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ABSTRACT
Modeling the evolution of topics with time is of great value
in automatic summarization and analysis of large document
collections. In this work, we propose a new probabilistic
graphical model to address this issue. The new model, which
we call the Multiscale Topic Tomography Model (MTTM),
employs non-homogeneous Poisson processes to model gen-
eration of word-counts. The evolution of topics is modeled
through a multi-scale analysis using Haar wavelets. One of
the new features of the model is its modeling the evolution of
topics at various time-scales of resolution, allowing the user
to zoom in and out of the time-scales. Our experiments on
Science data using the new model uncovers some interest-
ing patterns in topics. The new model is also comparable
to LDA in predicting unseen data as demonstrated by our
perplexity experiments.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database

Management]: Database Applications—data mining

General Terms
Algorithms, Experimentation

Keywords
Topic modeling, Temporal evolution, time-scale, Poisson,
Probabilistic graphical models, wavelets

1. INTRODUCTION
Explosive growth of electronic document collections in the

recent past has rendered their analysis by human experts

.

extremely tedious and expensive. As a result, an increas-
ing need is felt for automatic algorithms that analyze and
summarize the topics contained in such large document col-
lections.

Several probabilistic graphical models have been proposed
recently, to address this problem. One of the first proba-
bilistic and truly generative models among them is Latent
Dirichlet Allocation (LDA) [2]. LDA models a topic as a
multinomial distribution over the vocabulary. Given a doc-
ument collection, the LDA learns its underlying topics in
an unsupervised fashion. In the recent past, several exten-
sions to this model have been proposed such as the Hier-
archical Dirichlet Processes [12] model that automatically
discovers the number of topics, Hidden Markov Model-LDA
[5] that integrates topic modeling with syntax, Correlated
topic models [1] that model pairwise correlations between
topics, etc.

All the aforementioned models ignore an important factor
that reveals a huge amount of information contained in large
document collections - time. Some of the large corpora such
as a collection of scientific journals or patent databases span
several decades. Hence modeling the evolution and popu-
larity of topics with time can reveal tremendous amount of
hidden information in those collections.

Several models have been proposed in the recent past to
address this issue. One of the models, called Topics Over
Time (ToT) [13] associates a beta distribution over time to
each topic that represents the occurrence probability of that
topic at any given time. The model learns the parameters
of this distribution for each topic based on the time-stamps
of documents associated with that topic in the collection.
This permits us to analyze the popularity of various topics
as a function of time.

Another proposed model called the Dynamic Topic Mod-
els (DTM) [3] takes a slightly different approach. The DTM
explicitly models the evolution of topics with time by esti-
mating the topic distribution at various epochs. Thus the
DTM allows us to predict what words are ‘in vogue’ in a
particular topic at different points in time. To model the
evolution of a topic with time, the authors assume that the
natural parameters corresponding to the topic multinomial
at each epoch are conditionally distributed by a normal dis-



tribution with mean equal to the natural parameters at the
previous epoch. However, since the normal distribution is
not a conjugate to the multinomial distribution, the model
does not yield a simple solution to the problems of inference
and estimation.

In this work, we present an alternative to the DTM, that
is more natural to sequential modeling of counts data. The
new model uses conjugate priors on the topic parameters to
model evolution of topics, thereby resulting in simpler solu-
tions. In addition, our new model, which we refer to hence-
forth as the Multiscale Topic Tomography Model (MTTM),
allows us to analyze the evolution of topics at various resolu-
tions of time scale. Its expressiveness provides the user with
additional flexibility to zoom-in and zoom-out on the time
scale and study the evolution of topics at a chosen time scale.
Thus, we believe that the MTTM brings us a step closer to
the ultimate goal of effective and fully automatic analysis of
document collections.

The rest of the paper is organized as follows. In section 2,
we discuss past work related to the new model. In section
3, we describe the MTTM in detail including its generative
process, the multi-scale analysis and the variational methods
used for learning and inference. Section 4 presents some of
the experiments we performed using the model. Section 5
concludes the paper with some analysis and directions for
future work.

2. PAST WORK
The Poisson distribution, being a natural model for counts-

data, has been considered as a potential candidate to model
text in the past. One of the earliest models is the 2-Poisson
model for information retrieval [6], which generates words
from a mixture of two classes called elite and non-elite classes.
This model did not achieve empirical success, mainly owing
to the lack of good estimation techniques, but inspired a
heuristic model called BM25 [11]. The latter is considered
a strong IR baseline till date.

