

Map Task Scheduling in MapReduce with Data Locality: Throughput and Heavy-Traffic Optimality

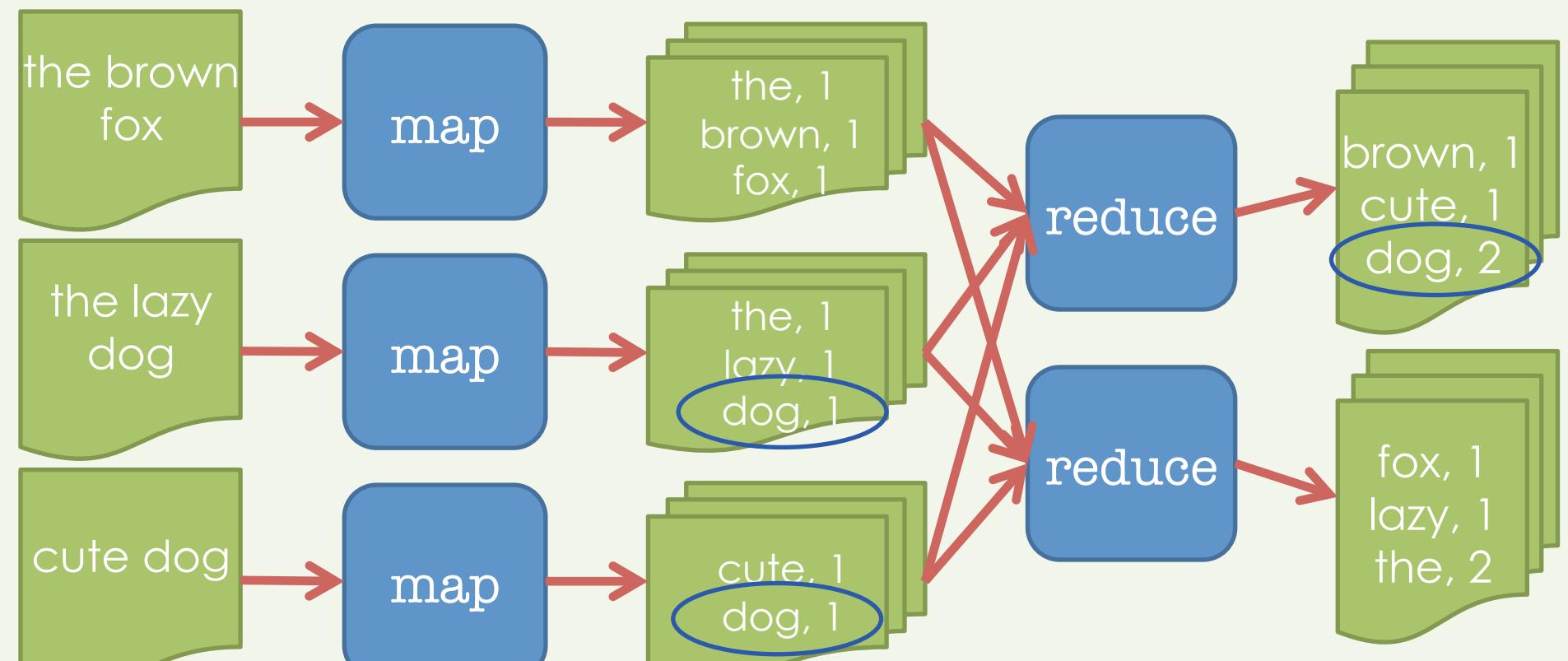
Weina Wang[†], Kai Zhu[†], Lei Ying[†], Jian Tan[‡] and Li Zhang[‡]

[†]Arizona State University, [‡]IBM T. J. Watson Research Center

WHAT IS MAPREDUCE?

