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WHAT IS MAPREDUCE? 

map tasksreduce tasks

a MapReduce job

Data Locality: co-locate computation with data 

Theorem (Throughput Optimality). The proposed map-scheduling 
algorithm stabilizes any arrival rate vector strictly within the 
capacity region. Hence, this algorithm is throughput optimal. 

Definition. The capacity region of a MapReduce system consists 
of all arrival rate vectors for which there exists a scheduling 
algorithm that stabilizes the system. 
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  Data-Parallel Programming Model 
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  Parallel Execution Example: Word Count 
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SCHEDULING IN MAPREDUCE 

OBJECTIVE 
To develop a scheduling algorithm with 

PERFORMANCE GUARANTEE 

MODEL 
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Queue structure 
  One local queue for each machine 
  One common remote queue 

Service 
  Non-preemptive tasks with 
  Geometrically distributed service 

times 
  Mean service time: local < remote 

ALGORITHM DESIGN 
Place tasks on machines: 

critical to performance 
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Task     processes chunk 1: 
local on A, B, C 

remote on D 

Data center 

? WHERE 
WHEN 

Distributed File System 
  Files are split into data chunks 
  Each map task processes a chunk 

Mean for local tasks  

Arrival 
  Type of a task =  
   (machines that have its input data) 
  Task      processes chunk 1:  
            type = (A, B, C) 
  Random arrival for each type 

Mean for remote tasks  

PERFORMANCE ANALYSIS 
  Throughput Performance: Lyapunov Analysis 

  Delay Performance: Heavy-Traffic Analysis 
  Heavy local traffic assumption 
     - ε indicates the distance to capacity region boundary 
  Analyze total queue length in steady state 
     - directly related to delay by Little’s law 

Two-step scheduling 
  Routing: Join the Shortest Queue 
  Scheduling: MaxWeight 
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Join which queue? 
The shortest one 
among its local 
queues and the 
common remote 

queue. 

Serve local 
queue or remote 

queue? 
Use MaxWeight 

to decide. 

  Simulations 
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Theorem (Heavy-Traffic Optimality). Under the proposed map-
scheduling algorithm, the queue lengths in steady state satisfy the 
following upper and lower bounds. The upper bound and lower 
bound coincide and the algorithm is heavy-traffic optimal.  

                                                    , 

Theorem 3 (State Space Collapse). For the map-scheduling
system in MapReduce, consider any arrival process with an
arrival rate vector strictly within the capacity region sat-
isfying the heavy local traffic assumption, and the number
of total arrivals at each time slot has expectation M
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where the ? component is w.r.t. the direction defined in (16).

The proof of this theorem is omitted here due to space limit,
and available in our technical report [15].

C. Upper Bound and Heavy-Traffic Optimality
In this subsection, we derive an upper bound on the expecta-

tion of the sum of the queue lengths in steady state based on the
Lyapunov drift-based moment bounding techniques developed
in [13], and we show that this upper bound is asymptotically
tight under the heavy-traffic regime. The heavy-traffic optimal-
ity of joint JSQ and MaxWeight algorithm with homogeneous
servers has been established in [14] (in a different context).
Due to data locality, our system has heterogeneous servers,
which makes the problem more challenging.

We have established the state space collapse for the task
scheduling system in MapReduce under the proposed algo-
rithm, so the queue length vector in steady state concentrates
along a single direction. Enlightened by the way how the queue
length in the single server queueing system is bounded, we treat
the multi-dimensional state space in our problem as a one-
dimensional state space along the collapse direction and then
set the drift of the Lyapunov function Wk ((Q, f)) = kQkk2 to
zero in steady state to obtain an upper bound for the expected
queue length along this direction.

Due to the different service rates in our system, the
terms related to service in the Lyapunov drift cannot be
bounded directly. We consider the ideal service process�
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are independent and each process
is composed of a sequence of i.i.d. random variables. Let

X
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(t) ⇠ Bern(�). Utilizing this
service process, the queue dynamics (1) can be rewritten as

Q(t+ 1) = Q(t) +A(t)� S
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where U

0
(t) = S
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(t) � S(t) + U(t). Since the moments

of S

0
(t) are easy to calculate, we will use this equivalent

queue dynamics to express the Lyapunov drift. Then setting
the Lyapunov drift to zero gives the following lemma.

Lemma 1. For the map task scheduling system in MapReduce,
consider any arrival process with an arrival rate vector strictly
within the capacity region. Suppose the queueing process is in
steady state at time slot t under the proposed map-scheduling
algorithm, then for any direction c,
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The formal proof of this lemma is provided in our technical
report [15]. Analyzing each term in this lemma gives the
following upper bound, which is asymptotically tight under
the heavy-traffic limit. A more detailed proof of the following
theorem is also available in our technical report [15].

