nodes, most of the existing work [8]-[11] still performs task
scheduling on a reliable node, creating centralized control
that is subject to the single point of failure. The work [12]
implements MapReduce on a peer-to-peer (P2P) architecture,
but it still uses the master/slave architecture for coordination,
and there is a set of nodes dedicated to the role of masters.

In this paper, we propose to design a fully decentralized
scheduling algorithm for data-parallel computing systems on
P2P networks, where centralization is eliminated by distribut-
ing scheduling responsibility among nodes in the system.
With such an approach, each node in the system will be not

only a computation and data storage unit, as in MapReduce,
but also a scheduling unit.

A data-parallel computing system typically divides large
datasets into data chunks and stores them on nodes dis-
tributedly to cope with parallel computation [13], [14]. Each
computation task that arrives at the system has a data chunk
as its input. Therefore, when assigning tasks to nodes for
execution, a critical consideration is to place tasks on or
close to nodes that store the input data chunks to avoid
data retrieval from other nodes. The concern regarding this
problem is called data locality [15]-[24]. The data locality
concern should be addressed with the load-balancing concern
jointly in task scheduling, since improving data locality, i.e.,
assigning more tasks to nodes that have their input data, can
leads to an uneven load distribution among nodes, and thus
harms the throughput.

Therefore, to achieve good performance, the task schedul-
ing algorithm needs to strike the right balance between data
locality and load-balancing, and more importantly, do it in a
decentralized fashion. Recently, centralized throughput opti-
mal algorithms have been proposed for task scheduling with
data locality concerns [21]-[24]. However, for a decentralized
structure, we need to take into account the constraints on
information exchange and cope with the lack of information.
In a P2P network, a node only has access to the information
of part of the nodes, so it needs to make scheduling decisions
based on this limited knowledge, whereas a centralized
scheduler knows the status of all nodes.

We address this difficulty by exploring a backpressure-
based approach. Specifically, each node in the system main-
tains three queues on it. Two of them are called execution
queues, which buffer tasks that will be executed on this node,
and the other one is called the forwarding queue, which
buffers tasks that will be delegated to other nodes. One of
the execution queues is called the local queue, and the tasks
in this queue have their input data on this node. The other
execution queue is called the remote queue, and the tasks
in this queue may need to retrieve their input data from
other nodes. When a task arrives at the system, the node
that receives the task first queries the P2P network to resolve

Decentralized Distributed
Task Scheduler File System
(1}: - {2"0
T
L) pn
Li §§ P : P2P Network
0
&l IP Network

Fig. 1: The architecture of a data-parallel computing system
on a P2P network.

the locations of its input data, and then assigns it to one of its
local nodes according to their workloads of processing and
forwarding. When choosing tasks to serve, a node computes
the backpressure of the two execution queues as weighted
queue lengths, where the weights correspond to the service
rates such that tasks with data on the node has higher priority.
When forwarding tasks in the network, a node computes
the backpressure of the forwarding queue as the differences
between it and the remote queues on its neighbors, and
between it and the forwarding queues on its neighbors. Since
the execution queues reflect nodes’ working load, forwarding
tasks along the decreasing direction of backpressure will lead
tasks to a less loaded destination.

This proposed task scheduling algorithm does not require
global information of all the nodes in the network. It assigns
tasks preferably to their local nodes, but also makes use of the
network to distribute some load to remote nodes, therefore
fully utilizing the capacity. We prove that this proposed task
scheduling algorithm maximizes the throughput.

II. SYSTEM MODEL

We consider a data-parallel computing system on a P2P
network with the architecture shown in Fig. 1. The three
primary components in this computing system are a software
P2P overlay network, a distributed file system (DFS), and a
decentralized task scheduler. The distributed file system and
task scheduler work together on all nodes; i.e., each node in
the network supports the same service stack on data (e.g.,
storage, duplication, transmition) and tasks (e.g., execution,
delegation).

