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Abstract. We study a market model where a data analyst uses mon-
etary incentives to procure private data from strategic data subjects/
individuals. To characterize individuals’ privacy concerns, we consider a
local model of differential privacy, where the individuals do not trust the
analyst so privacy costs are incurred when the data is reported to the
data analyst. We investigate a basic model where the private data are
bits that represent the individuals’ knowledge about an underlying state,
and the analyst pays each individual according to all the reported data.
The data analyst’s goal is to design a payment mechanism such that at
an equilibrium, she can learn the state with an accuracy goal met and
the corresponding total expected payment minimized. What makes the
mechanism design more challenging is that not only the data but also the
privacy costs are unknown to the data analyst, where the costs reflect
individuals’ valuations of privacy and are modeled by “cost coefficients.”
To cope with the uncertainty in the cost coefficients and drive down
the data analyst’s cost, we utilize possible negative payments (which pe-
nalize individuals with “unacceptably” high valuations of privacy) and
explore interim individual rationality. We design a family of payment
mechanisms, each of which has a Bayesian Nash equilibrium where the
individuals exhibit a threshold behavior: the individuals with cost coef-
ficients above a threshold choose not to participate, and the individuals
with cost coefficients below the threshold participate and report data
with quality guarantee. By choosing appropriate parameters, we obtain
a sequence of mechanisms, as the number of individuals grows large.
Each mechanism in this sequence fulfills the accuracy goal at a Bayesian
Nash equilibrium. The total expected payment at the equilibrium goes
to zero; i.e., this sequence of mechanisms is asymptotically optimal.

1 Introduction

Exploiting human-related data such as medical records and financial data has
created great value to the society. However, the ever-improving capability of data
analysis in the advancing big data technology makes it possible to extract per-
sonal information undesirably, giving rise to technical barriers for data collection.
In short, big data analytics is a double edged sword. This in turn necessitates in-
centivizing data subjects/individuals for providing quality data while preserving
privacy.
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Fig. 1. System model. The data analyst is interested in the state W , which is a binary
random variable. Each individual i has a private binary signal Si and a type Ci that
characterizes her valuation of privacy. S1, S2, . . . , SN are conditionally i.i.d. given W .
Individual i reports randomized data Xi, which is generated based on Si and Ci.

In this paper, we consider a market model where a data analyst uses mone-
tary incentives to procure private data from strategic data subjects/individuals.
Specifically, the data analyst elicits data from a population of N individuals.
Each individual i’s private data is a binary signal Si that reflects her knowledge
about an underlying state, which is represented by a binary random variable W .
Conditional on the state W , the signals are independently generated such that
the probability for Si to be the same as W is θ, where 0.5 < θ < 1. The data
analyst is interested in learning W . This structure is illustrated in Figure 1.

To provide monetary incentives, the data analyst announces a mechanism,
which is a function that determines the amounts of payments to individuals
according to their reported data. Since an individual’s payment may depend on
others’ reports, this payment mechanism induces a game among the individuals.
Due to privacy concerns, an individual experiences a cost when she releases data
to the analyst. Her payoff is the difference between the payment and the privacy
cost. The goal of the data analyst in this setting is to design a mechanism to
achieve a desired learning accuracy at an equilibrium in a cost-effective manner.

Privacy cost model. To quantify the privacy costs, we consider a local
model of differential privacy (an introduction of which can be found in [10]). In
this local model, the individuals do not trust the data analyst with their data,
so they have to evaluate their privacy costs carefully when reporting data to the
analyst. To control the privacy cost, we assume in the paper that an individual
adds random noise to her data and reports the resulting perturbed version.
Intuitively, the more “noisy” the reported data is, the more privacy is retained,
and thus the less privacy cost is incurred. An individual will weigh the privacy
cost against the payment to choose the best way of perturbing her data. In
contrast, in a centralized model of data privacy with a trustworthy data analyst
(e.g., [15]), the action of providing data to the analyst itself, whether truthful
or not, does not cause privacy loss. There privacy costs are incurred when the
analyst releases the outcome of the mechanism, so the individuals cannot control
their privacy costs except choosing to participate or not.

