
0 2 4 6 8 100
0.2
0.4
0.6
0.8

1
PMF of service times

Map Task Scheduling in MapReduce with Data Locality:
Throughput and Heavy-Traffic Optimality

Weina Wang†, Kai Zhu†, Lei Ying†, Jian Tan‡ and Li Zhang‡

†Arizona State University, ‡IBM T. J. Watson Research Center

SenSIP - ASU site of the Net-Centric I/UCRC
http://sensip.asu.edu/

WHAT IS MAPREDUCE?

map tasksreduce tasks

a MapReduce job

Data Locality: co-locate computation with data

Theorem (Throughput Optimality). The proposed map-scheduling
algorithm stabilizes any arrival rate vector strictly within the
capacity region. Hence, this algorithm is throughput optimal.

Definition. The capacity region of a MapReduce system consists
of all arrival rate vectors for which there exists a scheduling
algorithm that stabilizes the system.

constant,
independent of ε

  Data-Parallel Programming Model

reduce
input
data

output
data

intermediate
data

map

  Parallel Execution Example: Word Count

map

map

map

the brown
fox

the lazy
dog

cute dog

the, 1
lazy, 1
dog, 1

cute, 1
dog, 1

the, 1
brown, 1

fox, 1
brown, 1
cute, 1
dog, 2

reduce

reduce
 fox, 1
lazy, 1
the, 2

SCHEDULING IN MAPREDUCE

OBJECTIVE
To develop a scheduling algorithm with

PERFORMANCE GUARANTEE

MODEL

2
4
3

2
3

3
4

4
2 1 1 1

A B C D

Queue structure
  One local queue for each machine
  One common remote queue

Service
  Non-preemptive tasks with
  Geometrically distributed service

times
  Mean service time: local < remote

ALGORITHM DESIGN
Place tasks on machines:

critical to performance

2
4
3

2
3

3
4

4
2 1 1 1

A B C D

Task processes chunk 1:
local on A, B, C

remote on D

Data center

? WHERE
WHEN

Distributed File System
  Files are split into data chunks
  Each map task processes a chunk

Mean for local tasks

Arrival
  Type of a task =
 (machines that have its input data)
  Task processes chunk 1:
 type = (A, B, C)
  Random arrival for each type

Mean for remote tasks

PERFORMANCE ANALYSIS
  Throughput Performance: Lyapunov Analysis

  Delay Performance: Heavy-Traffic Analysis
  Heavy local traffic assumption
 - ε indicates the distance to capacity region boundary
  Analyze total queue length in steady state
 - directly related to delay by Little’s law

Two-step scheduling
  Routing: Join the Shortest Queue
  Scheduling: MaxWeight























  






Join which queue?
The shortest one
among its local
queues and the
common remote

queue.

Serve local
queue or remote

queue?
Use MaxWeight

to decide.

  Simulations

0 200 400 600 8000

50

100

150

200

250

Total Arrival Rate λΣ

Av
er

ag
e

Jo
b

D
el

ay JSQ with MaxWeight
Naive Fair Sharing

Delay performance

0 200 400 600 8000

200

400

600

800

1000

Total Arrival Rate λΣ

Av
er

ag
e

of

 C
on

cu
rre

nt
 J

ob
s

JSQ with MaxWeight
Naive Fair Sharing

Throughput performance

Theorem (Heavy-Traffic Optimality). Under the proposed map-
scheduling algorithm, the queue lengths in steady state satisfy the
following upper and lower bounds. The upper bound and lower
bound coincide and the algorithm is heavy-traffic optimal.

 ,

Theorem 3 (State Space Collapse). For the map-scheduling
system in MapReduce, consider any arrival process with an
arrival rate vector strictly within the capacity region sat-
isfying the heavy local traffic assumption, and the number
of total arrivals at each time slot has expectation M

l

↵ +

M

r

� � ✏ and variance (�

(✏)

)

2. Suppose the Markov chain��
Q

(✏)

(t), f

(✏)

(t)

�
, t � 0

is in steady state under the pro-

posed map-scheduling algorithm. Then for any t and any ✏

such that

0 < ✏ < min

⇢
M

l

↵+M

r

�,M

r

(M

l

+ 1) �,

(M

l

+ 1)↵

2N

,

(M

l

+ 1)min

~

L2L �

~

L

6

�
,

there exists a sequence of finite numbers {C
1

, C

2

, · · · } such
that for each positive integer r,

E
h
kQ(✏)

? (t)kr
i
 C

r

,

where the ? component is w.r.t. the direction defined in (16).

The proof of this theorem is omitted here due to space limit,
and available in our technical report [15].

C. Upper Bound and Heavy-Traffic Optimality
In this subsection, we derive an upper bound on the expecta-

tion of the sum of the queue lengths in steady state based on the
Lyapunov drift-based moment bounding techniques developed
in [13], and we show that this upper bound is asymptotically
tight under the heavy-traffic regime. The heavy-traffic optimal-
ity of joint JSQ and MaxWeight algorithm with homogeneous
servers has been established in [14] (in a different context).
Due to data locality, our system has heterogeneous servers,
which makes the problem more challenging.