Consider a computing system with N nodes and denote
the set of nodes by [N] = {1,2,..., N}. For each node n,
we call the nodes that can be directly reached by n (ie.,
the nodes whose IP addresses are known to node n) its
children, or its neighbors, and correspondingly node n is
called a parent of these nodes. Let C,, and P,, denote the
sets of node n’s children and parents, respectively. Data-
parallel computing tasks come into the system stochastically

taskl}l

external arrivals

\ /))
pA¢ internal arrivals
‘ executor

node n

children of n

Fig. 2: Queue structure for task scheduling.

and need to be served by the nodes. We assume that each
task is associated with a data chunk, and a data chunk is
replicated and placed at several nodes by the P2P network.
For each task, we call a node a local node for the task if the
data chunk associated with the task is stored locally, and we
call this task a local task on the node; otherwise, the node
is called a remote node for the task and correspondingly this
task is called a remote task on the node. Then each task is
associated with a set of local nodes. We classify tasks into
types according to their associated sets of local nodes, and
let a type be denoted by this set of local nodes, £ C [N].
Thus a node n is a local node for tasks of type L if n € L.

A. Arrival and Service

We consider a time-slotted system. Let A, (¢) denote the
number of tasks of type £ arriving at the beginning of time
slot t. We assume that the arrival process (A (t),t > 0) is
temporally i.i.d. with arrival rate Az, i.e., E[Az(¢)] = Az for
any ¢t > 0. We further assume that all the arrival processes
are bounded. We only consider the types such that Az > 0 to
avoid triviality. Let A = () denote the arrival rate vector.

The processing times of tasks are assumed to follow
geometry distributions and the execution of tasks are nonpre-
emptive. Let a and ~y denote the parameters of the geometry
distributions for local tasks and remote tasks, respectively.
Then the average service time is 1/« for a local task, and it
is 1/~ for a remote task. Due to data locality, we assume that
v < « to model the efficiency difference. We assume that the
transmission of a task from one node to its children in the
network is fast since the task consists of only some codes
and meta data. Let the rates in the system be normalized
such that the transmission rate is 1 task per time slot. Note
that v < o < 1.

B. Queue Structure

We propose to use a queue structure as shown in Fig. 2
on each node to buffer tasks that wait to be executed or

delegated. Each node n maintains three queues for tasks:
a local queue QY, a remote queue QX, and a forwarding
queue QF. The tasks in the local queue and remote queue
will be executed on node n, and thus QL and Q¥ are called
execution queues. The local queue Q¥ contains tasks whose
input data is stored on n while the tasks in the remote queue
QR may need to retrieve their input data from a remote node.
The forwarding queue QF stores tasks that will be further
delegated.

When a task arrives at the system, we call the node that
receives the task the initial node. We assume that the task
will be first sent to its local nodes by the initial node, and
one of the local nodes will be selected to further handle the
task. This assumption models the scenario that the distributed
file system first locates the input data of a task according
to the identifier specified in the task for further information
or for some validation such as integrity check in practice.
For example, in a distributed file system based on distributed
hash table (DHT), the input data can be located through a
key lookup process, and the local nodes are the responsible
nodes for the queried key.

For each node n, the tasks that just arrive at the system
and are assigned to node n as one of their local nodes by
the initial nodes are called external arrivals, while the tasks
that are delegated to node n by its parents are called internal
arrivals. External arrivals are either accepted into QL for
local execution or put into the forwarding queue QF for
delegation. Internal arrivals are either accepted into QY for
execution or put into the forwarding queue QF for further
delegation.

III. DECENTRALIZED SCHEDULING WITH DATA
LOCALITY

In this section, we present our scheduling algorithm based
on the proposed queue structure. This scheduling algorithm
is fully decentralized in the sense that all the nodes are equal
in making scheduling decisions.