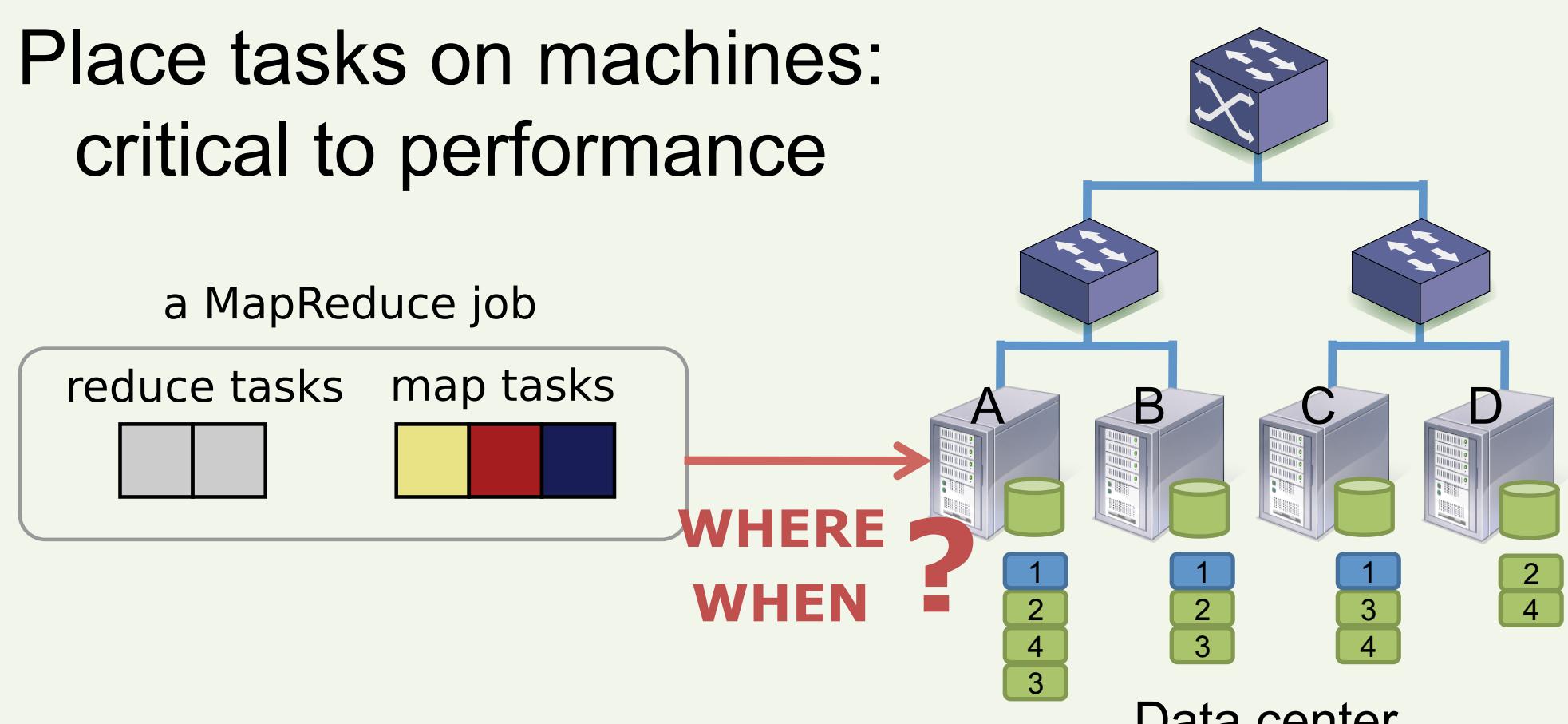
- Data-Parallel Programming Model

- Parallel Execution Example: Word Count



SCHEDULING IN MAPREDUCE

Place tasks on machines:
critical to performance



Distributed File System

- Files are split into data chunks
- Each map task processes a chunk

Data Locality: co-locate computation with data

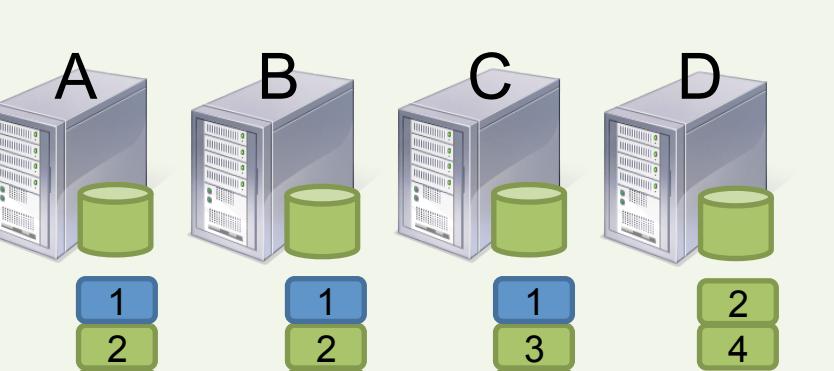
OBJECTIVE