We remark that the different privacy cost models make the structures of the
mechanism design problem fundamentally different. In a centralized model, the
design goal is to have a mechanism that elicits truthful data reporting and its
outcome satisfies the promised privacy guarantee. However, in the local model



considered in this paper, truthfulness is no longer a focal design goal since it in-
curs high privacy costs to individuals that need to be compensated by payments.
Instead, the data analyst seeks for mechanisms that cost-effectively elicit data
with small enough perturbation, and consequently the analyst needs to manage
equilibria consisting of noisy data reporting. Another major difference is that it
is unnecessary to make the outcome of the mechanism guarantee privacy in the
local model since the control of privacy remains in the hand of the individuals.

Unknown privacy valuations and the impact of negative payments.
We consider the natural setting where different individuals may have different
valuations of privacy and their valuations are unknown to the data analyst. In
this model, the analyst is not able to tune the payments to the privacy costs,
which may result in overpayments when some individuals’ costs are lower than
expected. This uncertainty can also introduce unwanted noise in the reported
data. To see this, consider a mechanism that always pays a nonnegative amount
of payment to a participant. For an individual whose valuation of privacy is very
high, participating and reporting only noise is a better strategy than opting
out since she may still receive some nonnegative amount of payment without
incurring any privacy cost. Then the payment does not buy the analyst any
useful information from this individual, and moreover, the analyst has to work
with these unusable reports during data analysis.

With these observations, we consider payment mechanisms that are interim
individually rational; i.e., the expected payoff of each individual in an equilibrium
is nonnegative, although the realizations of the payments can be negative. In
practice, this can model the scenario where there are repeated data collection
(e.g., to learn the ratings of different movies), and in some rounds the payments
received by the individual may be negative, but in the long run, the average
payoff will be nonnegative. Negative payments can be utilized to “filter out”
individuals with high privacy costs; i.e., we design the mechanism such that
their expected payoff is negative if they report only noise. This saves the data
analyst’s payments on poor quality data and simplifies the data analysis. We
will see that we can actually drive the total cost to zero for the data analyst as
the population size becomes large.

We remark that one possible approach to implement negative payments is
to let the data analyst set up an online payment system using virtual currency
or credits. Instead of paying real money to an individual every time she reports
a data, virtual currency or credits can be added to or reduced from the user’s
account. An individual can be paid weekly or monthly with real dollars. Since
the expected payment is nonnegative, the real-dollar payment over a long time
period is nonnegative with a high probability. We remark that negative payments
may not be feasible in many scenarios. The focus of this paper is to reveal the
fundamental benefit of negative payments to the data analyst when feasible.

Main Results. With the above formulation, we are interested in the following
intriguing questions: (1) How will the individuals behave to reconcile the con-
flict between privacy and rewards? (2) How should the data analyst design the
mechanism such that she can achieve her learning goal cost-effectively?



Let X1, X2, . . . , XN denote the reported bits of the individuals. We model the
privacy cost of an individual as a function of her privacy loss, which is measured
by the level of (local) differential privacy [9,8] of her data reporting strategy. This
cost function of individual i is characterized by her type Ci: when individual i
reports data with a (local) differential privacy level of ε after observing her type
Ci = ci, her privacy loss is ε and the corresponding privacy cost is ciε. The type
of an individual is also called her cost coefficient due to this linear form. We
assume that the types are i.i.d. and an individual’s type is independent from her
private data, which is applicable to the scenario where an individual’s valuation
of privacy is intrinsic and thus is not affected by the specific private data she
has. The reported data and cost coefficients are also illustrated in Figure 1.
We remark that both the settings where an individual’s valuation of privacy is
independent (e.g., [14]) and correlated (e.g., [15]) with her private data have been
studied in the literature. We further assume that it is possible for individuals to
have valuations arbitrarily close to zero. In this paper, the prior distribution of
the state, signals and types is public information. However, neither the private
signals nor the types are known to the data analyst.

