Map Task Scheduling in MapReduce with Data
Locality: Throughput and Heavy-Traffic Optimality

Weina Wang, Kai Zhu and Lei Ying
Electrical, Computer and Energy Engineering
Arizona State University
Tempe, Arizona 85287
{weina.wang, kzhul7, Lei.Ying.2} @asu.edu

Abstract—Scheduling map tasks to improve data locality is
crucial to the performance of MapReduce. Many works have
been devoted to increasing data locality for better efficiency.
However, to the best of our knowledge, fundamental limits of
MapReduce computing clusters with data locality, including the
capacity region and theoretical bounds on the delay performance,
have not been studied. In this paper, we address these problems
from a stochastic network perspective. Our focus is to strike
the right balance between data-locality and load-balancing to
simultaneously maximize throughput and minimize delay. We
present a new queueing architecture and propose a map task
scheduling algorithm constituted by the Join the Shortest Queue
policy together with the MaxWeight policy. We identify an
outer bound on the capacity region, and then prove that the
proposed algorithm stabilizes any arrival rate vector strictly
within this outer bound. It shows that the algorithm is throughput
optimal and the outer bound coincides with the actual capacity
region. Further, we study the number of backlogged tasks under
the proposed algorithm, which is directly related to the delay
performance based on Little’s law. We prove that the proposed
algorithm is heavy-traffic optimal, i.e., it asymptotically minimizes
the number of backlogged tasks as the arrival rate vector
approaches the boundary of the capacity region. Therefore, the
proposed algorithm is also delay optimal in the heavy-traffic
regime.

I. INTRODUCTION

Processing large-scale datasets has become an increasingly
important and challenging problem as the amount of data cre-
ated by online social networks, healthcare industry, scientific
research, etc., explodes. MapReduce/Hadoop [1, 2] is a simple
yet powerful framework for processing large-scale datasets in
a distributed and parallel fashion, and has been widely used
in practice, including Google, Yahoo!, Facebook, Amazon and
IBM.

A production MapReduce cluster may even consist of tens
of thousands of machines [3]. The stored data are typically
organized on distributed file systems (e.g., Google File System
(GFS) [4], Hadoop Distributed File System (HDFS) [5]), which
divide a large dataset into data chunks (e.g., 64 MB) and store
multiple replicas (by default 3) of each chunk on different
machines. A data processing request under the MapReduce
framework, called a job, consists of two types of tasks: map
and reduce. A map task reads one data chunk and processes
it to produce intermediate results (key-value pairs). Then

Jian Tan and Li Zhang
IBM T. J. Watson Research Center
Yorktown Heights, New York, 10598
{tanji, zhangli} @us.ibm.com

reduce tasks fetch the intermediate results and carry out further
computations to produce the final result. Map and reduce tasks
are assigned to the machines in the computing cluster by a
master node which keeps track of the status of these tasks
to manage the computation process. In assigning map tasks,
a critical consideration is to place map tasks on or close to
machines that store the input data chunks, a problem called
data locality.

For each task, we call a machine a local machine for
the task if the data chunk associated with the task is stored
locally, and we call this task a local task on the machine;
otherwise, the machine is called a remote machine for the task
and correspondingly this task is called a remote task on the
machine. The term locality is also used to refer to the fraction
of tasks that run on local machines. Improving locality can
reduce both the processing time of map tasks and the network
traffic load since fewer map tasks need to fetch data remotely.
However, assigning all tasks to local machines may lead to
an uneven distribution of tasks among machines, i.e., some
machines may be heavily congested while others may be idle.
Therefore, we need to strike the right balance between data-
locality and load-balancing in MapReduce.

In this paper, we call the algorithm that assigns map tasks to
machines a map-scheduling algorithm or simply a scheduling
algorithm. There have been several attempts to increase data
locality in MapReduce to improve the system efficiency. For
example, the currently used scheduling algorithms in Google’s
MapReduce and Hadoop take the location information of data
chunks into account and attempt to schedule a map task as close
as possible to the machine that has the data chunk [1, 6, 7].
A scheduling algorithm called delay scheduling, which delays
some tasks for a small amount of time to attain higher locality,
has been proposed in [7]. In addition to scheduling algorithms,
data replication algorithms such as Scarlett [3] and DARE [8]
have also been proposed.

While the data locality issue has received a lot of attention
and scheduling algorithms that improve data locality have been
proposed in the literature and implemented in practice, to the
best of our knowledge, none of the existing works have studied
the fundamental limits of MapReduce computing clusters with
data locality. Basic questions such as what is the capacity

region of a MapReduce computing cluster with data locality,
which scheduling algorithm can achieve the full capacity
region, how to minimize the waiting time and congestion in a
MapReduce computing cluster with data locality, remain open.

In this paper, we will address these basic questions from a
stochastic network perspective. Motivated by the observation
that a large portion of jobs are map-intensive, and many of
them only require map tasks [9], we focus on map scheduling
algorithms and assume reduce tasks are either not required or
not the bottleneck of the job processing. We assume that the
data have been divided into chunks, and each chunk has three
replicas stored on three different machines. The computing
cluster is modeled as a time-slotted system, in which jobs con-
sisting of a number of map tasks arrive at the beginning of each
time slot according to some stochastic process. Each map task
processes one data chunk and map tasks are nonpreemptive.
Within each time slot, a task is completed with probability «
at a local machine, or with probability v (7 < «) at a remote
machine, i.e., the service times are geometrically distributed
with different parameters. Based on this model, we establish
the following fundamental results:

« First, we present an outer bound on the capacity region of
a MapReduce computing cluster with data locality, where
the capacity region consists of all arrival vectors for which
there exists a scheduling algorithm that stabilizes the system
(stability region in [10]).