A. Task Scheduling Algorithm

A centralized scheduler has the benefit of intelligently
allocating load given its global knowledge of the status of
all the nodes. Contrastingly, a node in a P2P network has
only partial knowledge of the nodes that it has connections
with. Our scheduling algorithm overcomes this difficulty by
using a backpressure-based method, where the properly built
pressure pushes tasks in the network and leads them to an
efficient destination.

The scheduler on each node operates by assigning newly
arriving tasks to one of a set of execution and forwarding
queues. Tasks in execution queues are scheduled for pro-
cessing, while the forwarding queue diffuses tasks to the
children. Data locality is taken into account by giving local
tasks higher priority when making execution decisions, and
routing tasks towards the decreasing direction of pressure
balances loads on the nodes.

Formally, we propose the following backpressure schedul-
ing algorithm, which is motivated by the backpressure algo-
rithm for wireless networks [25], and is the multihop version
of the task scheduling algorithm developed in [22].

Task Scheduling Algorithm:

« When a task of type L arrives at the system, the initial
node assigns it to the shortest queue in {Q%,n € L} U
(QF necL)

« For each node n, we consider the connections between
the forwarding queue Q% and the queues in {QR, m €
Cn}U{QF, m e C,} U{QL} as logical links. Define
the backpressure of these links at time slot ¢ as

w(Qn(1),Qn (1) = Qh(t) — Q. (t),m € Cn, (1)
w(Qn (), Qn (1) = Qn(t) — Qn(t), m € Cn, (2)
w(QE(t),Qk(t)) = 0. 3)

Then one task in QY (if there is any) is forwarded to
the queue in {QR,m € C,} U{Q%, ,meC,} U{QE}
with the maximum backpressure at each time slot. Note
that if this queue is QE, then it means no task will be
forwarded out from QF.

« For each node n, we consider the connections between
the queues in {Q%, QR} and the processor of node n
as logical links. Define the backpressure of these links
at time slot ¢ as

U)(Qb(t)ﬂ%) = O‘Qk(t)v w(Qs(t)7n> = 7@5(”7

“4)
where recall that 1/« is the average service time for
a local task and 1/ is the average service time for
a remote task. If a node just finished a task at time
slot ¢ — 1, we say the node is available at time slot
t, and otherwise the node is busy since it must be
serving some task. Then at each time slot, if node n is
available, it is scheduled to serve a task from the queue
in {Q%,Qﬁ} with maximum backpressure; otherwise
node n continues serving its unfinished task, i.e., the
execution of tasks is nonpreemptive.

B. Queue Dynamics

At the beginning of time slot ¢, the external and internal
arrivals are assigned to queues according to the task schedul-
ing algorithm. For each type L, external arrivals of this type
are assigned to either the local queues or the forwarding
queues of their local nodes. We denote the number of external
arrivals allocated to QF and QF by A% (t) and ALP (1),
respectively, where n € £. Then A (t) = A]Z:m(t)—i—AEjEn(t).
Let AL(¢) denote the total number of arrivals to QY, and
AFE(#) denote the total number of external arrivals to QF.
Then AL(t) = Y, Ak (1) and AEE(r) = ¥, AEE (1),

Let AR (t) and ALl(t) denote the number of internal
arrivals that are forwarded to QF and QF from a parent
node k, respectively. Then AR(t) = > kep, AR (t) and

Al =3, ep, Ag}l() denote the total number of internal
arrivals to QF and QF, respectively.