To develop a scheduling algorithm with
PERFORMANCE GUARANTEE

MODEL

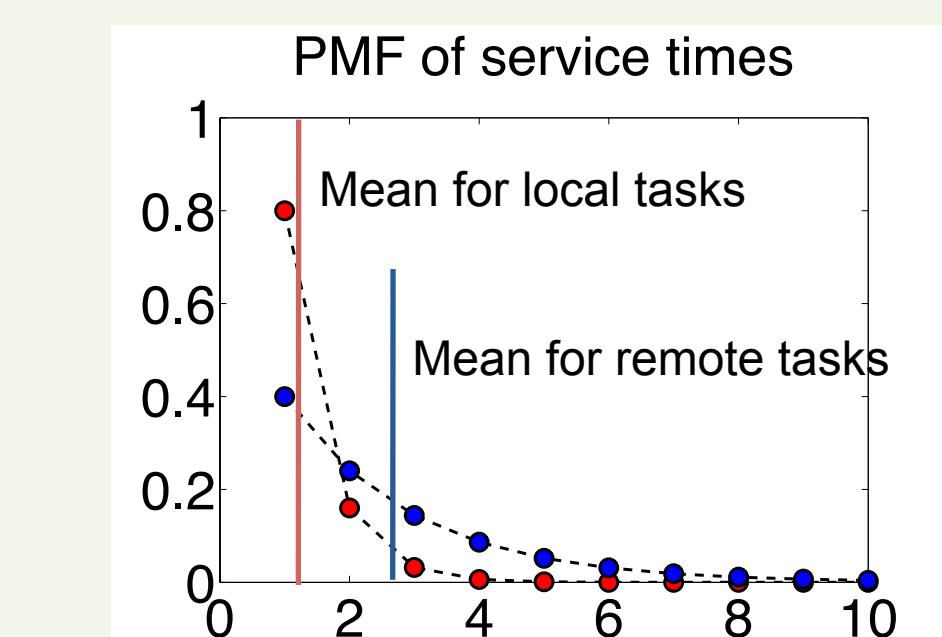
Arrival

- Type of a task = (machines that have its input data)
- Task ■ processes chunk 1: type = (A, B, C)
- Random arrival for each type



Service

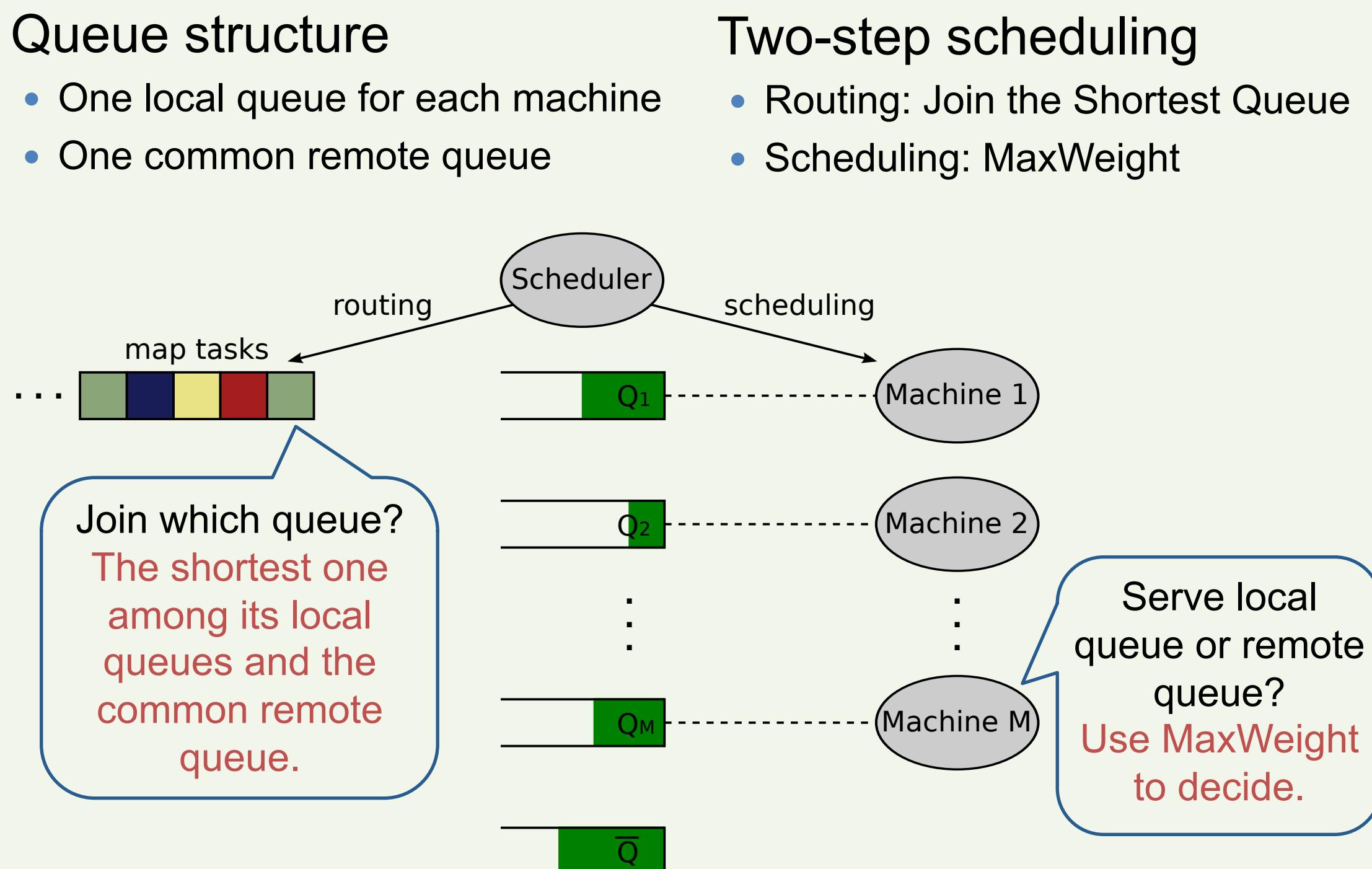
- Non-preemptive tasks with geometrically distributed service times
- Mean service time: local < remote



