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where d is the Hamming distance. 

  A mechanism satisfies ϵ-differential privacy if for any 
neighboring x, x’ and any y!

  Indistinguishability between pairwise likelihoods.!
  Limited additional information leakage.!

  The privacy–distortion problem under differential privacy 
(PD-DP):!

DIFFERENTIAL PRIVACY!

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(3)

with E[d(X , Y )]  D},

(4)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

- Neighbors on : x x if x and x di↵er on one entry.
Privacy has been an increasing concern in the emerging big data era, particularly with the growing

use of personal data such as medical records or online activities for big data analysis. Analyzing these
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Figure 2: The privacy–distortion function ��i (D) under identifiability and ��d (D) under di↵erential
privacy satisfy ��i (D)� �X  ��d (D)  ��i (D) for D in some range.

The Privacy–Distortion Problem under Di↵erential Privacy (PD-DP):

min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (19)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (20)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (21)

pY |X is valid. (22)

pY |X (y | x) � 0, �x , y 2 Dn
, (23)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (24)

For convenience, we first define two constants �X and e�X that only depend on the prior pX . Let

�X = max

x ,x 02Dn
:x⇠x 0

ln

pX (x)

pX (x 0)
, (25)

which is the maximum prior probability di↵erence between two neighboring databases. For �X to
be finite, the distribution pX needs to have full support on Dn, i.e., pX (x) > 0 for any x 2 Dn.
To define e�X , note that the prior pX puts some constraints on the posterior probabilities. We say
{pX |Y (x | y ), x , y 2 Dn} is feasible if there exists a pmf pY such that it is the marginal pmf of Y . Let
e�X be the smallest � such that the following posterior probabilities are feasible:

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (m� 1)e��
�n , x , y 2 Dn

.

For any pX , e�X is finite since when � ! +�, the pmf pY = pX is the marginal pmf of Y . Finally we
consider the function

h�1

(D) = ln

�

n

D
� 1

�

+ ln(m� 1). (26)

Recall that ��i (D) denote the best identifiability level under distortion D, and ��d (D) denote the best
di↵erential privacy level under distortion D. The connection between ��i (D) and ��d (D) is established
in the following theorem. See Figure 2 for an illustration.
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  A mechanism satisfies ϵ-mutual-information 
privacy if!

  Average guarantee.!
  The privacy–distortion problem under 
mutual-information privacy (PD-MIP):!

  Rate–distortion function.!

MUTUAL-INFORMATION PRIVACY 

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(3)

with E[d(X , Y )]  D},

(4)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

pX |Y (x | y )  e�pX |Y (x 0 | y ). (5)

I(X ; Y )  �.

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).
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• In Lemma 1, we prove that the minimum distortion of R-PD is D�
(�) = h(�), which implies that

��relaxed (D) = h�1

(D). Note that h(·) is a decreasing function. Therefore h�1

(D) is a lower bound

on ��i (D) and h�1

(D)� �X is a lower bound on ��d (D).

• Consider the mechanism Ei specified by

pY |X (y | x) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (m� 1)e��
�n , x , y 2 Dn

, (36)

where � � e�X and pY is the corresponding pmf of Y . Lemma 2 shows that the mechanism
Ei guarantees an identifiability level of � with distortion h(�) when � � e�X , which yields (27)
combining with the lower bound above.

• Consider the mechanism Ed specified by the conditional probabilities

pY |X (y | x) =

e��d(x ,y )

�

1 + (m� 1)e��
�n , x , y 2 Dn

, (37)

where � � 0. This is the exponential mechanism with score function q = �d [18]. Lemma 3 shows
that the mechanism E satisfies �-di↵erential privacy with distortion h(�), which provides the upper
bound in (28).

Details of the proof can be found in Appendix A.

4 Identifiability versus Mutual-Information Privacy

In this section, we discuss the connection between identifiability and mutual-information privacy. Intu-
itively, mutual information can be used to quantify the information about X by observing a correlated
random variable Y . Given a distortion upper bound D, the smallest achievable mutual information is
denoted by ��m(D), where ��m : R+ ! R+ is the rate–distortion function [7]. It has been pointed out
in [19] that the mechanism that achieves the optimal rate–distortion also guarantees a certain level of
di↵erential privacy. However, the fundamental connection between di↵erential privacy, rate (or mutual
information) and distortion is far from clear. In this section, we will show that mutual-information
privacy and identifiability are consistent under the privacy–distortion formulation in the sense that given
a distortion constraint, the mechanism that minimizes the mutual information also achieves ��i .