If node n just completed a task at time slot ¢ — 1, we say
the node is available at time slot ¢, and otherwise the node
is busy since it must be serving some task. The working
status of node n is kept track of by f,(t), where f,(t) =
0,1, 2 denotes available, working on a local task, and working
on a remote task, respectively. If node n is available and is
scheduled to serve the local queue, or if the node is busy
serving the local queue, we say the node is scheduled to the
local queue. Otherwise we say the node is scheduled to the
remote queue. The scheduling decision of node n is recorded

by
if node n is scheduled to the remote queue.

on(t) = {;
)

At the end of time slot ¢, finished tasks depart and the
queue lengths and the working statuses are updated. Define

if node n is scheduled to the local queue,

Loy Ja ifo,(t)=1, g o JO ifo,(t)=1,
Halt) = {o o) =2 = {’y if o () = 2.
(6)

Let random variables ST(#) and SE(t) follow Bernoulli
distributions with parameter ;% and pZ, respectively. Then
SL(t) and SE(t) represent the service performed by node
n to the local queue QL and QR, respectively. Let SY(¢)
denote the number of departures of the forwarding queue
QF. Recall that we normalize the rates in the system such
that the forwarding rate is 1. Then SE (¢) is either 1 or 0. By
the above notation, the queue dynamics can be written as

Qut+1) = (Qr(t) + A5 (t) — Sy ()7, (7)
n(t4+1) = (Q(t) + A (t) — ST, (®)
Qnt+1) = (Qn(t) + ALE(t) + AR () — SE ()T ()

We assemble the queue lengths and working statuses into
a vector:

Z(t) = (Qn(t), Qi (), Qu (1), fu(t),n € [N]).

Then {Z(t),t > 0} is a Markov chain. We assume that the
state space S consists of all the states which can be reached
from the zero vector.

(10)

IV. THROUGHPUT OPTIMALITY

In this section, we analyze the throughput performance of
our task scheduling algorithm. We first derive an outer bound
of the capacity region of the system, and then show that our
task scheduling algorithm is throughput optimal.

For any time slot ¢, let ®(¢) be the number of unfinished
tasks in the system, i.e., ®(t) = Zgzl(Qf;(t) + QR(t) +
Q5 (t)). We say that a task scheduling algorithm stabilizes
the system for an arrival rate vector A = (A.) if

lim lirglo Pr(®(t) > C) =0.

C—oo0t—

(1)

Intuitively, stability indicates that the number of unfinished
tasks will not explode.

The capacity region of a system is the set of arrival rate
vectors for which there exists a task scheduling algorithm
that stabilizes the system. A task scheduling algorithm is
throughput optimal if it stabilizes the system for any arrival
rate vector strictly within the capacity region.

A. Capacity Region

We first characterize the capacity region of the system
by considering some necessary conditions for an arrival rate
vector A = (A\z) to be in the capacity region.

Consider the following set of arrival rate vectors:

A:{)\:(/\E):HAEWA[:”,)\R A AL AR gt

/\5 = Z()‘[, n + /\E,n)7v£7

neLl
- Z)‘[,n’ - Z /\,Cn?vne }

L:neL L:neL

/\S_'— Z /\En Z)‘nm_'_ Z)‘nrruvn E]’
keP, meC, meC,
= > AL Vne[N],
kEP,

/\L n7>‘L n7>‘5m7/\5m 2 0 VE Vn € [},Vm € Cm

L R

s)‘" <1,Yn € [N],

Z A+ DA <1,Vn€[N]}.

meCy, meC,

Then it can be proved that no task scheduling algorithm can
stabilize the system for an arrival rate vector that is not in
A. In other words, if the system can be stabilized by some
task scheduling algorithm, then the arrival rate vector A =
(Az) must be in A. Therefore, A gives an outer bound of
the capacity region of the system. The proof is similar to
the proof of Theorem 5.3.1 in [26], which is based on the
strict separation theorem and strong law of large numbers.
We omit the proof here for conciseness.

Intuitively, we can think of these elements in the definition
of A as the following rates:

- A%’n: rate of the tasks of type L that are finally executed
on a local node n € L;

-)\Em : rate of the tasks of type L that are finally executed
on a remote node and are initially forwarded out from
the local node n € L;

- AR . rate of the tasks that are forwarded from node n
to its child m for remote execution;

- AR . rate of the tasks that are forwarded from node n
to its child m for further delegation.

Then the last two inequalities in the definition of A represent
the capacity constraints of processing and forwarding.