ALGORITHM DESIGN

Queue structure

- One local queue for each machine
- One common remote queue



Two-step scheduling

- Routing: Join the Shortest Queue
- Scheduling: MaxWeight

PERFORMANCE ANALYSIS

- Throughput Performance: Lyapunov Analysis

Definition. The *capacity region* of a MapReduce system consists of all arrival rate vectors for which there exists a scheduling algorithm that stabilizes the system.

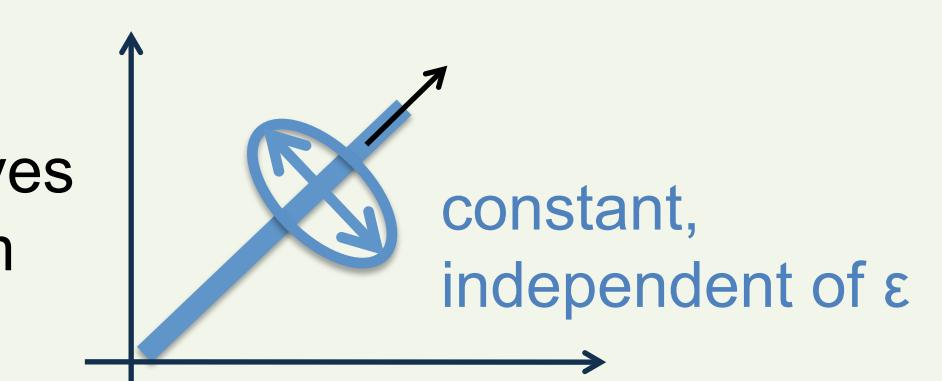
Theorem (Throughput Optimality). The proposed map-scheduling algorithm stabilizes any arrival rate vector strictly within the capacity region. Hence, this algorithm is throughput optimal.

- Delay Performance: Heavy-Traffic Analysis

- Heavy local traffic assumption
 - ϵ indicates the distance to capacity region boundary
- Analyze total queue length in steady state
 - directly related to delay by Little's law

State space collapse

- Multi-dimensional system behaves like a single-dimensional system



Theorem (Heavy-Traffic Optimality). Under the proposed map-scheduling algorithm, the queue lengths in steady state satisfy the following upper and lower bounds. The upper bound and lower bound coincide and the algorithm is heavy-traffic optimal.

$$\limsup_{\epsilon \rightarrow 0^+} \epsilon \mathbb{E} \left[\sum_{m=1}^{M+1} Q_m^{(\epsilon)}(t) \right] \leq \frac{\sigma^2 + \nu^2}{2}, \quad \liminf_{\epsilon \rightarrow 0^+} \epsilon \mathbb{E} \left[\sum_{m=1}^{M+1} Q_m^{(\epsilon)}(t) \right] \geq \frac{\sigma^2 + \nu^2}{2}$$

- Simulations