By the rate–distortion theorem [7], the rate–distortion function ��m(D) for input X with pmf pX (·)
is given by the following convex optimization problem.
The Privacy and Distortion Problem under Mutual-Information Privacy (PD-MIP):

min

pY |X
I(X ; Y ) (38)

subject to
X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y )  D, (39)

pY |X is valid. (40)
P

y2Dn pY |X (y | x) = 1, �x 2 Dn
, (41)

pY |X (y | x) � 0, �x , y 2 Dn
. (42)

Theorem 2. For any D with 0  D  h(

e�X ), the identifiability optimal mechanism Ei defined in (36)
is also mutual information optimal. É
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IDENTIFIABILITY 
  A mechanism satisfies ϵ-identifiability if for 
any neighboring x, x’ and any y!

  Indistinguishability between pairwise posteriors.!
  Absolute guarantee.!

  The privacy–distortion problem under 
identifiability (PD-I):!

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(3)

with E[d(X , Y )]  D},

(4)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

pX |Y (x | y )  e�pX |Y (x 0 | y ). (5)

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

2

distortion–privacy function D�
: R

+! R+ by D�
(�) = inf{D : (�, D) is achievable}, which is the small-

est achievable distortion given privacy level �. Similar to the rate–distortion theory, these two ways of
characterizing the boundary of the privacy–distortion region are equivalent, where the privacy–distortion
region is the set of achievable privacy–distortion pairs.

3 Identifiability versus Di↵erential Privacy

In this section, we establish a fundamental connection between identifiability and di↵erential privacy.
Given privacy level �i and �d , the minimum distortion level is the solution to the following optimization
problems.
The Privacy–Distortion Problem under Identifiability (PD-I):

min

pX |Y , pY

X

x2Dn

X

y2Dn

pY (y )pX |Y (x | y )d(x , y ) (26)

subject to pX |Y (x | y )  e�i pX |Y (x 0 | y ), (27)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (28)

pX |Y , pY are valid, consistent with pX . (29)
X

x2Dn

pX |Y (x | y ) = 1, �y 2 Dn
, (30)

pX |Y (x | y ) � 0, �x , y 2 Dn
, (31)

X

y2Dn

pX |Y (x | y )pY (y ) = pX (x), �x 2 Dn
, (32)

pY (y ) � 0, �y 2 Dn
. (33)

The Privacy–Distortion Problem under Di↵erential Privacy (PD-DP):

min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (34)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (35)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (36)

pY |X is valid. (37)

pY |X (y | x) � 0, �x , y 2 Dn
, (38)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (39)

For convenience, we first define two constants �X and e�X that only depend on the prior pX . Let

�X = max

x ,x 02Dn
:x⇠x 0

ln

pX (x)

pX (x 0)
, (40)

which is the maximum prior probability di↵erence between two neighboring databases. For �X to
be finite, the distribution pX needs to have full support on Dn, i.e., pX (x) > 0 for any x 2 Dn.
To define e�X , note that the prior pX puts some constraints on the posterior probabilities. We say
{pX |Y (x | y ), x , y 2 Dn} is feasible if there exists a pmf pY such that it is the marginal pmf of Y . Let
e�X be the smallest � such that the following posterior probabilities are feasible:

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (m� 1)e��
�n , x , y 2 Dn

.
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Relaxed to the same problem: 

Optimal Solution: 

Main Result 1:  

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(3)

with E[d(X , Y )]  D},

(4)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

��i (D)� �X  ��d (D)  ��i (D),

2

��i (D)� �X  ��d (D)  ��i (D),

min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (6)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (7)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (8)

pY |X is valid. (9)

pY |X (y | x) � 0, �x , y 2 Dn
, (10)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (11)

min

pX |Y , pY

X

x2Dn

X

y2Dn

pY (y )pX |Y (x | y )d(x , y ) (12)

subject to pX |Y (x | y )  e�pX |Y (x 0 | y ), (13)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (14)

pX |Y , pY are valid. (15)
X

x2Dn

pX |Y (x | y ) = 1, �y 2 Dn
, (16)

pX |Y (x | y ) � 0, �x , y 2 Dn
, (17)

X

y2Dn

pX |Y (x | y )pY (y ) = pX (x), �x 2 Dn
, (18)

pY (y ) � 0, �y 2 Dn
. (19)