In the area of text modeling, the GaP model [4] proposed
by Canny uses a combination of Gamma and Poisson dis-
tributions to discover latent topics or themes in document
collections. The Gamma distribution is used to generate the
topic weights vector x in each document, which the author
calls theme lengths. The Poisson distribution is used to gen-
erate the vector of observed word counts f from expected
counts y. The expected counts y are related to the topic
weights x through a matrix Λ, given by y = Λx, where each
column of Λ represents the probability distribution of words
in a topic. Canny developed an EM algorithm to estimate
the topic weights x for each document and the global matrix
Λ. Furthermore, it is also shown that the model achieves a
lower perplexity on test data compared to LDA while also
outperforming baseline models on the task of text retrieval.
However, the modeling scheme for GaP proposed by Canny
optimizes likelihood of the complete data (i.e., the data with
the maximum likelihood values used for the unobserved vari-
ables), whereas a pure generative model should optimize the
likelihood of the observed data only. The model presented
in this paper is very similar to the Gap model, except that
the theme-weights in our case are distributed by a Dirichlet
distribution over documents instead of a Gamma. This par-
ticular definition of Dirichlet means that the topic-weights
are normalized over all the documents for each topic and
not over all the topics per document as in LDA. Also, in

our parameter-estimation, we are able to optimize a vari-
ational lower-bound on the observed data log-likelihood by
marginalizing the theme weights in the complete-data log-
likelihood. In addition, we extend this model to sequential
data by performing multi-scale analysis.

In our work, we use the Poisson distribution to model
word counts not only because it is a natural choice for counts-
data, but also because it is amenable to sequence modeling
through Bayesian multiscale analysis. Bayesian multiscale
models for Poisson processes were first introduced by Ko-
laczyk [8] and were applied to model physical phenomena
such as gamma ray bursts. Nowak extended multiscale anal-
ysis to build multiscale hidden Markov models and applied
it to the problem of image segmentation [9]. Nowak and
Kolaczyk also presented multiscale analysis for the Poisson
inverse problem [10], which is the problem of estimating la-
tent Poisson means based on observed Poisson data, whose
means are related to the latent Poisson means by a known
linear function. In this paper, we cast the problem of topic
discovery in document collections as a Poisson inverse prob-
lem. Unlike in the work of Nowak and Kolaczyk [10], we
do not assume that the linear relationship between the la-
tent Poisson parameters and observed Poissons is known,
which makes the problem slightly more complex. Hence, we
use variational approximations to estimate the parameters
of the model. We also extend the analysis to multi-scale rep-
resentation of the Poisson parameters, thereby allowing us
to model temporal evolution of topics at various time-scales.

3. MULTISCALE TOPIC TOMOGRAPHY
MODEL

3.1 Assumptions and Notations
Following standard notation, we use bold faced letters to

represent vectors and matrices and regular font to indicate
scalars.

We assume that our document collection is sorted in the
ascending order of the publication dates of the documents.
We also assume that the sorted collection is divided into 2S

equal-sized chunks (where S is an integer) of size M each,
with the chunks {C0, · · · , C2S

−1} indexed in the ascending
order of time. Thus, each chunk Ct represents an epoch of
time t ranging from the publication date of its earliest pub-
lished document d = 1 to the publication date of its latest
document d = M . Henceforth, we will use the term epoch to
also denote the chunk of documents Ct that it corresponds
to. We represent each document d in an epoch t by a vec-
tor of term counts ntd = {ntd1, · · · , ntdV } where ntdw is the
count of word w in document d from epoch t, and V is the
vocabulary size.

We use non-homogeneous Poisson processes to model evo-
lution of topics with time. Accordingly, each epoch t is asso-
ciated with its unique word generating Poisson parameters
given by µt = {µt1, · · · ,µtK} corresponding to K topics.
Again each µtk is a a vector of Poisson means over the
vocabulary given by {µtk1, · · · , µtkV }. Thus, the parame-
ter µtkw represents the expected number of counts of word
w from topic k during the epoch t. Unlike in LDA where
topics are represented as multinomial distributions over the
vocabulary, we represent topics as vectors of Poisson means
over the vocabulary µtk. The variation in the values of the
Poisson means of a particular topic as a function of t will
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Figure 1: The intuitive idea of Topic Tomography

provide us information on the evolution of the topic content
with time.

We use the terms Poisson rate, Poisson mean and Poisson
parameter interchangeably in the rest of the paper.