Our main result is centered around constructing a family of payment mecha-
nisms indexed by parameters, which provide answers to the proposed questions
from the following perspectives.
– Behavior of individuals with privacy concerns. We show that the in-

dividuals exhibit a threshold behavior in a Bayesian Nash equilibrium of the
proposed mechanism: the individuals with cost coefficients above a threshold
cth opt out, and the individuals with cost coefficients below cth participate and
report data with a privacy level no smaller than ε, where cth and ε are param-
eters of the mechanism. Since a larger privacy level means that the data is less
perturbed, the data analyst can incentivize the participants to limit the pertur-
bation to a desired extent by choosing an appropriate ε. It can be seen from this
result that this mechanism resolves the otherwise nuisance that individuals with
high privacy costs may participate and report only noise: they are “filtered out”,
and the “remaining” participants all report data with quality guarantee.
– Tradeoff between learning accuracy and cost. We show that as the

population size grows to infinity, the data analyst can learn the underlying state
with arbitrarily small overall probability of error, with the total expected pay-
ment at the Bayesian Nash equilibrium going to zero. That is to say, if the data
analyst can recruit a large number of individuals, she can choose appropriate
parameters to fulfill her learning goal and in the meanwhile drive her cost to
zero at a Bayesian Nash equilibrium. Since the total equilibrium expected pay-
ment of any mechanism is nonnegative due to individual rationality, this implies
that the designed mechanism with properly chosen parameters asymptotically
minimizes the cost for achieving any accuracy goal.

Related Work. Market approaches for collecting data from privacy-aware in-
dividuals have led to a fruitful line of work [16,13,20,26,14,35,3,24,15,5,29,32].
These papers except [5,29,32] adopt the centralized model for privacy. The sem-
inal work by Ghosh and Roth [16] and a line of subsequent work [13,20,26,14,24]



considered the setting where the private data is verifiable so the individuals
cannot misreport data, but they can strategically report their privacy costs. A
recent work [5] considered a model where a data analyst procures possibly noisy
estimates (data) from data providers. This can be thought of as a local privacy
model, but still the data is verifiable. The setting of the work [35,3,15,29,32] is
more similar to ours, where the individual have the option of misreporting data.
The work [35,3,15] considered the centralized privacy model, where revealing
data to the data analyst does not incur privacy costs. Then strategically report-
ing data can alter the individuals’ payments but does affect their privacy costs.
The work [29,32] considered the local privacy model but assumed the privacy
cost functions are known to the data analyst. Our work studies this problem in
a local privacy model, where neither the data nor the privacy cost functions are
known. The mechanism thus needs to deal with the uncertainty in both sources
and work with noisy reports.

The broader field of the interplay between differential privacy and mecha-
nism design, first studied by McSherry and Talwar [22], is surveyed in [25]. The
behavior of individuals with privacy concerns has been studied in [4], which
investigates the types of games in which strategic individuals truthfully follow
randomized response. The market approach for collecting private data also shares
some structural similarity with the problem of information elicitation (e.g., [23]),
especially the effort elicitation in the context of crowdsourcing (e.g., [6,34,2,21]),
where effort, instead of privacy concerns, affects the quality of the data and the
cost of the individuals.

The local model of differential privacy, which generalizes the randomized re-
sponse [33], has been studied in the literature [9,8,19,17,7,10,4,18,28,30,1,27].
The hypothesis testing formulation in our paper is similar to a setting in [18],
where the authors find an optimal locally differentially private privatization
mechanism that maximizes the statistical discrimination of the hypotheses. In
practice, Google’s Chrome web browser has implemented the RAPPOR mecha-
nism [11,12] to collect users’ data using a locally differentially private protocol.

2 Model

We study the setting in which the data analyst is interested in learning an
underlying state W , represented by a binary random variable. Consider a set
[N ] = {1, 2, . . . , N} of individuals. Each individual i possesses a binary signal
Si, which is her private data, and reports data Xi, which takes values in X =
{0, 1,⊥}, with ⊥ meaning “to opt out.” The data analyst announces a payment
mechanism R : XN → RN , which takes the reported data X = (X1, . . . , XN )
as input and produces R(X), where Ri(X) is the payment to individual i. The
model is illustrated in Figure 1. The payment mechanism induces a game among
the individuals. The elements of the game are as follows.