- Neighbors on : x x if x and x di↵er on one entry.
Privacy has been an increasing concern in the emerging big data era, particularly with the growing

use of personal data such as medical records or online activities for big data analysis. Analyzing these
data results in new discoveries in science and engineering, but also puts individual’s privacy at potential
risks. Therefore, privacy-preserving data analysis, where the goal is to preserve the accuracy of data
analysis while maintaining individual’s privacy, has become one of the main challenges of this big data
era. The basic idea of privacy-preserving data analysis is to add randomness in the released information
to guarantee that an individual’s information cannot be inferred. Intuitively, the higher the randomness
is, the better privacy protection individual users get, but the less accurate (useful) the output statistical
information is. While randomization seems to be inevitable, for the privacy-preserving data analysis it is
of great interest to quantitatively define the notion of privacy. Specifically, we need to understand the
amount of randomness needed to protect privacy while preserving usefulness of the data. To this end,
we consider three di↵erent notions: identifiability, di↵erential privacy and mutual-information privacy,
where identifiability is concerned with the likelihood of recovering the original data from the released
data, di↵erential privacy is concerned with the additional information of an individual leaked due to
the release of the data, and mutual information measures the amount of information about the original
database contained in the released data.
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��i (D)� �X  ��d (D)  ��i (D),

min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (6)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (7)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (8)

pY |X is valid. (9)

pY |X (y | x) � 0, �x , y 2 Dn
, (10)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (11)

min

pX |Y , pY

X

x2Dn

X

y2Dn

pY (y )pX |Y (x | y )d(x , y ) (12)

subject to pX |Y (x | y )  e�pX |Y (x 0 | y ), (13)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (14)

pX |Y , pY are valid. (15)
X

x2Dn

pX |Y (x | y ) = 1, �y 2 Dn
, (16)

pX |Y (x | y ) � 0, �x , y 2 Dn
, (17)

X

y2Dn

pX |Y (x | y )pY (y ) = pX (x), �x 2 Dn
, (18)

pY (y ) � 0, �y 2 Dn
. (19)

D�
(�) = h(�) ¨

n

1 +

e�
|D|�1

- Neighbors on : x x if x and x di↵er on one entry.
Privacy has been an increasing concern in the emerging big data era, particularly with the growing

use of personal data such as medical records or online activities for big data analysis. Analyzing these
data results in new discoveries in science and engineering, but also puts individual’s privacy at potential
risks. Therefore, privacy-preserving data analysis, where the goal is to preserve the accuracy of data
analysis while maintaining individual’s privacy, has become one of the main challenges of this big data
era. The basic idea of privacy-preserving data analysis is to add randomness in the released information
to guarantee that an individual’s information cannot be inferred. Intuitively, the higher the randomness
is, the better privacy protection individual users get, but the less accurate (useful) the output statistical
information is. While randomization seems to be inevitable, for the privacy-preserving data analysis it is
of great interest to quantitatively define the notion of privacy. Specifically, we need to understand the
amount of randomness needed to protect privacy while preserving usefulness of the data. To this end,
we consider three di↵erent notions: identifiability, di↵erential privacy and mutual-information privacy,
where identifiability is concerned with the likelihood of recovering the original data from the released
data, di↵erential privacy is concerned with the additional information of an individual leaked due to
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��(D) = inf{� : �-privacy level is achievable
with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

pX |Y (x | y )  e�pX |Y (x 0 | y ). (3)

I(X ; Y )  �.

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

��i (D)� �X  ��d (D)  ��i (D),

2

- X, Y :      -valued random variables; X ~ pX.   
- Neighbors on      : x ~ x’ if x and x’ differ on one entry. 
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Abstract

This paper investigates the relation between three di↵erent notions of privacy: identifiability,
di↵erential privacy and mutual-information privacy. Under a unified privacy–distortion framework,
where the distortion is defined to be the Hamming distance of the input and output databases, we
establish some fundamental connections between these three privacy notions. Given a distortion
level D, define ��i (D) to be the smallest (best) identifiability level, and ��d (D) to be the smallest

di↵erential privacy level. We characterize ��i (D) and ��d (D), and prove that ��i (D)��X  ��d (D) 
��i (D) for D in some range, where �X is a constant depending on the distribution of the original
database X , and diminishes to zero when the distribution of X is uniform. Furthermore, we show that
identifiability and mutual-information privacy are consistent in the sense that given distortion level
D, the mechanism that optimizes the mutual-information privacy also minimizes the identifiability
level.

1 Introduction

Dn

X
Y
pX

pY |X
��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D}.
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level.

1 Introduction

Dn

X
Y
pX

pY |X
��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D}.

1

min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (4)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (5)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (6)

pY |X is valid. (7)

pY |X (y | x) � 0, �x , y 2 Dn
, (8)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (9)

min

pX |Y , pY

X

x2Dn

X

y2Dn

pY (y )pX |Y (x | y )d(x , y ) (10)

subject to pX |Y (x | y )  e�pX |Y (x 0 | y ), (11)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (12)

pX |Y , pY are valid. (13)
X

x2Dn

pX |Y (x | y ) = 1, �y 2 Dn
, (14)

pX |Y (x | y ) � 0, �x , y 2 Dn
, (15)

X

y2Dn

pX |Y (x | y )pY (y ) = pX (x), �x 2 Dn
, (16)

pY (y ) � 0, �y 2 Dn
. (17)