3.2 Generative process

3.2.1 Data generation
Given the Poisson parameters for each epoch, we gener-

ate the data as follows. For each epoch t and topic k, we
first generate the topic-weights vector θtk from a Dirichlet
distribution, where θtk = {θtk1, · · · , θtkM} is a multinomial
distribution over the documents in the corresponding chunk
Ct. Each component of the multinomial, θtkd, represents
the degree to which the document d ‘captures’ the topic k.
Then, for each document d in the chunk and for each word
w, we generate the counts ntdw using a Poisson distribution
whose mean is given by

P

k θtkdµtkw, a weighted combina-
tion of the Poisson means of all the topics corresponding to
that word. The generative process is presented more pre-
cisely below.

1. For each epoch t = 0, · · · , 2S − 1

2. For each topic k = 1, · · · ,K

3. Generate θtk ∼ Dir( · | α)

4. For each document d = 1 , · · · ,M

5. For each word w = 1, · · · , V

6. Generate ntdw ∼ Poiss( · |
P

k
θtkdµtkw)

Note that the topic-weights in the linear combination do
not sum to 1 since θtkd represents P (d|k), the probability
that the topic k appears in document d and not P (k|d), the
probability that the document discusses the topic k, as de-
fined in LDA. An intuitive way to understand the new model
would be to think of each topic as an emission from a source,
and the documents as sinks that share the topic emissions
amongst themselves. Thus the new model captures how the
topic is sectioned among the documents in a given epoch,
hence the name Topic Tomography. This idea is illustrated
in figure 1.

The generative process of the observed data is graphically
represented in figure 2. Accordingly, the data likelihood
given the Poisson parameters is given by:

P (n|θ,µ, α) =
2S

−1
Y

t=0

{
K
Y

k=1

Dir(θtk|α)

×

M
Y

d=1

V
Y

w=1

Poiss(ntdw|
X

k

θtkdµtkw)} (1)

K

nα
V V

K

µ

2
S

θ

M

Figure 2: Graphical representation of data generation
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ters for the case S=2

3.2.2 Parameter generation
The process described above is already a complete genera-

tive process for a document collection. However, we have not
yet defined how the Poisson parameters of different epochs
are related to each other. In this section, we define a mul-
tiscale generative process for the Poisson parameters that
allows us to model temporal evolution of topics. First, we
define multiscale wavelet parameters given by a binary tree
representation as shown below:

µ
(S)
t = µt for t = 0, · · · , 2S − 1 (2)

µ
(s)
t = µ

(s+1)

(2t) + µ
(s+1)

(2t+1)

for s = 0, .., S − 1 and t = 0, .., 2s − 1 (3)

where the index s is called the scale and corresponds to the
depth of the tree. The highest scale of resolution given by S
corresponds to the leaves of the binary tree, where each leaf
node represents an epoch. The multiscale Poisson parame-

ters µ
(S)
t at each leaf node t ∈ {0, · · · , 2S − 1} are set equal

to the Poisson parameters corresponding to the respective
epoch t. At any lower scale of resolution (0 ≤ s ≤ S − 1),
the Poisson parameter at node t ∈ {0, · · · , 2s − 1}, given by

µ
(s)
t , is set equal to sum of the corresponding parameters at

its two children. The parameters µ
(s)
t defined this way are

known as the unnormalized Haar wavelet scaling coefficients
of µt [9]. The multi-scale Poisson parameters are pictorially
represented in figure 3.

While each leaf node in the tree corresponds to an epoch,
any non-leaf node at scale 0 ≤ s ≤ S − 1 corresponds to a
larger epoch of time whose span ranges the epochs of the
leaf nodes to which it is an ancestor. At scale s = 0, we
have only the root node whose epoch spans the time-period
of the entire collection and the Poisson parameters at this
scale correspond to the average topic representation for the
whole corpus. As we descend down the tree to a higher scale
of resolution s, we have 2s nodes at that scale with shorter
epochs for each node and a breadth-wise traversal from left
to right gives us the evolution of topics at that scale.

Now, we also define the canonical multiscale parameters



β
(s)
t as follows.

β
(s)
t =

µ
(s+1)

(2t)

µ
(s)
t

for s = 0, .., S − 1 and t = 0, · · · , 2s − 1 (4)

In other words, at each scale s (except s = S) and for each

node t at that scale, β
(s)
t represents the ratio of the Poisson

parameter at the left child and that at the node under con-
sideration. The canonical parameters are also called split-
ting factors since they govern how the multiscale parameter

µ
(s)
t is ‘split’ between its children. We can also invert the

relation in Eq. (4) to obtain

µ
(s)

(2t)
= β

(s−1)
t × µ

(s−1)
t (5)

µ
(s)
(2t+1) = µ

(s−1)
t − µ

(s)
(2t) (6)

for s = 1, · · · , S and t = 0, · · · , 2s−1 − 1

where we obtained Eq. (6) from Eq. (3). The canonical
parameters are represented at the edges of the binary tree
in figure 3 to indicate that they are a function of the Poisson
parameters at the two nodes that share the respective edges.
We will later show that one can factor the joint likelihood
of the observed data under the independent Poissons as a
multi-scale likelihood using the canonical parameters.