B. Achievability

Theorem 1. The proposed backpressure scheduling algo-
rithm for task scheduling stabilizes the system for any arrival
rate vector strictly within A.

By this theorem, the proposed task scheduling algorithm
is throughput optimal. For any arrival rate vector, as long as
there exists some task scheduling algorithm that stabilizes the
system under the considered queue structure, the proposed
algorithm can stabilize the system for this arrival rate vector.

For any arrival rate vector A € A°, by the assumptions
and the proposed scheduling algorithm, {Z(t),t > 0} is
an irreducible and aperiodic Markov chain, and the number
of unfinished tasks ®(¢) = Z%:ll m(t). If this Markov
chain is positive recurrent, then the condition of stability is
satisfied since the distribution of Z(¢) will converge to the
stationary distribution as t — oo. Thus the stability can be
obtained by proving the positive recurrence. A difficulty of
the proof is that the execution of tasks is nonpreemptive.
We use techniques developed in [21], [22] to address this
difficulty.

Proof of Theorem 1: Consider the following Lyapunov
function
P+ (@) +(@u(1)?). (12)
Then according to an extension of the Foster-Lyapunov
theorem [26], we need to prove that there exists a finite set
B C S and two constants § and C' with § > 0 such that for
some positive integer 7' and any tg > 0,

E[V(Z(t() + T)) — V t() | Z t()
E[V(Z(to+T)) = V(Z(to)) | Z(to) =

=Z] < -6,VZ € B,
Z]<C, VZ e B.

For any arrival rate vector A € A°, we show that the queueing
process {Z(t),t > 0} satisfies these two conditions.
Consider any arrival rate vector A € A°. Since A° is an
open set, there exists ¢ > 0 such that A’ = (1 + €)X € A.
Therefore A = (Az) has a decomposition such that

Ao =3 (Min+AE,),VE, (13)
n€£
= > M A= D0 AL veeN], (4)
L:neLl L:neLl
M+ D N = D At Y A Vne[N], (15)
keP, mEC,L meCy,
= > AL, Vne[N], (16)
keP,
AZ s AL s A > 0,YL,¥n € [N],Vm € C, (17)
AL /\R 1
hp < — 1
5 7_1+ Vne[] (18)
Z)‘nrn+ Z /\nm = 17 vn 6[] (19)
meCy meCy,

By the queue dynamics, the 7' time slot Lyapunov drift can
be calculated as

E[V(Z(to +T)) = V(Z(to)) | Z(to)]
to+T—1 N
3 Z(@g(t +1))2 - (@K(1)?
t=to n=1

+(@Qn(t+1)? = (@Qn (1)

QN+ 1)) — <Q5<t>>2) Z(ty)
< 2E [ZZ(— SE@®))
QR (AR () - ST ()

+QEO (A0 + AT - SE()) \ (1)
+ C1,

where C1 is a constant independent of Z(t) since the arrival
and service processes are bounded. We omit the summation
ranges when they are clear in context. Rearranging the terms
we get

E[V(Z(to+T)) — V(Z to

<9E [ZZ()+ Qi >A5E<t>) \ Z(to>]

(20)

) | Z(to)]

+2E [Z Z (QR t)AR () + QE (1) AL (1)

_ Q5<t>s,€)] Z(m)] @b
(22)

+Ch.

We bound these three terms in the remainder of this proof.
First consider the term (20). For any time slot ¢ with ¢y <
t<to+T -1,

B[3@k + QAL) | 2000

n

E[Z (Qk(t)Ak(t)

n

=E

+QE0AE0) | 200)] | Z(00)

B[S ¥ (@it

n L:neLl

+QEAEE W) | 200)] | Z(00)

(Q}; (tO)AIE,n + QE (tO)AE,n> + Co,

(QL<to)AL + Q) (to)A) + Os, (23)

where (a) follows from the scheduling algorithm with

Qi (t) = min{ {Q(t),n € £} U {Qh(t),n € £}},

(b) follows from the decomposition (13), and C is a constant
independent of Z(ty).
Next consider the term (21). It can be shown that