D�
(�) = h(�) ¨

n

1 +

e�
|D|�1

��(D) = inf{� : �-privacy level is achievable

with E[d(X , Y )]  D},

pX |Y (x | y )  e�pX |Y (x 0 | y ). (18)

- Neighbors on : x x if x and x di↵er on one entry.
Privacy has been an increasing concern in the emerging big data era, particularly with the growing

use of personal data such as medical records or online activities for big data analysis. Analyzing these
data results in new discoveries in science and engineering, but also puts individual’s privacy at potential
risks. Therefore, privacy-preserving data analysis, where the goal is to preserve the accuracy of data
analysis while maintaining individual’s privacy, has become one of the main challenges of this big data
era. The basic idea of privacy-preserving data analysis is to add randomness in the released information
to guarantee that an individual’s information cannot be inferred. Intuitively, the higher the randomness
is, the better privacy protection individual users get, but the less accurate (useful) the output statistical
information is. While randomization seems to be inevitable, for the privacy-preserving data analysis it is
of great interest to quantitatively define the notion of privacy. Specifically, we need to understand the
amount of randomness needed to protect privacy while preserving usefulness of the data. To this end,
we consider three di↵erent notions: identifiability, di↵erential privacy and mutual-information privacy,
where identifiability is concerned with the likelihood of recovering the original data from the released
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min

pY |X

X

x2Dn

X

y2Dn

pX (x)pY |X (y | x)d(x , y ) (4)

subject to pY |X (y | x)  e�d pY |X (y | x 0), (5)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (6)

pY |X is valid. (7)

pY |X (y | x) � 0, �x , y 2 Dn
, (8)

X

y2Dn

pY |X (y | x) = 1, �x 2 Dn
. (9)

min

pX |Y , pY

X

x2Dn

X

y2Dn

pY (y )pX |Y (x | y )d(x , y ) (10)

subject to pX |Y (x | y )  e�pX |Y (x 0 | y ), (11)

�x , x 0 2 Dn
: x ⇠ x 0,�y 2 Dn

, (12)

pX |Y , pY are valid. (13)
X

x2Dn

pX |Y (x | y ) = 1, �y 2 Dn
, (14)

pX |Y (x | y ) � 0, �x , y 2 Dn
, (15)

X

y2Dn

pX |Y (x | y )pY (y ) = pX (x), �x 2 Dn
, (16)

pY (y ) � 0, �y 2 Dn
. (17)

D�
(�) = h(�) ¨

n

1 +

e�
|D|�1

��(D) = inf{� : �-privacy level is achievable

with E[d(X , Y )]  D},

pX |Y (x | y )  e�pX |Y (x 0 | y ). (18)

- Neighbors on : x x if x and x di↵er on one entry.
Privacy has been an increasing concern in the emerging big data era, particularly with the growing

use of personal data such as medical records or online activities for big data analysis. Analyzing these
data results in new discoveries in science and engineering, but also puts individual’s privacy at potential
risks. Therefore, privacy-preserving data analysis, where the goal is to preserve the accuracy of data
analysis while maintaining individual’s privacy, has become one of the main challenges of this big data
era. The basic idea of privacy-preserving data analysis is to add randomness in the released information
to guarantee that an individual’s information cannot be inferred. Intuitively, the higher the randomness
is, the better privacy protection individual users get, but the less accurate (useful) the output statistical
information is. While randomization seems to be inevitable, for the privacy-preserving data analysis it is
of great interest to quantitatively define the notion of privacy. Specifically, we need to understand the
amount of randomness needed to protect privacy while preserving usefulness of the data. To this end,
we consider three di↵erent notions: identifiability, di↵erential privacy and mutual-information privacy,
where identifiability is concerned with the likelihood of recovering the original data from the released
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IDENTIFIABILITY! MUTUAL-INFORMATION!
PRIVACY!

DIFFERENTIAL!
PRIVACY!

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(3)

with E[d(X , Y )]  D},

(4)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

��i (D)� �X  ��d (D)  ��i (D),

2

Same Optimal Mechanism!

��(D) = inf{� : �-privacy level is achievable
with E[d(X , Y )]  D},

pX |Y (x | y ) =

e��d(x ,y )

�

1 + (|D|� 1)e��
�n,

�

��(D) = inf{� : �-privacy level is achievable
(1)

with E[d(X , Y )]  D},

(2)

��(D) = inf{� : �-privacy level is achievable with E[d(X , Y )]  D},

pX |Y (x | y ) =

pY (y )e��d(x ,y )

pX (x)

�

1 + (|D|� 1)e��
�n,

pX |Y (x | y )  e�pX |Y (x 0 | y ). (3)

I(X ; Y )  �.

�,�, �
pY |X (y | x)  e�pY |X (y | x 0).

��i (D)� �X  ��d (D)  ��i (D),

2