Note that setting β
(s)
t = 0.5 is equivalent to the relation

µ
(s+1)

(2t)
= µ

(s+1)

(2t+1)
meaning the multiscale Poissons that share

the same parent are equal. This relation should immediately
delight a Bayesian statistician, since we can conveniently
encode our prior information that the Poisson parameters
of a given topic are expected to be more or less the same
over various epochs (in other words, topics do not change too
drastically with time), by imposing a symmetric, conjugate

prior on β
(s)
t .

Given this background, the generative process for the Pois-
son parameters is as shown below.

1. For each topic k = 0, · · · ,K

2. For each word w = 1 , · · · , V

3. Generate µ
(0)
0kw ∼ Gamma(·|λµ, δµ)

4. For each scale s = 0, · · · , S − 1

5. For each epoch t = 0, · · · , 2s − 1

6. Generate β
(s)
tkw ∼ Beta(·|δβ , δβ)

We used the Gamma distribution to generate the Poisson
parameters since it is a conjugate prior to the Poisson. We
will later show that the observed data log-likelihood can be
factored into a multiscale log-likelihood in which the canon-
ical parameters act as binomial parameters. Hence we used
the Beta distribution, their natural conjugate prior, to gen-
erate them. In particular, the symmetric Beta ensures that
the topic evolution remains smooth.

The prior probability of the model parameters given the
hyperparameters δ = {λµ, δµ, δβ} is then given as follows:

P (µ|δ) =

K
Y

k=1

V
Y

w=1

{Gamma(µ
(0)
0kw |λµ, δµ)

×
S−2
Y

s=0

2s
−1
Y

t=0

Beta(β
(s)
tkw|δβ , δβ)} (7)

β

n

V
M

θ
K

µ

n

V
M

θ
K

µ

n

V
M

θ
K

µ

n

V
M

θ
K

µ

α

s=1
t=0

s=1
t=1

s=0
t=0

s=0
t=1

s=0
t=2

s=0
t=3

s=2
t=0

V
K

β
 µ

 µ

 µ
β

Figure 4: Graphical representation of MTTM for S=2:

we purposely omitted the hyper-parameters in the figure for

clarity.

The generative process of the data as well as the model
parameters together is represented graphically in figure 4.
Combining Eq. (1) and Eq. (7), one can compute the
marginal likelihood of the observed data given the topic pa-
rameters and the hyper-parameters of the priors as follows.

P (n|µ, α, δ) =

Z

θ
{P (n|θ,µ, α)dθ}P (µ|δ)

= P (n|µ, α)P (µ|δ) (8)

3.3 Variational EM
Since estimating the parameters of the model is intractable,

we use variational EM to estimate the parameters of the
model [7]. We only summarize the results below but the
interested reader may refer to appendix A for more details.

3.3.1 Variational E-step
We introduce variational parameters given by γtkd and

φtdwk, to approximate the observed data log-likelihood given
in Eq. (8). One can think of the γtkd as proportional to the
posterior probability that document d of epoch t captures
topic k. φtdwk can be interpreted as the posterior probability
that word w in document d of epoch t came from topic k.
We estimate them by maximizing a variational lower-bound
of Eq. (8) with respect to the variational parameters. We
summarize the results in Eq. (9) and Eq. (10) below, with
details in appendix A.

φtdwk ∝ µ
(S−1)
tkw exp(ψ(γtkd) − ψ(

M
X

d=1

γtkd)) (9)

γtkd = α+
V
X

w=1

ntdwφtdwk (10)

3.3.2 Variational M-step
In the M-step, we estimate the model parameters, namely

µ. Instead of directly estimating the parameters µ
(S)
tkw by

maximizing the variational lower-bound of Eq. (8) with re-
spect to these parameters, we express the likelihood in a
slightly different form so as to be able to estimate the multi-

scale parameters µ
(s)
tkw for 0 ≤ s ≤ S. Since, we are only

interested in estimating µ in the M-step, we collect all the
terms in the variational lower-bound of Eq. (8), given by



Eq. (19) in the appendix, that contain µ
(S)
tkw and call the

expression L[µ] as shown below.