We have established the state space collapse for the task
scheduling system in MapReduce under the proposed algo-
rithm, so the queue length vector in steady state concentrates
along a single direction. Enlightened by the way how the queue
length in the single server queueing system is bounded, we treat
the multi-dimensional state space in our problem as a one-
dimensional state space along the collapse direction and then
set the drift of the Lyapunov function Wk ((Q, f)) = kQkk2 to
zero in steady state to obtain an upper bound for the expected
queue length along this direction.

Due to the different service rates in our system, the
terms related to service in the Lyapunov drift cannot be
bounded directly. We consider the ideal service process�
S

0
(t) =

�
S

0
1

(t), · · · , S0
M+1

(t)

�
, t � 0

, which makes the

best use of every machine and is defined as

S

0
m

(t) =

8
><

>:

X

l

m

(t) if m 2 M
l

0 if m 2 M
rP

m2Mr
X

r

m

(t) if m = M + 1

where all the processes
�
X

l

m

(t), t � 0

,m 2 M

l

and
{Xr

m

(t), t � 0} ,m 2 M
r

are independent and each process
is composed of a sequence of i.i.d. random variables. Let

X

l

m

(t) ⇠ Bern(↵) and X

r

m

(t) ⇠ Bern(�). Utilizing this
service process, the queue dynamics (1) can be rewritten as

Q(t+ 1) = Q(t) +A(t)� S

0
(t) + U

0
(t), (17)

where U

0
(t) = S

0
(t) � S(t) + U(t). Since the moments

of S

0
(t) are easy to calculate, we will use this equivalent

queue dynamics to express the Lyapunov drift. Then setting
the Lyapunov drift to zero gives the following lemma.

Lemma 1. For the map task scheduling system in MapReduce,
consider any arrival process with an arrival rate vector strictly
within the capacity region. Suppose the queueing process is in
steady state at time slot t under the proposed map-scheduling
algorithm, then for any direction c,

2E [hc,Q(t)ihc, S0
(t)�A(t)i]

= E
⇥hc, A(t)� S

0
(t)i2⇤+ E

⇥hc, U 0
(t)i2⇤ (18)

+ 2E [hc,Q(t) +A(t)� S

0
(t)ihc, U 0

(t)i] . (19)

The formal proof of this lemma is provided in our technical
report [15]. Analyzing each term in this lemma gives the
following upper bound, which is asymptotically tight under
the heavy-traffic limit. A more detailed proof of the following
theorem is also available in our technical report [15].

Theorem 4 (Upper Bound). For the map-scheduling system in
MapReduce, consider any arrival process with an arrival rate
vector strictly within the capacity region satisfying the heavy
local traffic assumption, and the number of total arrivals at
each time slot has expectation M

l

↵ +M

r

� � ✏ and variance
(�

(✏)

)

2. Suppose the Markov chain
��

Q

(✏)

(t), f

(✏)

(t)

�
, t � 0

is in steady state under the proposed map-scheduling algo-
rithm. Then for any t and any ✏ such that

0 < ✏ < min

⇢
M

l

↵+M

r

�,M

r

(M

l

+ 1) �,

(M

l

+ 1)↵

2N

,

(M

l

+ 1)min

~

L2L �

~

L

6

�
,

(20)

the expectation of the sum of the queue lengths in steady state
can be upper bounded as

E
"
M+1X

m=1

Q

(✏)

m

(t)

#
 (�

(✏)

)

2

+ ⌫

2

2✏

+B

(✏)

, (21)

where B

(✏)

= o(

1

✏

), i.e., lim

✏!0

+
✏B

(✏)

= 0.
Therefore, in the heavy-traffic limit as the arrival rate

approaches the service rate from below, assuming the variance
(�

(✏)

)

2 converges to a constant �2 the upper bound becomes

lim sup

✏!0

+

✏E
"
M+1X

m=1

Q

(✏)

m

(t)

#
 �

2

+ ⌫

2

2

. (22)

This upper bound under heavy-traffic limit coincides with the
lower bound (15), which establishes the first moment heavy-
traffic optimality of the proposed algorithm.

Proof: Fix an ✏ that satisfies (20) and then we temporarily
omit the superscript (✏) for simplicity. Since we will study the

Fig. 2: Lower-Bounding System

this section to indicate the heavy-traffic parameter ✏. Consider
any arrival processes

�
A

(✏)

~

L

(t), t � 0

~

L2L with arrival rate

vector �(✏)

=

⇣
�

(✏)

~

L1
,�

(✏)

~

L2
, · · · ,�(✏)

~

LN

⌘
satisfying (13). Then

E
hP

~

L

A

(✏)

~

L

(t)

i
=

P
~

L

�

(✏)

~

L

= M

l

↵+M

r

� � ✏.

The variance of the number of overall arrivals is given by

Var
⇣P

~

L

A

(✏)

~

L

(t)

⌘
= (�

(✏)

)

2

.

Denote the queueing and the working status process with such
arrival processes as

��
Q

(✏)

(t), f

(✏)

(t)

�
, t � 0

. Later we will

let ✏ go to zero to get the heavy-traffic limit.