Players. The players in this game are the individuals, who are self-interested,
rational and risk-neutral. Following conventional game theory notation, we let
“−i” denote all the individuals other than some given individual i.



Prior distributions. The state W follows a probability distribution given
by the PMF PW . We assume that PW (1) > 0 and PW (0) > 0. The individuals’
signals S = (S1, S2, . . . , SN ) reflect their knowledge about the state W . Condi-
tional on the state W , the signals S1, S2, . . . , SN are independently generated
according to P(Si = w | W = w) = θ for w ∈ {0, 1}, where the parameter θ
with 0.5 < θ < 1 is called the quality of signals. We refer to these conditional
distributions as the signal structure of the model.

Types and strategies. An individual i’s type Ci, also called her cost coef-
ficient, characterizes her valuation of privacy. We will elaborate on the assump-
tions on the types when we introduce the payoff functions below. Roughly, an
individual with larger Ci experiences more privacy cost for the same privacy loss.
A data reporting strategy for individual i is a plan on what to report according to
her signal Si and her type Ci. Thus it is a mapping σi : {0, 1}×(0,+∞)→ D(X ),
where D(X ) is the set of probability distributions on X = {0, 1,⊥}, prescribing
a distribution to the reported data Xi for each possible value pair of Si and
Ci. Therefore, the strategy corresponds to the set of conditional distributions
of Xi given Si and Ci. Since we will discuss different strategies of individual i,
we denote these conditional probabilities by Pσi(Xi = xi | Si = si, Ci = ci) for
xi ∈ {0, 1,⊥}, si ∈ {0, 1}, and ci ∈ (0,+∞). Let σ = (σ1, σ2, . . . , σN ), which is
called a strategy profile. A strategy profile is said to be homogeneous if all the
strategies in the profile are the same.

Payoff functions. The payoff of each individual is the difference between
the payment she receives and her privacy cost. An individual experiences a cost
due to the privacy loss during data reporting. Recall that we model the privacy
cost of an individual as consisting of two components: privacy loss and a privacy
cost function, where the privacy loss depends on her data reporting strategy
and the privacy cost function represents her valuation of privacy. For an indi-
vidual i, conditional on her type Ci = ci, we measure individual i’s privacy loss
for reporting data with strategy σi by the privacy level defined as follows:

ζ(ci, σi) = max

{
ln

Pσi(Xi ∈ E |Si = si, Ci = ci)

Pσi(Xi ∈ E |Si = 1− si, Ci = ci)
: E ⊆{0, 1,⊥}, si∈{0, 1}

}
,

where we follow the convention that 0/0 = 1. This measure of privacy loss is in
the same vein as the local model of differential privacy [19,10], which views each
individual’s data as a database of size 1 and quantifies the privacy guarantee of
her local randomizer by the differential privacy level. The difference here is that
the strategy σi has another input Ci, since an individual can choose the way
of perturbing her data according to her cost coefficient. Our measure of privacy
loss is the differential privacy level of the strategy σi when Ci is given.

Then we model individual i’s cost incurred by this privacy loss as a linear
function with Ci as the coefficient, i.e., the cost can be written as g(Ci, σi) =
Ci · ζ(Ci, σi). We call g the privacy cost function.

We assume that the coefficients C1, C2, . . . , CN are i.i.d. positive random
variables with CDF FC , and they are independent of W and S. The randomness
of these coefficients captures the data analyst’s uncertainty of individuals’ val-
uations of privacy. The independence assumption is applicable to the scenario



where individuals’ valuations of privacy are intrinsic and thus are not affected
by the specific private data they have. For ease of exposition, we further assume
that FC is a continuous function and FC(c) > 0 for any c > 0, which means that
it is possible for individuals to have an arbitrarily low valuation of privacy. Sim-
ilar analysis can be carried out for other models for the types (but the resulting
accuracy–payment relation may be different).