L[µ] =

2S
−1
X

t=0

V
X

w=1

K
X

k=1

{−µ
(S)
tkw + log µ

(S)
tkw

M
X

d=1

ntdwφtdwk}

=
2S

−1
X

t=0

V
X

w=1

K
X

k=1

{−µ
(S)
tkw + ztwk log µ

(S)
tkw} (11)

µ
≡

2S
−1
X

t=0

V
X

w=1

K
X

k=1

log Poiss(ztwk|µ
(S)
tkw) (12)

where ztwk is the latent count of the word w in topic k in the
entire chunk of documents corresponding to epoch t (corre-

sponding to scale S) and is given by ztwk =
PM

d=1 ntdwφtdwk.

Although we showed that ztwk ∼ Poiss(·|µ
(S)
tkw) by simple al-

gebraic manipulation, it is also possible to prove it theoret-
ically. This proof is presented in appendix B.

In Eq. (12), the notation
µ
≡ indicates that its left-hand-

side is equal to its right-hand-side as far as the terms con-
taining µ are concerned. Note that Eq. (11) and Eq. (12)
differ by the factor

P

t

P

w

P

k
log(ztwk!) but since it doesn’t

contain µ, it does not affect our estimation. Also note that
one may round-off ztwk to the nearest integer to account for
the fact that the Poisson generates only integers, but this
plays no major role in terms of estimating µ.

We now define a new multi-scale variable z
(s)
twk on the same

lines as the multiscale parameters as follows. We will show
shortly that L[µ] can be expressed in terms of this variable.

z
(S)
twk = ztwk for t = 0, · · · , 2S − 1 (13)

z
(s)
twk = z

(s+1)
(2t)wk

+ z
(s+1)
(2t+1)wk

(14)

for s = 0, .., S − 1 and t = 0, .., 2s − 1

The simplified version of L[µ] in (12) can be equivalently
expressed in terms of the multiscale parameters as shown
below.

L[µ] =
2S

−1
X

t=0

V
X

w=1

K
X

k=1

log Poiss(ztwk|µ
(S)
tkw)

=

S−1
X

s=0

2s
−1
X

t=0

V
X

w=1

K
X

k=1

log Bin(z
(s+1)
(2t)wk

|β
(s)
tkw, z

(s)
twk)

+
V
X

w=1

K
X

k=1

log Poiss(z
(0)
0wk|µ

(0)
0kw) (15)

The proof for the above transformation is sketched in ap-
pendix C. We do a MAP estimate of the multiscale param-
eters using Eq. (15) and the priors defined in Eq. (7) to
obtain the following relations.

β
(s)
tkw =

z
(s+1)

(2t)wk
+ δβ − 1

z
(s)
twk + 2(δβ − 1)

(16)

µ
(0)
tkw =

z
(0)
0wk + λµ − 1

1 + δµ

(17)

4. EXPERIMENTS

4.1 Analysis of Science
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Figure 7: Evolution of content bearing words in the topic

“Particle physics”: the words “atom”, “electron” and “quan-

tun” gain prominence with time, while words such as “heat”

and “gas” lose ground, indicating a paradigm shift in the field

from macro-matter to micro-matter.

We analyzed a subset of 30,000 articles from Science, 250
from each of the 120 years between 1883 and 2002. This
is essentially the same data used by Blei and Lafferty in
their experiments with the DTM [3]. We divided the data
into 16 chunks, each consisting of 1875 documents. Each of
these chunks represents a 15 year epoch. We then trained
a 50 topic 5-scale topic tomography model on this dataset
with the following values for the hyper-parameters : (λµ =
1.0001; δµ = 1; δβ = 50;α = 0.8). The large value of δβ

ensures that the Poisson parameters of adjacent epochs are
nearly equal, resulting in a smooth evolution of topics.

Figure 5 shows the multi-scale representation of topic which
we labeled “particle physics”. We only displayed the top 10
terms that had the highest Poisson means in that topic.
The root node of the binary tree corresponds to s = 0, and
it represents the summary of the topic over the entire 120
year span of the collection. At the highest scale (s = 3)
displayed, each node presents a snap-shot summary of the
topic in a 15 year period (Note that owing to space con-
straints, we did not display the highest scale of resolution
s = 4). Thus, the user can choose one of the four scales of
resolution depending on the desired granularity. Inspecting
the topic snap-shots at the scale s = 3, one can easily gain
an understanding of the evolution of the topic. The gradual
transition in the topic from macro-matter to micro-matter is
more apparent from figure 7, which plots the Poisson rates
of a few representative words as a function of time. Table 1
lists the titles of documents that have the highest value of
the posterior Dirichlet parameter γtkd among all documents
in each epoch. In other words, these are the documents
in which the topic particle-physics appears with the high-
est probability in each epoch. The shift in the topic is also
evident from these titles.