« We propose a new queueing architecture with one local
queue for each machine, storing local tasks associated with
the machine, and a common queue for all machines. Based
on this new queueing architecture, we propose a two-stage
map scheduling algorithm under which a newly arrived task
is routed to one of the three queues associated with the three
local machines or the common queue using the Join the
Shortest Queue (JSQ) policy; and when a machine is idle,
it selects a task from the local queue associated with it or
the common queue using the MaxWeight policy [10].

e We prove that the joint JSQ and MaxWeight scheduling
algorithm is throughput optimal, i.e., it can stabilize any
arrival rate vector strictly within the outer bound of the
capacity region, which also shows that the outer bound is
tight and is the same as the actual capacity region. We
remark that existing results on MaxWeight-based scheduling
algorithms assume deterministic processing (service) time
or geometrically distributed processing time with preemp-
tive tasks. To the best of our knowledge, the stability of
MaxWeight scheduling with random processing time and
nonpreemptive tasks has not been established before. So the
proof technique itself is a novel contribution of this paper,
and may be extended to prove the stability of MaxWeight
scheduling for other applications, in which the service times
are geometrically distributed. We remark that recently in
[11], the authors studied MaxWeight scheduling for resource
allocation in clouds and independently established a similar
result with more general service time distributions.

« In addition to throughput optimality, we further study the

number of backlogged tasks, which is directly related to
the delay performance based on Little’s law. We prove that
under a heavy local traffic condition, the joint JSQ and
MaxWeight scheduling algorithm is heavy-traffic optimal,
i.e., it asymptotically minimizes the number of backlogged
tasks as the arrival rate vector approaches the boundary
of the capacity region. Therefore, the proposed algorithm
strikes the right balance between data-locality and load-
balancing and is both throughput and delay optimal in the
heavy-traffic regime. The proof of heavy-traffic optimality
follows the Lyapunov drift analysis recently developed in
[12]. Heavy-traffic optimality of JSQ only and MaxWeight
only have been proved in [12]. In [13], the result has
been extended to a joint JSQ and MaxWeight algorithm
(in a different context) when servers are homogeneous. In
this paper, the machines are heterogeneous due to data
locality. The proof of heavy-traffic optimality is a non-trivial
application of the drift-based analysis.

II. SYSTEM MODEL

We consider a discrete-time model for a computing cluster
with M machines, indexed 1,2, --- , M. Jobs come in stochas-
tically and when a job comes in, it brings a random number
of map tasks, which need to be served by the machines. We
assume that each data chunk is replicated and placed at three
different machines. Therefore, each task is associated with
three local machines. It takes longer time for a machine to
process a task if the required data chunk is not stored locally
since the machine needs to retrieve the data first. Tasks can
be classified according to the local machines they associate
with. For each task, we assemble the indices of its three local
machines in an increasing order into a vector

EE {(ml,mg,mg) S {1,2,-~- 7]\4}3,777/1 < mgy <m3},

which forms the type of the task. The notation m € L indicates
that machine m is a local machine for type L tasks. Let £
denote the set of the existing types in the cluster and N = |L].

A. Arrival and Service

Let Az(t) denote the number of type L tasks arriving
at the beginning of time slot {. We assume that the arrival
process is temporally i.i.d. with arrival rate A;. We further
assume the arrival processes are bounded. At each machine,
the service times of tasks follow geometric distributions. The
parameter of the geometric distribution is « for a task at a local
machine, and «y at a remote machine. The service process of
a task can be viewed as a sequence of independent trials with
success probability « or «, and the sequence stops once we
get a success, i.e., once the task is finished. In this model,
we assume the parameters satisfy a > . Then the average
service time of local tasks is less than that of remote tasks;
i.e., 1/a < 1/v. Note that « and ~ characterize the different
processing efficiency due to data locality.

B. Task Scheduling Algorithm

The task scheduling problem is to assign incoming tasks
to the machines. Due to data locality, the task scheduling
algorithm can significantly affect the efficiency of the sys-
tem. In this paper, we consider a task scheduling algorithm
consisting of two parts: routing and scheduling. We present
a new queue architecture as illustrated in Fig. 1. The master
node maintains a queue for each machine m for local tasks,
denoted by @, and called the local queue; and there is a
common queue for all machines, denoted by @) (or sometimes
Qnrr+1), and called the common remote queue. We use a queue
length vector Q(t) = (Q1(t),- -+, Qa(t), Q(t)) to denote the
queue lengths at the beginning of time slot {. When a task
comes in, the master node routes the task to some queue in the
queueing system. When a machine is idle, it picks a task from
the corresponding local queue or the common remote queue
to serve. These two steps are illustrated in Fig. 1. We call
the first step routing, and with a slight abuse of terminology
we call the second step scheduling. It should be clear from
the context that whether we are referring to the whole task
scheduling problem or to this service scheduling step. Based on
our queue architecture, we propose the following joint routing
and scheduling algorithm.