Mechanism Design. The data analyst cannot force an individual to report
data with a specific strategy. However, the data analyst can design the payment
mechanism to impact individuals’ strategies to drive the individuals to act in a
desired way since the individuals are rational, i.e., they will choose the strategies
that benefit them most. We consider the Bayesian Nash equilibria in a payment
mechanism, viewing Ci as individual i’s type.

Definition 1. A strategy profile σ is a Bayesian Nash equilibrium of a payment
mechanism R if for any individual i, any ci > 0 and any strategy σ′i,

Eσ[Ri(X)− g(Ci, σi) | Ci = ci] ≥ E(σ′i,σ−i)
[Ri(X)− g(Ci, σ

′
i) | Ci = ci],

where the subscript σ and (σ′i, σ−i) indicate that the distribution of X is deter-
mined by the strategy profile σ and (σ′i, σ−i), respectively.

The data analyst is interested in learning the state W from the reported data
X, so she performs hypothesis testing between the two hypotheses H0 : W = 0
and H1 : W = 1. The learning accuracy is measured by the overall probability of
error, denoted by pe, which is PW (0) · (Type I error) + PW (1) · (Type II error).
An accuracy goal can be written as pe ≤ pmax

e for some pmax
e .

Then the data analyst aims to design a payment mechanism such that her
accuracy goal can be fulfilled at a Bayesian Nash equilibrium and the correspond-
ing total expected payment is minimized. It is easy to see that the equilibrium
total expected payment is nonnegative in any mechanism due to the nonneg-
ativity of privacy cost functions and individual rationality. In this mechanism
design problem, the joint distribution P of the state W , the signal S and the
cost coefficients, which can be represented by (PW , θ, FC), is common knowl-
edge. The data analyst announces the form of the payment mechanism and then
the individuals report data simultaneously. The reported data X is public. Each
individual i’s signal and type, Si and Ci, are not observable to other individuals
or the data analyst. No one has access to the state W .

3 Asymptotically Optimal Mechanisms

Theorem 1. To achieve any accuracy goal of the data analyst, the total expected
payment needed at an equilibrium is o(1). Specifically, there exists a sequence of
mechanisms, each of which is designed for a different population size N , such
that the accuracy goal can be fulfilled at a Bayesian Nash equilibrium of every
mechanism in the sequence, and the total expected payment goes to zero as the
population size N goes to infinity; i.e., this sequence of mechanisms is asymp-
totically optimal.



In the remainder of this section, we present the design of a family of pay-
ment mechanisms, parameterized by the population size N , the prior P, a cost
coefficient threshold parameter cth and a data quality parameter ε. The asymp-
totically optimal sequence of mechanisms in Theorem 1 is given by a sequence
of mechanisms within this family with properly chosen parameters. In particu-
lar, cth is a threshold on cost coefficients such that an individual is expected to
participate if her coefficient does not exceed the threshold; and ε is the target
quality which is the level noise expected in the reported data. The formula for
calculating cth and ε will be presented in Section 5. Theorem 1 is a high level
description of Theorem 3, which will be derived in the remainder of this paper.

Payment Mechanism R(N,P,cth,ε)

1. Each individual reports her data (which can also be “to opt out”).
2. Compute the number of participants n.
3. For non-participating individuals, the payment is zero.
4. If there is only one participant, the data analyst pays zero to this partici-

pant. Otherwise, for each participating individual i, compute the majority
of other participants’ reported data, denoted by M−i. Then the data ana-
lyst pays individual i according to Xi and M−i as follows:

R
(N,P,cth,ε)
i (X) = AXi,M−i

cth(eε + 1)2

2eε
+BM−i

(
cth(eε + 1)

eε
+ cthε

)
,

where A1,1, A0,1, A1,0, A0,0, B1, B0 are given below.