Theorem 4 (Upper Bound). For the map-scheduling system in
MapReduce, consider any arrival process with an arrival rate
vector strictly within the capacity region satisfying the heavy
local traffic assumption, and the number of total arrivals at
each time slot has expectation M
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is in steady state under the proposed map-scheduling algo-
rithm. Then for any t and any ✏ such that
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the expectation of the sum of the queue lengths in steady state
can be upper bounded as

E
"
M+1X

m=1

Q

(✏)

m

(t)

#
 (�

(✏)

)

2

+ ⌫

2

2✏

+B

(✏)

, (21)
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This upper bound under heavy-traffic limit coincides with the
lower bound (15), which establishes the first moment heavy-
traffic optimality of the proposed algorithm.

Proof: Fix an ✏ that satisfies (20) and then we temporarily
omit the superscript (✏) for simplicity. Since we will study the

Fig. 2: Lower-Bounding System

this section to indicate the heavy-traffic parameter ✏. Consider
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�
A

(✏)

~

L

(t), t � 0

 
~

L2L with arrival rate

vector �(✏)

=

⇣
�

(✏)

~

L1
,�

(✏)

~

L2
, · · · ,�(✏)

~

LN

⌘
satisfying (13). Then

E
hP

~

L

A

(✏)

~

L

(t)

i
=

P
~

L

�

(✏)

~

L

= M

l

↵+M

r

� � ✏.

The variance of the number of overall arrivals is given by

Var
⇣P

~

L

A

(✏)

~

L

(t)

⌘
= (�

(✏)

)

2

.

Denote the queueing and the working status process with such
arrival processes as
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Q
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. Later we will

let ✏ go to zero to get the heavy-traffic limit.

A. Lower Bound

In this subsection, we derive a lower bound on the expecta-
tion of the sum of the queue lengths in steady state. Consider
a single server queueing system as depicted in Fig. 2. By
properly choosing the arrival and the service process, the queue
length in this system is stochastically smaller than the sum
of the queue lengths in MapReduce. We refer to this single
server system as the lowering bounding system and the task
scheduling system in MapReduce as the original system. A
lower bound on the expectation of the queue length in steady
state in this system is obtained in [13], which is also a lower
bound for the original system. Note that this lower bound does
not need the heavy local traffic assumption.

Consider the following arrival process
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bounding system is stochastically smaller than the sum of
the queue lengths in the original system for any time slot
t. Considering the lower bound on E
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given by Lemma 4 in [13], we obtain the following theorem.

Theorem 2 (Lower Bound). For the map task scheduling
system in MapReduce, consider any arrival process such that
the number of total arrivals at each time slot has expectation
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Therefore, in the heavy-traffic limit as the arrival rate ap-
proaches the service rate from below, assuming the variance
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B. State Space Collapse
For a single server queueing system like the one in Fig. 2,

the discrete-time Kingman’s bound [16] gives an upper bound
on the expectation of the queue length in steady state, which
is derived by studying the drift of an appropriate Lyapunov
function in steady state. The task scheduling system in MapRe-
duce is a more complicated queueing system, which consists of
multiple queues and thus has a multi-dimensional state space.
However, in the heavy-traffic scenario, we will show that the
multi-dimensional state description of the system reduces to
a single dimension in the sense that the deviation from a
particular direction has bounded moments, independent of the
heavy-traffic parameter. This behavior of the queueing system
in heavy-traffic scenario is called state space collapse. When
the state space collapse happens, the system can be analyzed
by the similar techniques as used for the single-dimensional
system. In this subsection, we will establish the state space
collapse for the task scheduling system in MapReduce.

In our model,
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is an irreducible,

aperiodic, positive recurrent Markov chain with state space S .
Since the working status vector f is always finite, we only
consider the subspace for the queue lengths. Let c 2 RM+1
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norm, then the corresponding parallel
and perpendicular components of a queue length vector Q are
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Throughout this paper, the norm k·k refers to l
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norm. If all the
moments of kQ?k, which represent the deviation of the queue
length vector from the direction c, are bounded by constants
not depending on the heavy-traffic parameter ✏, we will say
that the state space collapses to the direction of c.
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be the direction that we will prove the state space collapses
to, where the first M
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entries are zeros. Consider the Lyapunov function

V? ((Q, f)) = kQ?k.
We can prove that the drift of V? satisfies the conditions in
Lemma 1 of [13] (see [17] for the derivation of this lemma).
Then by this lemma, V?
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has bounded mo-

ments in steady state, which gives the following theorem.
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  Multi-dimensional system behaves 

like a single-dimensional system 