In figure 6, we displayed the multiscale representation of
another topic, which we labeled “genetics”. An examination
of the topic snapshots at scale s = 3 clearly shows a gradual
transition from evolutionary biology in the late 19th cen-
tury to modern genetics in the early 21st century. Figure 8
plots the popularity of a few representative terms with time.
Table 2, that displays the titles of documents in which the
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has gone down. Words not colored have retained their position compared to previous epoch.
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Figure 6: A 4-scale representation of the topic “Genetics”: the color code is same as above.



1890 “The Cause of Motion in the Radiometer”
1903 “Electricity at High Pressures”
1927 “Ionization by Positive Ions”
1936 “The Production of Cosmic Ray Showers”
1949 “Luminescent Solids (Phosphors)”
1964 “Mossbauer Effect in Chemistry and Solid-State Physics”
1978 “Analytical Chemistry: Using Lasers to Detect Less and Less”
1992 “Vibrational Modes and the Dynamic Solvent Effect in Electron and Proton Transfer”

Table 1: Documents in which the topic “Particle-physics” appears with the highest probability in each of the epochs

1893 “A Space-Relation of Numbers”
1911 “‘Genotype” and “Pure Line””
1922 “Spermatogenesis of the Garter Snake”
1941 “The Artificial Synthesis of a 42-Chromosome Wheat”
1949 “Cytological Evidence Opposing the Theory of Brachymeiosis in the Ascomycetes”
1965 “Bipolarity of Information Transfer from the Salmonella typhimurium Chromosome”
1979 “Distribution of RNA Transcripts from Structural and Intervening Sequences of the Ovalbumin Gene”
2000 “DNA Replication Fork Pause Sites Dependent on Transcription”

Table 2: Documents in which the topic “Genetics” appears with the highest probability in each of the epochs
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Figure 8: Evolution of content bearing words in the topic

“Genetics”: it is apparent from the figure that words related

to modern genetics such as ‘dna’, ‘clone’ and ‘gene’ exhibit

higher emission rates in the late 1990’s while words related

to evolutionary biology such as ‘group’ and ‘species’ taper off

with time. Interestingly, the word ‘dna’ starts coming into

prominence only in in the 1950’s, just around the time when

it was discovered.
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Figure 9: Occurrence probability of topics with time: we

plotted the statistic γtk for the two topics we analyzed ear-

lier, namely “particle physics” and “genetics” and for three

other topics, which we identified as “agricultural science”,

“neuroscience” and “climate change”. The plot reveals some

interesting patterns. For example, while agricultural science

remains more or less stable with time, we see an explosion

of genetics in the 1990’s. The topics of climate change, atomic

physics and neuroscience also exhibit an increasing prominence

in the late 20th century, consistent with the trends in the

real-world.

topic appears with the highest probability in each epoch,
demonstrates a very similar pattern of topic evolution.

In figure 9, we plotted another interesting statistic, namely
the sum of the posterior Dirichlet parameters of a topic k
over all documents in each epoch t given by γtk =

P

d
γtkd,

as a function of t. This statistic is proportional to the occur-
rence frequency of a topic in a given epoch. We normalized
this statistic, so that one can interpret the plot as the prob-
ability of occurrence of a topic as a function of time, similar
to the plots in [13].

Finally, in figure 10, we plot the Poisson rates of the word
‘reaction’ in three different topics and compared with the to-
tal counts in each epoch. The plot clearly demonstrates the
utility of the topic model in disambiguating an ambiguous
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Figure 10: Occurrence rate of “reaction” in three different

topics: the word ‘reaction’ could have several meanings de-

pending on the context in which it is used. In this plot, we

see that it is resolved into three topics - ‘particle physics’,

‘blood tests’ and ‘chemistry’. While the topic ‘chemistry’ ac-

counts for the majority of occurrences of the word ’reaction’,

it also occurs at a much lower rate in the context of ‘blood

tests’ and ‘particle physics’, where it assumes different con-

notations. One would not be able to see this from a simple

plot of overall occurrence counts of the word (which is also

displayed above.)

word based on its context.

4.2 Perplexity
Perplexity is a standard objective metric that measures

the ability of a model to predict unseen data. Lower per-
plexity means better predictiveness and a better model. In
case of documents, the average perplexity of a word in a test
set Dtest comprising M documents is defined as

Perplexity(Dtest|M) = 2
(
− log P(ntest|M)
P

M
d=1

P

V
w=1 ndw

)

(18)

where ntest is the entire vector of observed word counts in
the test set and M is the model.