Next we define the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 used in the
mechanism R(N,P,cth,ε) through a series of calculations. In a nutshell, A1,1 and
A0,0 determine the reward part of the payment to an individual when her re-
ported data matches the majority of others; similarly, A0,1 and A1,0 determine
the penalty part of the payment to an individual when her reported data does
not match the majority of others. They incentivize the individuals to report
data that reveals certain amount of information about their private signals. The
coefficients B1 and B0 offset the payments for the cases that the majority of
others’ reports is 1 and 0, respectively, to discourage the individuals with cost
coefficients above threshold parameter cth from participating. We remark that
when an individual’s reported data does not match with the majority of others,
these coefficients make sure that the payment to this individual is negative.

The definition of the coefficients A1,1, A0,1, A1,0, A0,0, B1, B0 involves some
intermediate quantities, the physical meanings of which will be given after we
characterize a Bayesian Nash equilibrium of the mechanism in Section 4. Given
a cth ∈ (0,+∞) and ε ∈ (0,+∞), for each ci ∈ (0, cth), we consider the following
equation with variable ξ: cth(eε+1)2eξ = cie

ε(eξ+1)2. It can be proved that this
equation has a unique solution in (0,+∞). Let this solution define a function
ξ(ci). Specifically,

ξ(ci) = ln

(
1

1
2 −

√
1
4 −

ci
cth

eε

(eε+1)2

− 1

)
. (1)



Let

µ =

∫ cth

0

eξ(ci)

eξ(ci) + 1
dFC|Ci≤cth(ci), α = θµ+ (1− θ)(1− µ), (2)

where FC|Ci≤cth is the conditional distribution of Ci given Ci ≤ cth.
Given that the number of participants is n with n ≥ 2, we define the following

quantities. Consider a random variable that follows the binomial distribution
with parameters n− 1 and α. Let β(n) denote the probability that this random
variable is greater than or equal to bn−12 c + 1. For convenience, we define the
following quantity to deal with technical details:

γ(n) =

1−
(
n− 1
n−1
2

)
α
n−1
2 (1− α)

n−1
2 if n− 1 is even,

1 if n− 1 is odd.

Let P≥1 = 1− (1− FC(cth))N−1, where FC is the CDF of Ci. We define

A1,1 =
PW (1)θ(1− β(n)) + PW (0)(1− θ)(1− (γ(n) − β(n)))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))
,

A0,1 = −PW (1)(1− θ)(1− β(n)) + PW (0)θ(1− (γ(n) − β(n)))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))
,

A1,0 = −PW (1)θβ(n) + PW (0)(1− θ)(γ(n) − β(n))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))
,

A0,0 =
PW (1)(1− θ)β(n) + PW (0)θ(γ(n) − β(n))

P≥1PW (1)PW (0)(2θ − 1)(2β(n) − γ(n))
,

B1 = −PW (1)(1− β(n))− PW (0)(1− (γ(n) − β(n)))

2P≥1PW (1)PW (0)(2β(n) − γ(n))
,

B0 =
PW (1)β(n) − PW (0)(γ(n) − β(n))

2P≥1PW (1)PW (0)(2β(n) − γ(n))
.

4 Bayesian Nash Equilibrium

In this section, we first characterize the individuals’ behavior at a Bayesian Nash
equilibrium of the designed mechanism. The equilibrium behavior affects the
quality of the reported data and the payments. Then we leverage the properties of
the Bayesian Nash equilibrium to explain the physical meanings of the quantities
defined during the construction of the mechanism in Section 3.

Theorem 2. The mechanism R(N,P,cth,ε) yields a Bayesian Nash equilibrium
σ, in which each individual i’s strategy σi is described as follows:

– If ci > cth, Pσi(Xi = ⊥ | Si = si, Ci = ci) = 1 for any si ∈ {0, 1}; i.e.,
if individual i’s cost coefficient is larger than the parameter cth, individual i
declines to participate regardless of her signal.