« Join the Shortest Queue (JSQ) Routing. When a task
comes in, the master node compares the queue lengths of
its three local queues and the common remote queue, and
then routes the task to the shortest one. Ties are broken

randomly. Let Ay (t) and Ay (t) denote the arrivals of

type L tasks allocated to Q. and Q, respectively. Then the
arrivals allocated to each queue can be expressed by the
arrival vector A(t) = (Ay(t), -, Ap(t), A(t)), defined as

Am(t) = Ef: mef Af,m(t)’ m = 172, te ,M
Alt) =S Ap ().

o MaxWeight Scheduling. If machine m just finished a task
at time slot ¢t — 1, then its working status is idle. Otherwise,
the machine must be working on some local or remote task.
Let f,,(t) = 0,1, 2 denote idle, working on a local task, and
working on a remote task, respectively. The working status
vector f(t) = (f1(t), fa(t), -+, fm(t)) and queue length
vector Q(t) are reported to the master at the beginning of
time slot ¢, and the master makes scheduling decisions for all
the machines based on f(¢) and Q(t). The idle machines are
scheduled according to the MaxWeight algorithm: suppose
machine m is idle at time slot ¢, then it serves a local task
if aQ,,(t) > vQ(t) and a remote task otherwise. Other
machines continue to serve the unfinished tasks, i.e., the
execution of tasks is non-preemptive. Let o, (t) denote the
scheduling decision of machine m at time slot ¢, then it is
a function of Q(t) and f,,(t), and

om(t) = {;

if a local task is to be served,
if a remote task is to be served.

routingheduling

(¥ N\
} 1
> schedule local
\ wjal
|
|
Type L | Q
yp! Ly 2 /
. schedule remote

join remote

|
|
|
|
|
|
|
|
|
|
|
|
\ Qum
_—D
IcPcaI queue
Machines
commdn remote queue
7

Fig. 1: The Queue Architecture and Scheduling Algorithm

Note that o, (t) indicates which queue machine m is sched-
uled to serve. It can only take value 1 or 2 since the machine
is scheduled to serve either a local task or a remote task. If
machine m is not idle, i.e., f,,(t) = 1 or 2, the schedule
om(t) equals to f,,(t) by our settings. However if machine
m is idle, i.e., f, (t) = 0, o, () is still either 1 or 2, decided
by the master according to the MaxWeight algorithm. We
use the schedule vector o(t) = (o1(¢),02(t), - ,on(t)) to
denote the scheduling decisions of all the machines.

Here we note that each queue in this architecture can actually
be divided into multiple subqueues according to the job that
the task comes from, i.e., per job subqueues. Then in the
scheduling step, an idle machine can further pick a subqueue
to serve for the fairness purpose. However, this change will not
affect our analysis throughout this paper, so we only consider
this structure in the simulation part.

C. Queue Dynamics

In time slot ¢, first the master checks the working status
information f(¢) and the queue length @Q(t). Then the tasks
arrive at the master and the master does the routing and the
scheduling, yielding A(t) and o(t). Define

W) = o, W, (5) =0 i o(t) = 1,
:“lm(t) =0, :U“:n(t) =7 ifo,(t) =2

The service from machine m to local queue @),, and re-
mote queue () are two Bernoulli random variables S! () ~
Bern (p!, (t)) and Sy, (¢) ~ Bern (ul,(t)). Hence the service
applied to each queue can be expressed by the service vector
S(t) = (sﬁ (t), -, S, (6), oM, s;(t)), which is the ser-
vice process we introduced in Section II-A with service rate a
or . Then the queue lengths satisfy the following equations.

o Local queues. For any m =1,2,--- | M,

Qm (t + 1) = Qm(t) + Am(t) - an(t) +Unm (t),

where

B 0 if Qm(t) + Am(t) >1
Um(t) = {an(t) if Qm(t) + Am(t) =0.

+ The Remote queue.
Qt+1) = Q) +A(t) = Yy S () + T(®),

where

U(t) = ey Si(t) = X meace) Sin(t)

and A(t) is the set of machines which actually have some
tasks to serve from the remote queue at time slot ¢. Note
that there can be some machines which attempt to serve the
remote queue but fail due to insufficient tasks.

By our notations, the queue dynamics can thus be written as
Qlt+1)=Q1) + A(t) - S{t) +U(?), (D)

where U(t) = (Ui (t), -+ ,Un(t),U(t)) is the unused service.

In the case that the service time is deterministic, the queue-
ing process {Q(¢),t > 0} itself is a Markov chain. However,
the service time in our model is random and heterogeneous
due to data locality. Thus we need to also consider the
working status vector f(t), and Q(t) together with f(¢) forms
a Markov chain {(Q(t), f(t)),t > 0}. We assume the initial
state is (Q(0), £(0)) = (O(ar+1)x1,0asx1) and the state space
S C NM+1x10,1,2}M consists of all the states which can be
reached from the initial state, where N is the set of nonnegative
integers. Then this Markov chain is irreducible and aperiodic.

III. THROUGHPUT OPTIMALITY

In this section, we first identify an outer bound of the
capacity region of the system. We then prove that the proposed
task scheduling algorithm stabilizes any arrival rate vector
strictly within this outer bound, which means that the proposed
algorithm is throughput optimal, and the capacity region coin-
cides with the outer bound.

A. Capacity Region

For any task type L € £, we assume that the number of

type L arrivals allocated to machine m has a rate Ay, then
y ;

A = > m=1 AL The set of rates {)‘E,m.}ie,c,m:lf--,M
will be called a decomposition of the arrival rate vector
?\ = (>‘El»>‘E2v e vAﬁN) in the rest of this paper, and Fhe
index range may be omitted for conciseness. For any machine
m, a necessary condition for an arrival rate vector A\ to be
supportable is that the average arrivals allocated to machine m
in one time slot can be served within one time slot, i.e.,

Ar Ar
Dot > sl @

L:meL L: mél_:

where the left hand side is the time machine m needs to serve
the arrivals allocated to it in one time slot on average, since
the service rate is « for local tasks and + for remote tasks.