In this section, we compare the perplexity of the topic
tomography model with that of LDA. Note that these two
models generate completely different events: while the for-
mer models counts-data (e.g.: 2 a’s and 3 b’s), the latter
models one particular instance of the counts vector (e.g.:
‘aabbb’). In order to be able to make a fair comparison, we
added the multinomial normalizing coefficient
(
P

w
ndw)!/(

Q

w
(ndw!)) for each document in the expression

for LDA likelihood. This term converts the probability of a
string to the probability of the corresponding counts vector
allowing us to directly compare the perplexities of both the
models. Hence the perplexity numbers we show in the plots
for LDA may not directly correspond to the values obtained
by previous authors [2, 3].

For our experiments, we split the data timewise into 8
chunks each spanning 15 years and compirsing 3750 docu-
ments as done in section 4.1. We further randomly split each
chunk into equal halves to generate training and test sets.
The train and test sets each have 8 chunks, each of which
spans 15 years but consists of only 1875 documents.

We consider three variants of the topic tomography model

in our experiments.
The first variant, which we call basic TT, is the closest

counterpart to LDA. In this model, we completely ignore
the multiscale analysis and assume that the entire training
(or test) set represents a single epoch. We estimate one set
of Poissons for the entire collection, using no prior distri-
butions on the Poisson parameters. The learned model is
used to estimate perplexity on the test set, which is done by
running the E-step of the variational EM algorithm. The
second variant, which we name multiple TT model, relaxes
the assumption of the basic TT model and estimates topic
Poissons for each of the 8 epochs in the training set sep-
arately. However, it still does not perform any multiscale
analysis and uses no priors on the Poisson means. For each
chunk in the test set, we predict the model’s perplexity by
running the E-step of the variational EM with respect to
the model parameters corresponding to the same epoch in
the training set. The last variant is the complete multiscale
topic tomography model with multiscale analysis using beta
priors on the multiscale binomials with hyper-parameters
set at the same values used in section 4.1.

For LDA baseline, we used the standard version that es-
timates a single set of topic multinomials for the whole col-
lection. For all the aforementioned models, we fixed the
Dirichlet parameter at 0.8 to encourage sparsity of topics.

Figure 11 compares the perplexity of LDA with the three
variants of the topic tomography model as a function of the
number of topics used in the model. The figure shows that
both LDA and basic TT are almost identical in performance.
Also notice that multiscale TT has a consistently lower per-
plexity than the multiple TT model. This result justifies the
intuition behind our definition of the priors in the multiscale-
analysis. The priors allow information to propogate from
one epoch to another and hence improve the ability of the
model to predict unseen data in any given epoch. Finally,
we notice that although the multiple TT and the multiscale
TT models have many more parameters than the basic TT
model, they produce a slightly higher perplexity on the test
set compared to the latter. On inspection, we noticed that
the performance comparison on the training data is the ex-
act reverse. This is a clear case of over-fitting, where the
extra parameters in the multiple TT and the multiscale TT
models result in better fitting of the training data, but hurt
its generalization ability compared to the basic TT model.
Notwithstanding this fact, the multiscale model is still very
useful since it allows us to visualize data better, through the
multiscale analysis as we have shown earlier.

5. DISCUSSION
In this work, we presented a new approach to modeling

temporal evolution of topics in a large document collection.
The new approach, based on non-homogeneous Poisson pro-
cesses, combined with multi-scale Haar wavelet analysis is
a more natural way to do sequence modeling of counts-data
than previous approaches. The new model offers us the
best features of both the ToT [13] and DTM [3] models.
While ToT models the probability of occurrence of a topic
with time, DTM models the evolution of topic content. The
topic tomography model permits us to accomplish both at
the same time. In addition, the multiscale analysis used in
the model provides us with an additional ‘zoom’ feature that
permits the user to examine the topic evolution at multiple
scales of resolution.
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One of the limitations of the MTTM lies in its generative
process: since the Dirichlet distribution that generates topic
proportions is defined over the set of documents in a given
epoch, the model permits only generating an entire chunk of
documents whose size is equal to the training set chunk size.
This is the main reason why we used equal sized training and
test sets in our perplexity experiments in section 4.2. We are
no longer able to make inference on a single document at a
time. One way to overcome this limitation is use a Gamma
distribution to generate topic weights for each document
independently as done in the Gap model. However, multi-
scale analysis using the Gamma distributed weights becomes
tricky due to the coupling between the Poisson parameters
and the Gamma weights. In our case, we were able to un-
couple the Poisson parameters from the topic proportions
using the relation