– If ci ≤ cth,

Pσi(Xi = 1 | Si = 1, Ci = ci) = Pσi(Xi = 0 | Si = 0, Ci = ci) =
eξ(ci)

eξ(ci) + 1
,

Pσi(Xi = 0 | Si = 1, Ci = ci) = Pσi(Xi = 1 | Si = 0, Ci = ci) =
1

eξ(ci) + 1
,

where ξ(ci) is defined in (1); i.e., if individual i’s cost coefficient is no larger
than the parameter cth, individual i flips her signal with a probability depend-
ing on her cost coefficient to generate her reported data.

The following corollary describes the quality of the reported data and each
participant’s expected payment at the Bayesian Nash equilibrium in Theorem 2.

Corollary 1. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equi-
librium σ given in Theorem 2.

– For each participating individual i,

Pσi(Xi = 1 | Si = 1, i participates) = Pσi(Xi = 0 | Si = 0, i participates) = µ,

where µ is defined in (2) and µ ≥ eε

eε+1 .

– The expected payment to each participating individual i is bounded as

Eσ[R
(N,P,cth,ε)
i (X) | i participates] ≤ cth(1 + e−ε + ε).

The proofs of Theorem 2 and Corollary 1 are presented in the full version
[31]. Theorem 2 and Corollary 1 show how individuals with high privacy costs
are “filtered out” in the equilibrium by negative payments. In other words, they
will decide not to participate because the expected payment is negative, which
is a result of the possible negative payments in the proposed mechanism. The
“remaining” individuals, i.e., participants, all report data with quality guarantee.
The roles of the parameters cth and ε in the designed mechanism R(N,P,cth,ε)

are as follows: The parameter cth works as a threshold on the cost coefficients
for participation; The parameter ε gives a guarantee on the probability that a
participant’s reported data is the same as the signal, which measures the quality
of the reported data. We remark that in this equilibrium, each individual’s exact
cost coefficient is not revealed to other.

The physical meanings of the quantities ξ(ci), µ, α, β(n), γ(n) and P≥1 defined
during the construction of the mechanism in Section 3 can be well explained at
the Bayesian Nash equilibrium given in Theorem 2. The quantity ξ(ci) shows
up in Theorem 2, characterizing the strategy σi of individual i when ci ≤ cth.
It is the differential privacy level of σi given Ci = ci when ci ≤ cth. Now let us
condition on the event that individual i participates, which, by Theorem 2, is
equivalent to the event Ci ≤ cth. The quantity µ shows up in Corollary 1, and it
is the probability that individual i truthfully reports her signal, given whatever



the signal is. Then the quantity α is the probability that the reported data Xi is
consistent with the state W , given whatever the state is. Conditional on the event
that there are n− 1 participants among the individuals other than individual i,
where n ≥ 2, the quantities βn and 1− (γn − βn) are the probabilities that the
majority of these participants’ reported data agrees with the state, given that the
state is 1 and 0, respectively. Finally, the quantity P≥1 is the probability that at
least one individual among the individuals other than individual i participates.

5 Accuracy and Payment

In this section, we show that the data analyst can achieve any accuracy goal
in the Bayesian Nash equilibrium with proper choice of parameters N, cth and
ε. The cost of the data analyst, which is the total expected payment at the
equilibrium, goes to zero as the number of individuals goes to infinity. Since the
privacy cost of an individual is always nonnegative, the total expected payment
at an equilibrium of any mechanism is nonnegative due to individual rationality.
Therefore, the designed mechanism asymptotically minimizes the cost for the
data analyst to achieve any accuracy goal.

Recall that with the procured data X, the data analyst learns the state W
by performing hypothesis testing between the two hypotheses H0 : W = 0 and
H1 : W = 1. An accuracy goal can be written as pe ≤ pmax

e for some pmax
e ,

where pe is the overall probability of error for hypothesis testing. We consider
the maximum likelihood decision. The values for N, cth, ε are chosen using the
procedure below. The intuition is that we first fix the quality that the analyst
expects to obtain from each participant and the types of individuals the analyst
would like to collect data from, and then the accuracy goal can be met when the
population size is large enough to make sure that there are enough participants.