Let A be the set of arrival rates such that each element has
a decomposition satisfying (2). Formally,

A= {)\: (/\El,)\ig,"' ,)\EN):
M

Ap = Mg VLEL, 3
m=1
Apm 20, VLEL Ym=1,--- M
A7 P
L.m m
’ < —1,- MV
azﬁ a +AZA <1, VYm=1, 7M}
L: meL L2M¢L

Then A gives an outer bound of the capacity region.

B. Achievability

Theorem 1 (Throughput Optimality). The proposed map-
scheduling algorithm stabilizes any arrival rate vector strictly
within A. Hence, this algorithm is throughput optimal, and A
is the capacity region of the system.

We give the outline of the proof below due to space limit,
and refer to our technical report [14] for the complete proof.
Proof Outline: Since {(Q(t), f(t)),t >0} is an irre-
ducible and aperiodic Markov chain, the stability is defined
to be the positive recurrence of this Markov chain. By the
extension of the Foster-Lyapunov theorem, it is sufficient to
find a positive integer 1" and a Lyapunov function whose T'
time slot Lyapunov drift is bounded within a finite subset of
the state space and negative outside this subset.
Step 1. Consider the Lyapunov function

W (Q(0), /(1) = [QUIP = Yy Q4 (1) +Q ().
The Lyapunov drift from time slot ¢y to to + 1 is bounded by
THQ, AW = S(1) | Qlto). f(to)] +const. 4)

Step 2. Consider an arrival process with arrival rate vector
A=(Ag, -, Ap,) € A° and define A = (A, -, Aarq1) as

21[-3[

S\m:ZE:mEE)\Em’ m:172’”. 7M7

3 M
)‘M+1 = Zm:l ZI_: mﬁ[_:)\E,m

Then we can write the expectation in bound (4) as
B[S0 QM) A = S(1) | QUto), f(to)]
= E[Z,((QW), A®) = Q1. 0) | Qlto). ft0)])

+E[X,(1Q(1).) — (@), 5(1) | Qlto), (k)] ©)

Step 3. The arrival part (5) under the JSQ routing is bounded
by Lemma 8 in our technical report [14] as,

B[S, ((Q(1), A1) = (Q(1), V) | Q(to), f(to)] < 0.

Step 4. To bound the service part (6), we start with the
following random variables

th min{T:thOmen(T):O}?m:172a"'7M7

m

t* = @)

max t’ .
1<m<M m

Thus ¢}, is the first time slot after ¢y at which machine m is
idle and makes a scheduling decision, and t* is the first time
slot by which every machine has been idle for at least once
since ty. We use t* to decompose the probability space. Let
T = JK, then

B[S, (@), %) — (Q1), (1)) | Qeto). £(t0)]
—E|5 ((Q(0), X — (@), 5(1)) | Qo). f(te), ()
2t + K| Pr(t > to+ K | Qlto), f(to)

+E[3, (1), X — (Q(1), 5®)) | Qto), f(to), ©)
< to+ K| Pr(tt <to+ K | Qlto), f(t)).
Step 4a. For term (8), by boundedness of arrival and service,

B[S, (1@, N - (@(1), S(1)) | Q(to), £
< TMQ@x(to) + const,

to),t* > to+ K

where Q) = Z%Zl Q. + Q denote the queue length sum.
Step 4b. For term (9), we further condition on t*. For the
summation from ¢ = tq to t*, under the condition t* < tg+ K,

Sl E[QE,N) — (Q(), S(0) | ,Q(to), f(ts)
< KMQx(to) + const.

For the summation from ¢ = t* + 1 to tg + T — 1, first since
X € A°, there exists € > 0 and a decomposition {)\ 7.m} such

that
L “Lm L “Lm
. 10
PO Zﬁ =
L:mel L:
Thus
Qm(t>ZE;meE)‘Em ()ZL mgE Am
1
Next consider the random variable 7, defined as
t o =max{r: 7 <t, fu(r) =0}, m=1,2,--- /M, (11)

which is the last time slot before ¢ at which machine m is
idle and is scheduled to some queue based on the MaxWeight
algorithm. Thus for each ¢ such that t* < t <ty + T, we have
to < 7t, <to+ T. By the MaxWeight algorithm,

Qu(TI)E [S1,(1) | om(78)] + Qri)E [S7,(1) | om(7,)]
{an< 1) i ou(h) = L ke if aQu(rh) = 1Q(7,)

YQ(rt) if o (7h) = 2, ie., if aQn(7L) < YQ(TL)
> max {aQum (4,),7Q(7h) } -

Then utilizing conditional expectations and the bounded dif-
ference between any two of Q(7},), Q(t) and Q(to), yields

t*, Q(to), f(to)

to+T

A E QN — (@), S(1)
~ (J-1KeayM
(I1+e)(vM + a)

Qx(to) + const.

Combining the two summations gives

E[S, (@),) - (Q(1), 51))) | Q(to), (
(J = Deary

A+ (M + a)) Qx(to) + const.

Step 4c. We show that Pr (t* > to + K | Q(to), f(to)) — 0
as K — oo in Lemma 10 of our technical report [14]. Choose
large enough K and J, i.e., large enough 7', then for some
0 >0,

to), t* <tp+ K

<KM(1—

E[S (1),) - (@), S

< —0Qx(to) + const.