A. Lower Bound

In this subsection, we derive a lower bound on the expecta-
tion of the sum of the queue lengths in steady state. Consider
a single server queueing system as depicted in Fig. 2. By
properly choosing the arrival and the service process, the queue
length in this system is stochastically smaller than the sum
of the queue lengths in MapReduce. We refer to this single
server system as the lowering bounding system and the task
scheduling system in MapReduce as the original system. A
lower bound on the expectation of the queue length in steady
state in this system is obtained in [13], which is also a lower
bound for the original system. Note that this lower bound does
not need the heavy local traffic assumption.

Consider the following arrival process
�
⌘

(✏)

(t), t � 0

and

service process {�(t), t � 0}:

⌘

(✏)

(t) =

P
~

L

A

(✏)

~

L

(t), �(t) =

P
Ml

i=1

X

i

(t) +

P
Mr

j=1

Y

j

(t),

where all the processes {X
i

(t), t � 0} , i = 1, · · · ,M
l

and
{Y

j

(t), t � 0} , j = 1, · · · ,M
r

are independent and each
process is composed of a sequence of i.i.d. random variables.
Let X

i

(t) ⇠ Bern(↵) and Y

j

(t) ⇠ Bern(�). Then E [�(t)] =

M

l

↵+M

r

�, and we use ⌫

2 to denote Var (�(t)).
By these settings, the queue length �

(✏)

(t) in the lower-
bounding system is stochastically smaller than the sum of
the queue lengths in the original system for any time slot
t. Considering the lower bound on E

⇥
�

(✏)

(t)

⇤
in steady state

given by Lemma 4 in [13], we obtain the following theorem.

Theorem 2 (Lower Bound). For the map task scheduling
system in MapReduce, consider any arrival process such that
the number of total arrivals at each time slot has expectation
M

l

↵ + M

r

� � ✏ and variance (�

(✏)

)

2. Suppose the Markov
chain

��
Q

(✏)

(t), f

(✏)

(t)

�
, t � 0

is in steady state under the

proposed map-scheduling algorithm. Then, for any t and any

✏ such that 0 < ✏ < M

l

↵ +M

r

�, the expectation of the sum
of the queue lengths in steady state can be lower-bounded as

E
"
M+1X

m=1

Q

(✏)

m

(t)

#
� (�

(✏)

)

2

+ ⌫

2

+ ✏

2

2✏

� M

2

. (14)

Therefore, in the heavy-traffic limit as the arrival rate ap-
proaches the service rate from below, assuming the variance
(�

(✏)

)

2 converges to a constant �2, the lower bound becomes

lim inf

✏!0

+
✏E

"
M+1X

m=1

Q

(✏)

m

(t)

#
� �

2

+ ⌫

2

2

. (15)

B. State Space Collapse
For a single server queueing system like the one in Fig. 2,

the discrete-time Kingman’s bound [16] gives an upper bound
on the expectation of the queue length in steady state, which
is derived by studying the drift of an appropriate Lyapunov
function in steady state. The task scheduling system in MapRe-
duce is a more complicated queueing system, which consists of
multiple queues and thus has a multi-dimensional state space.
However, in the heavy-traffic scenario, we will show that the
multi-dimensional state description of the system reduces to
a single dimension in the sense that the deviation from a
particular direction has bounded moments, independent of the
heavy-traffic parameter. This behavior of the queueing system
in heavy-traffic scenario is called state space collapse. When
the state space collapse happens, the system can be analyzed
by the similar techniques as used for the single-dimensional
system. In this subsection, we will establish the state space
collapse for the task scheduling system in MapReduce.

In our model,
��

Q

(✏)

(t), f

(✏)

(t)

�
, t � 0

is an irreducible,

aperiodic, positive recurrent Markov chain with state space S .
Since the working status vector f is always finite, we only
consider the subspace for the queue lengths. Let c 2 RM+1

+

be a vector with unit l
2

norm, then the corresponding parallel
and perpendicular components of a queue length vector Q are

Qk = hQ, cic, Q? = Q�Qk.

Throughout this paper, the norm k·k refers to l

2

norm. If all the
moments of kQ?k, which represent the deviation of the queue
length vector from the direction c, are bounded by constants
not depending on the heavy-traffic parameter ✏, we will say
that the state space collapses to the direction of c.

Let
c =

1p
M

l

+ 1

(1, · · · , 1| {z }
Ml

, 0, · · · , 0| {z }
Mr

, 1) (16)

be the direction that we will prove the state space collapses
to, where the first M

l

entries are ones and the following M

r

entries are zeros. Consider the Lyapunov function

V? ((Q, f)) = kQ?k.
We can prove that the drift of V? satisfies the conditions in
Lemma 1 of [13] (see [17] for the derivation of this lemma).
Then by this lemma, V?

�
(Q

(✏)

(t), f

(✏)

(t)

�
has bounded mo-

ments in steady state, which gives the following theorem.

Throughput
difference

State space collapse
  Multi-dimensional system behaves

like a single-dimensional system