> (Qz}(tmsm Q1) AT <t>)

< ;(@mtmsu 1)+ QAT+ 1))

+ NQX(to) + NQJ (to) + Cs,

where Cj is a constant independent of Z(¢(). For any time
SlOttWithtO <t<t0+T—1
) Y AL+

Z QF AFI t - 1 Z QF
kEPy

= Z > QuAL(E+1)

k neCg

(G)Z Z QF AFI (t+1),

n meC,

where (a) is obtained by changing the names of the summa-

tion indices. Similarly,
2 QIO =D 3, QuA,(t+1).
n mecC,

For each node n, let
A Qu(t) = max{ {QF (1)
u{Qk(®)
U {o}}.
By the scheduling algorithm,
SOAL 1)+ Y AN (E+1) =

meC, meCy,

—Qn(t),meCy}
- Qb ()mEC}

SE().

Therefore,
ST QRWAR(E+ 1)+ > Qb (AR (t+1)
meC, meCy,
—Qn(t)Sy (1)
= 57 (QR() — QL) AR,, (4 1)
meC,
+ Y (Qn () = QE(®) A, (t+1)
meC,
(;) _A*Qn()
(b)
< T ATQu() — ATQu() mXCj (At Aim)

where (a) follows from the scheduling algorithm, and (b) fol-
lows from the constraint (19). By the definition of A*Q, (%),

- ZA*Qn > (AL AL

meCy,
n meCy,
n meCy,
== > Qut(\L + L)
n meC,
+3 > (QEIOAR, + QR(DAL,)
n kep,
EDICHOD DRTED SIOATIY
n keP,, n

=D QAT =D Qnt)A;

where (a) follows from the decomposition (15). Then

[ZZ(QR AR (1) + Q) AL (1)
- QWS | 2(e)
l [ZZ(QR AR + QDAL (1)

—QS(t)SE(t))] Z(t)} Z(to)
< 1+ Qn(to) +TZQ (to)A
—T Y Qnlto), + NZ Qn (to) + NZ Qn (to)
+ CYy, (24)

where Cy is a constant independent of Z(tg).

Now consider the last term (22). Consider the following
random variables

tr —mln{T T > to, fulT —0} n € [N],
t* = max t. (25)
1<n<N

Then ¢ is the first time slot after ¢y at which node n is
available. We can use t* to decompose the probability space.
Let T'= JK, where J and K are integers. Denote Px =
Pr(t* < to+ K | Z(to)). Then for each node n,

E Z (Qg(t)sg(t) + Qﬁ(t)srlf”(t)> ‘Z(t‘))}

-t

> B[y (Qﬂt)&%(t) " QE(t)SE(t)) \Z(m, Feto + K]
-Pr(t* <to+ K | Z(to))

[to+T—1
>E

2E| .

L t=t*

E {@%(t)&%(t) L QRM1)SR () \ Z(ty), t*}

Z(to),t*<to+K - Px.

Then

E[Qb(t)&%(t) L QR(1)SE () \ Z<to>,t*}

- E[E [QL1SE®) + QOISR | 2(6), Z(t0). "]
’ Z(to), t*} .
For any time slot ¢ with t* <t < to + T — 1, let
7t =max{r: 7 <t, fu(7) = 0}. (26)
Then
E[QE(DSE(®) + QX OSHW) | 2(1), Z(t0) . t']
—E|QL(rE[SE() | U(Tﬁ)]
+ QRTE[ST () | o I 2(), Z(to), "] - s
(_)E{max{aQL) A QR (! } ‘ 2 } s

> max{aQy(to),7Qy (to) } — Cé,

where (a) follows from the scheduling algorithm, and C5, Cg
are constants independent of Z(ty). Therefore,