1)) | Qto), f(to)]

Step 5. The T time slot Lyapunov drift from ¢ is thus bounded
as D (Q(to), f(to)) < —20Qx(tg) + B for a constant B > 0.
Step 6. Let B={(Q, f) €S: Q1+ -+ + Qu1 < 2} for
an arbitrary 6 > 0. Then B is a finite subset of S satlsfymg that
for any (Q, f) € B¢, D(Q, f) < —¢ and for any (Q, f) € B,
D(Q, f) < B. This finishes the proof for stability. Thus the
proposed task scheduling algorithm is throughput optimal, and
A is the capacity region of the system. []

IV. HEAVY-TRAFFIC OPTIMALITY

In this section, we analyze the performance of the proposed
algorithm beyond throughput. We will show that in the heavy-
traffic regime, the proposed algorithm asymptotically mini-
mizes the number of backlogged tasks.

Suppose the set of existing task types L is such that there are
M; machines, each of which is considered as a local machine
by some task type, and the other M, = M — M; machines are
remote machines for all the task types. Denote the set of the
machines which can have local tasks as M, and the set of the
machines which only have remote tasks as M,.. Then

= {m€{1,2,~~~ , M} L e L, st mEE},
MT:{172a"' 7M}_Mla

and |M;| = M, |M,| = M,. Without loss of generality, we
assume M; = {1,--- ,M;} and M, = {M; +1,--- ,M}.

We consider the heavy-traffic regime that the arrival rates
satisfy that for any subset H of M, the sum arrival rate of local
tasks to the machines in H is larger than the process capacity
of the machines. Formally, let A = ()\El, e ,)\EN) € A° be
the arrival rate vector, then we assume for any ‘H C M,

>

L: ImeH, s.t. mel

Ar 2 [Ha, 12)

which is referred to as the heavy local traffic assumption. In
this regime, the machines in M, cannot accommodate the local
arrivals, so we assume M, > 0 to stabilize the system.

Now if X is in the capacity region, it is easy to see that
Zkﬁ Ap < Mo+ M,~y. We assume that

ZEELAE = Mia+ M,~v —e,

where € > 0 characterizes the distance between the arrival rate
vector and the capacity boundary. The superscript () is used in

13)

——>] ()

n(t) (1) A1)

Arrival Queue length Service

Fig. 2: Lower-Bounding System

this section to indicate the heavy-traffic parameter €. Consider
any arrival processes {A(Lf) (t),t > 0} z_, with arrival rate

vector A(9) = ()\(f), A9 L a\E) satisfying (13). Then
L, In

E{ZEA;E)(@} =Y A = Mo+ My —e.

The variance of the number of overall arrivals is given by

Var(z LAY (t)) = (0(9)2.

Denote the queueing and the working status process with such
arrival processes as { (Q()(t), f()(t)) ,t > 0}. Later we will
let € go to zero to get the heavy-traffic limit.

A. Lower Bound

In this subsection, we derive a lower bound on the expecta-
tion of the sum of the queue lengths in steady state. Consider
a single server queueing system as depicted in Fig. 2. By
properly choosing the arrival and the service process, the queue
length in this system is stochastically smaller than the sum
of the queue lengths in MapReduce. We refer to this single
server system as the lowering bounding system and the task
scheduling system in MapReduce as the original system. A
lower bound on the expectation of the queue length in steady
state in this system is obtained in [12], which is also a lower
bound for the original system. Note that this lower bound does
not need the heavy local traffic assumption.

Consider the following arrival process {17(6) (t)
service process {((t),¢ > 0}:

n(e)(t) _ ZE A(Lf) (t) () ZMl X, (ZMr Y

where all the processes {X;(t),t >0},i = 1,---,M; and
{Y;(t),t >0},5 = 1,---,M, are independent and each
process is composed of a sequence of i.i.d. random variables.
Let X;(t) ~ Bern(a) and Y;(t) ~ Bern(y). Then E [3(t)] =
M« + M,~, and we use 2 to denote Var (3(t)).

By these settings, the queue length ®(¢)(¢) in the lower-
bounding system is stochastically smaller than the sum of
the queue lengths in the original system for any time slot
t. Considering the lower bound on E[®(°)(¢)] in steady state
given by Lemma 4 in [12], we obtain the following theorem.

,t >0} and

Theorem 2 (Lower Bound). For the map task scheduling
system in MapReduce, consider any arrival process such that
the number of total arrivals at each time slot has expectation
Mo + MTV ¢ and variance (0(9)2. Suppose the Markov
chain {(Q(), fO1),t > 0} is in steady state under the
proposed map- schedulzng algorithm. Then, for any t and any

€ such that 0 < € < My + M,~, the expectation of the sum
of the queue lengths in steady state can be lower-bounded as

M+1 ()2 2 2
. o +v°+e M
E QL) (75)‘| > % R (14)
m=1 €

Therefore, in the heavy-traffic limit as the arrival rate ap-
proaches the service rate from below, assuming the variance
(02 converges to a constant o2, the lower bound becomes

M+1) 0_2 + V2
li f e N . 15
irgén € mZ:l Q > 5 (15)

B. State Space Collapse

For a single server queueing system like the one in Fig. 2,
the discrete-time Kingman’s bound [15] gives an upper bound
on the expectation of the queue length in steady state, which
is derived by studying the drift of an appropriate Lyapunov
function in steady state. The task scheduling system in MapRe-
duce is a more complicated queueing system, which consists of
multiple queues and thus has a multi-dimensional state space.
However, in the heavy-traffic scenario, we will show that the
multi-dimensional state description of the system reduces to
a single dimension in the sense that the deviation from a
particular direction has bounded moments, independent of the
heavy-traffic parameter. This behavior of the queueing system
in heavy-traffic scenario is called state space collapse. When
the state space collapse happens, the system can be analyzed
by the similar techniques as used for the single-dimensional
system. In this subsection, we will establish the state space
collapse for the task scheduling system in MapReduce.