Parameter Selection Procedure. Pick any ε such that ε ∈ (0,+∞). Let

D(ε) =
1

2
ln

(eε + 1)2

4(θeε + 1− θ)((1− θ)eε + θ)
, ne(ε) =

− ln( 1
2p

max
e )

D(ε)
,

ρ(ε) =
1

ne(ε)pmax
e

+ 2 +

√
1

(ne(ε))2(pmax
e )2

+
2

ne(ε)pmax
e

.

Then pick any integer N such that N > ρ(ε)ne(ε). For the selected N , let
pth(N, ε) = ρ(ε)ne(ε)/N , which is roughly the participation percentage, and
then let cth(N, ε) = inf{c : FC(c) = pth(N, ε)}.

Recall that we assume FC to be a continuous function, so the set {c : FC(c) =
pth(N, ε)} is nonempty and thus cth(N, ε) ≥ 0 is finite. An example of this
parameter selection procedure (and the resulted upper bound on total expected
payment) can be found in the full version [31].

Theorem 3. For the mechanism R(N,P,cth,ε), consider the Bayesian Nash equi-
librium σ given in Theorem 2. Given an accuracy goal pe ≤ pmax

e , let (N, cth, ε)



be chosen according to the parameter selection procedure above and the data an-
alyst performs hypothesis testing using the maximum likelihood approach.

– The decision function ψ has the following form:

ψ(X) =

{
1 if

∑
i 1{Xi=1} ≥

∑
i 1{Xi=0},

0 otherwise;
(3)

– The overall probability of error, pe, meets the accuracy goal pe ≤ pmax
e ;

– The total expected payment is bounded as

Eσ

[
N∑
i=1

R
(N,P,cth,ε)
i (X)

]
≤ cth(ε,N)ρ(ε)ne(ε) · (1 + e−ε + ε). (4)

Since ρ(ε) and ne(ε) are constants for given ε, and cth(ε,N) goes to 0 as
N → ∞, this total expected payment goes to zero, with the accuracy goal
met, as N →∞.

The proof of Theorem 3 is presented in the full version [31]. Theorem 3
shows that choosing parameters according to the parameter selection procedure
for the designed family of mechanisms not only meets the accuracy goal of the
data analyst but is also cost-effective. The intuition is that as N becomes large,
the requirement on the participation percentage becomes lower, which allows
the mechanism to collect data from individuals with lower privacy costs and
thus drives down the data analyst’s cost. This suggests a way of constructing
the asymptotically optimal sequence in Theorem 1: Fix an ε ∈ (0,+∞), and
then choose a sequence of mechanisms, each of which is designed for a different
population size N and has parameter cth, both of which are chosen according to
the parameter selection procedure.

6 Conclusions

We considered incentive mechanisms for collecting private data from strategic,
privacy-aware individuals, whose valuations of privacy are unknown. The data
analyst is interested in learning an underlying state from the private data of
individuals with minimum overall payment. We considered a local model of data
privacy, where the data analyst is not necessarily trusted, and data subjects
are endowed with the ability to control their own privacy, which frees the data
analyst from the responsibility of privacy protection. We designed a family of
payment mechanisms for the data analyst, which utilize negative payments to
prevent individuals with high privacy valuations from reporting only noise and
cut down the cost of the data analyst. In each designed mechanism, the indi-
viduals exhibit a threshold behavior at a Bayesian Nash equilibrium: only those
with cost coefficients below some threshold participate, and they report data
with certain quality guarantee, where the threshold and the quality guarantee
are both parameters of the mechanism. With appropriate choices of parame-
ters, the data analyst can fulfill any accuracy goal with diminishing cost at the
equilibrium as the number of individuals grows to infinity.
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11. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: Randomized aggregatable
privacy-preserving ordinal response. In: Proc. ACM SIGSAC Conf. Computer and
Communication Security (CCS). pp. 1054–1067. Scottsdale, AZ (2014)

12. Fanti, G.C., Pihur, V., Erlingsson, Ú.: Building a RAPPOR with the unknown:
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