B3 (@ksk + @twsio)
> Lo P max{0@Q(10), 7@ 10)} — 1,

)

27
where C'7 is a constant independent of Z(¢g). Since

lim Pg =1,
K—oo

we can pick large enough K and J such that

Qp21_#_
J 2(1+¢)

Combining the bounds (23), (24), (27) on (20), (21), (22)
yields

E[V(Z(to+T)) = V(Z(to
< QTZ(n(to) Ay + Qn (to) Ay —
+Qn (to) Ay — Qn (to)An

- (1- 5y) maxlaQk) @20}
+23° N(Q (o) + QE(t0) + C

) | Z(to)]

1+4+¢€ (o)

=27y (Q%(to)kﬁ + Q(to) Ay

_ (1 — 201)) max{aQ;;(t), 7@y (to) }

1—1—6A @nlt)>
+ 2ZN(Q5 to) + Qg(ﬁo)) + Cs,

where Cy is a constant independent of Z(ty). It is easy to
see that

Qr (to) X, + Q) (o) Ay
< max{aQ%k(to), YQx (to) } (fl
By the constraint (18),
Qr(to) X + Qi (o) Ay
- (1- gy) merla@ku). 2@k}

< —ﬁ max{aQy;(to), 7Qn (to) }

Choose large enough 7' such that

eF _2N(N+1)
2(1+e€) — v '

Then
ZN(R (t,) +Q5(to))
< NV +1) 32 (@ (t0) + A°Qu ()

(5 max{a0k (o). 1@} + 2°Qultn)).

< €T
~ 2(1+4¢)

Therefore,

Let

B

< T (1 max{aQ (t0), YO (t0)} + A*Qu(to)

[7]
E[V(Z(to+T)) = V(Z(to)) | Z(to)] N
2(1+¢€)\2

1 Cs.
s (9]

Z: % max{chk7 vQS} + A*Q, [10]
2(14¢€)(6 + Cs)
el

(11]

Vn € [N]}. (28)

Then it can be verified that B is a finite set and

E[V(Z(to+T)) = V(Z(to)) | Z(to) = Z] < —6,YZ € B°,

E[V(Z(to+T)) = V(Z(ty)) | Z(to) = Z] < Cs,VZ € B,

which completes the proof.

[12]

[13]
|

V. CONCLUSION [14]

The P2P architecture offers benefits to robustness, scal-

ability, and reduced administrative cost over hierarchical

[15]

networks. In this paper, we proposed a fully decentralized
scheduling algorithm for data-parallel computing systems

on P2P networks. The proposed task scheduling algorithm
explores a backpressure-based approach, where each node

[16]
(17]

makes decisions on whether to execute some tasks or delegate
them, and thus being equal in scheduling. This approach

strikes the right balance between data locality and load-

(18]

balancing in a decentralized fashion, and proves to be
throughput optimal, i.e., it maximizes the throughput of the

system.

[19]
VI. ACKNOWLEDGEMENT

This work was supported in part by the NSF under Grant

ECCS-1255425.

[1]

[2]
[3]

[5

=

[6]

[20]

REFERENCES 5
1
J. Dean and S. Ghemawat, “MapReduce: simplified data processing 211
on large clusters,” ACM Commun., vol. 51, no. 1, pp. 107-113, Jan.
2008.
“Hadoop,” http://hadoop.apache.org.
A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al.,
“The genome analysis toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data,” Genome Research, vol. 20,
no. 9, pp. 1297-1303, Sep. 2010.
R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using MapReduce,” in Proc. Ann. ACM SIGMOD Conf., Indi-
anapolis, IN, 2010, pp. 495-506.
Y. Ganjisaffar, T. Debeauvais, S. Javanmardi, R. Caruana, and C. V.
Lopes, “Distributed tuning of machine learning algorithms using
MapReduce clusters,” in Proc. Workshop Large Scale Data Mining:
Theory and Applications (LDMTA), San Diego, CA, 2011, pp. 2:1-
2:8.
A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan, “SystemML:
Declarative machine learning on MapReduce,” in Proc. Int. Conf. Data
Engineering (ICDE), Hannover, Germany, 2011, pp. 231-242.