In our model, {(Q(t), f((t)),t >0} is an irreducible,
aperiodic, positive recurrent Markov chain with state space S.
Since the working status vector f is always finite, we only
consider the subspace for the queue lengths. Let ¢ € R/ 1
be a vector with unit l; norm, then the corresponding parallel
and perpendicular components of a queue length vector) are

Q= (Q,c)e, QL=Q—-Qy.

Throughout this paper, the norm || || refers to I norm. If all the

length vector from the direction ¢, are bounded by constants
not depending on the heavy-traffic parameter e, we will say
that the state space collapses to the direction of c.

,0,1)

Let
1
_—(1,--+,1,0,---
M+ 1 ~——"——
M, M,

(16)

be the direction that we will prove the state space collapses
to, where the first M entries are ones and the following M,
entries are zeros. Consider the Lyapunov function

Vi (@, 1) = [1QLIl

We can prove that the drift of V| satisfies the conditions in
Lemma 1 of [12] (see [16] for the derivation of this lemma).
Then by this lemma, V. ((Q(¢), f()(¢)) has bounded mo-
ments in steady state, which gives the following theorem.

Theorem 3 (State Space Collapse). For the map-scheduling
system in MapReduce, consider any arrival process with an
arrival rate vector strictly within the capacity region sat-
isfying the heavy local traffic assumption, and the number
of total arrivals at each time slot has expectation Mo +
M,~ — € and variance (0(6))2. Suppose the Markov chain
{(Q(E) (t), fO) ,t > 0} is in steady state under the pro-
posed map-scheduling algorithm. Then for any t and any €
such that

0<e< min{Mla + My, M, (M; + 1),

(Ml + 1) o (Ml + 1) miniec)\E

2N 6 ’
there exists a sequence of finite numbers {C1,Cso,- -} such
that for each positive integer r,

E[IQY I < ¢,

where the 1 component is w.r.t. the direction defined in (16).

The proof of this theorem is omitted here due to space limit,
and available in our technical report [14].

C. Upper Bound and Heavy-Traffic Optimality

In this subsection, we derive an upper bound on the expecta-
tion of the sum of the queue lengths in steady state based on the
Lyapunov drift-based moment bounding techniques developed
in [12], and we show that this upper bound is asymptotically
tight under the heavy-traffic regime. The heavy-traffic optimal-
ity of joint JSQ and MaxWeight algorithm with homogeneous
servers has been established in [13] (in a different context).
Due to data locality, our system has heterogeneous servers,
which makes the problem more challenging.

We have established the state space collapse for the task
scheduling system in MapReduce under the proposed algo-
rithm, so the queue length vector in steady state concentrates
along a single direction. Enlightened by the way how the queue
length in the single server queueing system is bounded, we treat
the multi-dimensional state space in our problem as a one-
dimensional state space along the collapse direction and then
set the drift of the Lyapunov function W) ((Q, f)) = ||Q)|* to
zero in steady state to obtain an upper bound for the expected
queue length along this direction.

Due to the different service rates in our system, the
terms related to service in the Lyapunov drift cannot be
bounded directly. We consider the ideal service process
{S'(t) = (S{(t),--,)1 (t)) .t =0}, which makes the
best use of every machine and is defined as

XL (1) if me M,
S, (t) =120 if m e M,
Yomen, Xm(t) ifm=M+1

where all the processes {X! (t),t>0},m € M; and
{X"(t),t >0},m € M, are independent and each process
is composed of a sequence of ii.d. random variables. Let

X! (t) ~ Bern(a) and X7, (t) ~ Bern(y). Utilizing this
service process, the queue dynamics (1) can be rewritten as

Q(t+1) =Q(t) + A(t) - §'(t) + U'(1), (17)

where U'(t) = S’(t) — S(t) + U(t). Since the moments
of S'(t) are easy to calculate, we will use this equivalent
queue dynamics to express the Lyapunov drift. Then setting
the Lyapunov drift to zero gives the following lemma.

Lemma 1. For the map task scheduling system in MapReduce,
consider any arrival process with an arrival rate vector strictly
within the capacity region. Suppose the queueing process is in
steady state at time slot t under the proposed map-scheduling
algorithm, then for any direction c,

2E [(c, Q(t)) (e, S'(t) — A(t))]
=E [(c, A(t) = S'(1))*] + E [{c,U'(t))?]
+2E (¢, Q(t) + A(t) — S"(t)){(c, U'(1))] -

The formal proof of this lemma is provided in our technical
report [14]. Analyzing each term in this lemma gives the
following upper bound, which is asymptotically tight under
the heavy-traffic limit. A more detailed proof of the following
theorem is also available in our technical report [14].

(18)
19)

Theorem 4 (Upper Bound). For the map-scheduling system in
MapReduce, consider any arrival process with an arrival rate
vector strictly within the capacity region satisfying the heavy
local traffic assumption, and the number of total arrivals at
each time slot has expectation My« + M,~v — € and variance
(c(9)2. Suppose the Markov chain {(Q'°(t), f©)(t)) ,t > 0}
is in steady state under the proposed map-scheduling algo-
rithm. Then for any t and any € such that

0<e< min{Mloz + My, M, (M; + 1),
(20)

2N 7 6
the expectation of the sum of the queue lengths in steady state
can be upper bounded as

M+1 (e))2 + 1/2
E @] < (07 B(© 21
Lz_jl Q5 ()1 < +BY.an

(MZ + 1)a (Ml +1)Hlinz€£>\i}

where B(€) = o(l), ie, lim eB®© = (.
. ¢ 6*>0+ . . .