[22]

(23]

[24]

[25]

[26]

S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific
computing problems to clouds using MapReduce,” Future Generation
Comput. Syst., vol. 28, no. 1, pp. 184 — 192, Jan. 2012.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proc. USENIX Conf. Operating Systems Design and Implementation
(OSDI), San Diego, CA, 2008, pp. 29-42.

H. Lin, X. Ma, J. Archuleta, W. Feng, M. Gardner, and Z. Zhang,
“MOON: MapReduce on opportunistic environments,” in Proc.
ACM Int. Symp. High Performance Distributed Computing (HPDC),
Chicago, IL, 2010, pp. 95-106.

H. Lin, X. Ma, and W.-C. Feng, “Reliable MapReduce computing on
opportunistic resources,” Cluster Computing, vol. 15, no. 2, pp. 145—
161, Jun. 2012.

Y. Ji, L. Tong, T. He, J. Tan, K.-w. Lee, and L. Zhang, “Improving
multi-job mapreduce scheduling in an opportunistic environment,” in
Proc. IEEE Int. Conf. Cloud Computing (CLOUD), Santa Clara, CA,
2013, pp. 9-16.

F. Marozzo, D. Talia, and P. Trunfio, “P2P-MapReduce: Parallel data
processing in dynamic cloud environments,” Journal of Computer and
System Sciences, vol. 78, no. 5, pp. 1382-1402, 2012.

S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,”
in Proc. ACM Symp. Operating Systems Principles (SOSP), Bolton
Landing, NY, 2003, pp. 29-43.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in [EEE Symp. Mass Storage Systems and
Technologies (MSST), Incline Villiage, NV, May 2010, pp. 1-10.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proc. ACM Symp. Operating Systems Principles (SOSP), Big Sky, MT,
2009, pp. 261-276.

T. White, Hadoop: The definitive guide. Yahoo Press, 2010.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. European Conf. Computer
Systems (EuroSys), Paris, France, 2010, pp. 265-278.

J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling for
mapreduce clusters,” in Proc. ACM/IFIP/USENIX Int. Conf. Middle-
ware, Lisbon, Portugal, 2011, pp. 187-207.

J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficient
data locality driven task scheduling algorithm for cloud computing,”
in Proc. IEEE/ACM Int. Conf. Cluster, Cloud and Grid Computing
(CCGRID), Newport Beach, CA, 2011, pp. 295-304.

Q. Xie and Y. Lu, “Degree-guided map-reduce task assignment with
data locality constraint,” in Proc. IEEE Int. Symp. Information Theory
(ISIT), Cambridge, MA, 2012, pp. 985-989.

W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task
scheduling in mapreduce with data locality: Throughput and heavy-
traffic optimality,” in Proc. IEEE Int. Conf. Computer Communications
(INFOCOM), Turin, Italy, 2013, pp. 1609-1617.

——, “Maptask scheduling in mapreduce with data locality: Through-
put and heavy-traffic optimality,” IEEE/ACM Trans. Netw., 2014, to
appear.

W. Wang and L. Ying, “Data locality in mapreduce: A network
perspective,” in Proc. Annu. Allerton Conf. Communication, Control
and Computing, Monticello, IL, 2014, pp. 1110-1117.

Q. Xie and Y. Lu, “Priority algorithm for near-data scheduling:
Throughput and heavy-traffic optimality,” in Proc. IEEE Int. Conf.
Computer Communications (INFOCOM), Hong Kong, China, 2015.

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, pp.
1936-1948, Dec. 1992.

R. Srikant and L. Ying, Communication Networks: An Optimization,

Control and Stochastic Networks Perspective. New York: Cambridge
Univ. Press, 2014.