Therefore, in the heavy-traffic limit as the arrival rate

approaches the service rate from below, assuming the variance

(U(e))2 converges to a constant o> the upper bound becomes

Nt o2 + 12
lim sup €E Z QUM | < . (22)
e—0t m—1 2

This upper bound under heavy-traffic limit coincides with the
lower bound (15), which establishes the first moment heavy-
traffic optimality of the proposed algorithm.

Proof: Fix an e that satisfies (20) and then we temporarily
omit the superscript () for simplicity. Since we will study the

performance in steady state, we assume that the Markov chain
{(Q(t), f(t)),t > 0} is in steady state from time slot 0 and
consider the equation in Lemma 1 for any ¢ > 0 with the
collapse direction ¢ defined in (16).

First, by the definition of S’(¢) and the property of steady
state, the term on the left side of (18) satisfies

El(e,Q0)e.5'() - A®)] = 37 57E [0k Qu®)].

Next, we study the two terms on the right side in (18). Recall
the definition of v2 in the lower-bounding system. Then

E [(c, A(t) — S'(t))?] = ﬁ ((()2 4 12 +e2).

For the other term E [(c, U’ (t))?], since Q(t) is in steady state,
E[(c, A(t) = S'(t) + U'(t)] =E[{c, Q(t + 1) — Q(t))] = 0.
Therefore

E (e, U'(2))]

€
M; +1

) eM
E [(c,U'(1))?] < /TS E[{c,U'(t)] = M1

Finally we bound the term (19). To bound the expectation
of (¢, Q(t)){c,U’(t)), we write it as

(e, QW) e, U'(1)) = (Q(1), U'(1)) — (QL(£), U'L(t))
= (Q(t),S'(t) = S(1) +(Q(1), U(1)) — (QL(1), UL(1))-

In the case that the service time is deterministic, Q(¢) and
U’(t) are orthogonal, so we can directly apply the state space
collapse result to bound (Q ; (t), U’ (t)). However, the service
time in our model is random. To bound (Q(t),U’(t)) with a
small number, we start from the following inequality,

E[(Q(t), S'(t) = S(t)] < Riv/ My + 1E [(¢, §'(t) = S(1)],

where R; > 0 is a constant. We sketch the proof of this
inequality as follows and refer to Lemma 17 in our technical
report [14] for details. First we expand the inner product and
see that it is sufficient to show that for any m € M,

E [Qum(t) (X7, (t) = S5, (1)) + Q(t) (=57, (1))]
<RE[X V(1) — Sk (t t)] .

Then we use (Q(¢), f(t)) to decompose the probability space.
For the case f,,(t) = 0, machine m makes a scheduling
decision at the current time slot, so the inequality follows
from the MaxWeight policy. The proof for the case f,,(t) =1
is straightforward since the actual service has the same dis-
tribution as the ideal service. For the case f,,(t) = 2, we
still consider 7/, defined in (11). Decomposing the probability
space further by the random variable 7%, and utilizing the
MaxWeight policy and the boundedness of arrival and service

yield
E[Qun(t) (X1u(t) = S1,(8) + Q1) (=S7, (1))
[mh = £ = 1.Q(t) = QuF(1) = f| < 1 (N A + M7) .

=E[{c,5'(t) - A(1))] =

By the geometric distribution of the service time, the proba-
bility Pr (7}, =t —n | Q(t) = Q, f(t) = f) is proportional to
(1—~)"~. Thus the conditional expectation over the subspace
fm(t) = 2 is bounded by a constant times » -, n(1—~)""1,
which is also bounded by a constant, and then the inequality
follows for proper coefficient R;. Integrating these three cases
gives the inequality we want to prove. This inequality indicates
that the MaxWeight algorithm results in a small difference
between the actual service S(t) and the ideal service S’(t) in
the sense that the queue length vector Q(t) has finite projection
in the direction S’(t) — S(¢) on average. Now by definitions,

(Q),U)) =Q)U(t) < MU(t) < M/ M, + 1{c,U(t
Let Ry = max {Ry, M} > 0, then
E[(Q(),S'(t) — S(1) +(Q(1), U(®))]

< Ro/ My + 1E [(e, S'(t) — S(t)) + (¢, U(1))]
= Ro/M, + 1E (¢, U'(t))] = €Ro.

To bound the term —(Q (¢), U’ (¢)), we use the state space
collapse theorem, which claims that there exists a constant
Cy such that E [[[Q1(t)]|?] < Cs. Then using the Cauchy-
Schwartz inequality and this bound yields,

E[~(Qu(t).UL®)] < EIQL(t H
< VGE[|U(¢)

[||U' ®)117]
< \/ECQ

Meanwhile, the number of arrivals in each time slot is bounded.
Thus the term (19) can be bounded as

E[{c, Q(t) + A(t) — S'(£)){c, U'(1))]
€ (R2 + NAmax) + v/ eCoM

M;+1

We revive the superscript () now. Combining the inequalities
for the terms in the equation in Lemma 1 yields

M+1 €))2 2
[Z Q) (1) 1 L@+))2 VB0,
€

where

M CoM
5T 5+ (Mi+ 1) Rob N+ (M + 1)/ =
Obviously lim,_,o+ €eB(®) = 0, thus B(®) = 0() Then the
bound (22) for the heavy-traffic limit follows immediately by
taking limits on both sides. []

B —

V. SIMULATIONS

In this section, we use simulations to compare the throughput
and delay performance of the proposed algorithm with the
naive fair sharing algorithm proposed in [7]. The naive fair
sharing shows a great performance improvement over the
Hadoop’s FIFO scheduler according to the evaluation in [7].
The related simulation parameters are from mimicking real
workload analyzed in [17].

1500 1000

-©-JSQ with MaxWeight|
-A-Naive Fair Sharing

@
=]
=]

1000

-©-JSQ with MaxWeight|
-A-Naive Fair Sharing

@
=]
S

o

=3

S
IN
o
=]

IN]
o
S

Number of Concurrent Jobs

Average # of Concurrent Jobs

0 2 4 8 10 O0 200 400 600 800
Time Slot x10° Total Arrival Rate A,

(a) Total Arrival Rate As; = 390 (b) Throughput Region

Fig. 3: Throughput Performance

IN)
a
S

5000

n
=3
S

4000

-©-JSQ with MaxWeight|
-A-Naive Fair Sharing

-©-JSQ with MaxWeight|
-A-Naive Fair Sharing

a
t=]

o
S

Average Job Delay
Average Task Delay
N w
o o
o o
o o

33
=]

1000

0 0 —B-e-6-0-45
0 200 400 600 800 0 200 400 600 800
Total Arrival Rate 7‘): Total Arrival Rate }‘z

(b) Task Delay in Steady State

(a) Job Delay in Steady State

Fig. 4: Delay Performance.

We consider a computing cluster with 1000 machines and a
dataset distributed uniformly in 800 of the them. The service
rates for local and remote tasks are & = 0.8 and v = 0.2,
respectively, so we only consider the total task arrival rate Ay
less than 800« + 200y = 680 per time slot. For each Ay, we
simulate the system for one sample path. As noted in Section
II, we maintain multiple subqueues for each queue, and the
subqueue corresponding to the job with the fewest running
tasks is selected during scheduling, as in the naive fair sharing.

Throughput Performance. We keep track of the number
of concurrent jobs in the system to observe stability. Fig. 3a
shows a representative sample of the evolution of this number
over time, indicating the comparison of instability and stability.
Fig. 3b shows the average number of concurrent jobs over the
last 250,000 time slots for each Ay. The turning points at
350 and 630 indicate the throughput difference. From these
results we can conjecture that the proposed algorithm achieves
the maximum throughput, and the throughput is increased by
more than 80% compared with the naive fair sharing.

Delay Performance. For each Ay, we calculate the average
delay for jobs and tasks departing in steady state and illustrate
the results in Fig. 4. We did not plot the results for Ay >
390 under the naive fair sharing and for Ay, = 670 under the
proposed algorithm since the delay becomes very large (more
than ten times larger) due to instability, which also confirms the
throughput difference of the two algorithms. For small arrival
rates, the proposed algorithm roughly halves the average job
delay compared with the naive fair sharing (Fig. 4a), while the
average task delay are roughly the same (Fig. 4b).

VI. CONCLUSION

We considered map scheduling algorithms in MapReduce
with data locality. We first presented the capacity region of
a MapReduce computing cluster with data locality and then
we proved the throughput optimality. Beyond throughput, we
showed that the proposed algorithm asymptotically minimizes
the number of backlogged tasks as the arrival rate vector
approaches the boundary of the capacity region, i.e., it is heavy-
traffic optimal.

ACKNOWLEDGEMENT
Research supported in part by NSF Grants ECCS-1255425.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” ACM Commun., vol. 51, no. 1, pp. 107-113, Jan. 2008.

[2] “Hadoop,” http://hadoop.apache.org.

[3] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, 1. Stoica,
D. Harlan, and E. Harris, “Scarlett: coping with skewed content popular-
ity in mapreduce clusters,” in Proc. European Conf. Computer Systems
(EuroSys), Salzburg, Austria, 2011, pp. 287-300.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
Proc. ACM Symp. Operating Systems Principles (SOSP), Bolton Landing,
NY, 2003, pp. 29-43.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in IEEE Symp. Mass Storage Systems and
Technologies (MSST), Incline Villiage, NV, May 2010, pp. 1-10.

[6] T. White, Hadoop: The definitive guide. Yahoo Press, 2010.

[71 M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. European Conf. Computer
Systems (EuroSys), Paris, France, 2010, pp. 265-278.

[8] C. Abad, Y. Lu, and R. Campbell, “DARE: Adaptive data replication
for efficient cluster scheduling,” in IEEE Int. Conf. Cluster Computing
(CLUSTER), Austin, TX, 2011, pp. 159-168.

[9] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in Proc. IEEE/ACM Int. Conf.
Cluster, Cloud and Grid Computing (CCGRID), Melbourne, Australia,
2010, pp. 94-103.

[10] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 4, pp. 1936—
1948, Dec. 1992.

[11] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” in Proc. IEEE Int. Conf. Computer Communications (INFO-
COM), Turin, Italy, 2013.

[12] A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue
length bounds implied by drift conditions,” Queueing Syst., vol. 72, no.
3-4, pp. 311-359, Dec. 2012.

[13] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” in Int. Teletraffic
Congr. (ITC), Krakow, Poland, 2012.

[14] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task scheduling in
mapreduce with data locality: Throughput and heavy-traffic optimality,”
Arizona State Univ., Tempe, AZ, Tech. Rep., Jul. 2012.

[15] J. E C. Kingman, “Some inequalities for the queue GI/G/1,” Biometrika,
vol. 49, no. 3-4, pp. 315-324, Dec. 1962.

[16] B. Hajek, “Hitting-time and occupation-time bounds implied by drift
analysis with applications,” Ann. Appl. Prob., pp. 502-525, 1982.

[17] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “Pacman: coordinated memory caching for
parallel jobs,” in Proc. Conf. Networked Systems Design and Implemen-
tations (USENIX), 2012, pp. 20-20.