P

d
θtkd = 1 (see Eq. (19) in appendix

A). Nevertheless, we intend to construct a variational al-
gorithm for multi-scale analysis using a Gap like model, as
part of our future work.
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APPENDIX

A. VARIATIONAL INFERENCE
We define the following variational bounds on the log-

likelihood of the observed data using Jensen’s inequality for
the log function as shown below.

logP (n, |α,µ, δ) =
2S

−1
X

t=0

log(

Z

θt

{

 

K
Y

k=1

Dir(θtk|α)

!
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Y

d=1

V
Y

w=1

Poiss(ntdw|
X

k

θtkdµ
(S)
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ntdwH(φtdw)} + logP (µ|δ) (19)

where in Eq. (19), we used the relation
PM

d=1 θtkd = 1



while q(θtk|γtk) and φtdw are variational posterior dirich-
let and variational multinomial distributions respectively,
Eq[X] represents the expectation of the random variable X
with respect to the distribution q(). H() represents the en-
tropy of the distribution in its argument.

The terms in Eq. (19) can be expanded as follows.

Eq[log P (θtk|α)] = Γ(Mα) −MΓ(α) +
X

d

(α− 1)

(ψ(γtkd) − ψ(
X

d

γtkd)) (20)

Eq[log θtkd] = ψ(γtkd) − ψ(
X

d

γtkd) (21)

H(q(θtk|γtk)) =
X

d

log Γ(γtkd) − log Γ(
X

d

γtkd)

−
X

d

(γtkd − 1)(ψ(γtkd) − ψ(
X

d

γtkd))

(22)

H(φtdw) = −
X

k

φtdwk log φtdwk (23)

Plugging back these expansions in Eq. (19) and calling the
expression obtained by collecting terms that contain φtdwk,
L[φtdwk], we have:

L[φtdwk] = ntdwφtdwk(log µ
(S)
tkw + ψ(γtkd) − ψ(

X

d

γtkd)

− log φtdwk) (24)

Taking the partial derivative of L[φtdwk] with respect to
φtdwk gives:

∂L[φtdwk]

∂φtdwk

= ntdw(log µ
(S)
tkw + ψ(γtkd) − ψ(

X

d

γtkd)

− log φtdwk − 1) (25)

Setting the partial derivative to zero and solving yields the
maximizing value of the variational parameter φtdwk as shown
in Eq. (9).

Similarly, collecting the terms in Eq. (19) that contain
γtkd into L[γtkd ], we get:

L[γtkd ] = (ψ(γtkd) − ψ(
X

d

γtkd))(α+
X

w

ntdwφtdwk

− γtkd) + log Γ(γtkd) − log Γ(
X

d

γtkd) (26)

Taking the partial derivative of L[γtkd ] with respect to γtdk

gives:

∂L[γtkd]

∂γtkd

= (ψ′(γtkd) − ψ′(
X

d

γtkd))

(α+
X

w

ntdwφtdwk − γtkd) (27)

Equating the partial derivative to zero results in the maxi-
mizing expression for γtkd shown in Eq. (10).

B. PROOF THAT ZTWK IS A POISSON VARI-
ABLE WITH MEAN µ

(S)
TKW

We first start with noting that the counts of a word w in
a document d from epoch t is distributed as

ntdw ∼ Poiss(·|
X

k

θtkdµ
(S)
tkw)

Now, let us define the variable ztdwk denoting the latent
counts of the word w from topic k in the same document.
Now clearly,

P

k
ztdwk = ntdw. Since the summation of

two independent Poisson random variables is also a Poisson
variable with mean equal to the sum of the means of the
original random variables, we can infer that

ztdwk ∼ Poiss(·|θtkdµ
(S)
tkw)

Now ztwk is the latent counts of the word w from topic k in
the whole chunk that corresponds to epoch t. Therefore, by
definition it follows that

ztwk =
M
X

d=1

ztdwk

∼ Poiss(·|

M
X

d=1

θtkdµ
(S)
tkw)

= Poiss(·|µ
(S)
tkw

M
X

d=1

θtkd) = Poiss(·|µ
(S)
tkw) (28)

C. MULTISCALE FACTORIZATION
We first note the result that the joint probability of two

independent Poisson variables x1 and x2 can be equivalently
expressed as a product of a binomial and a Poisson as fol-
lows.

Poiss(x1|µ1)Poiss(x2|µ2)

=
exp(−(µ1 + µ2))µ

x1
1 µx1

1

x1!x2!

=
(x1 + x2)!

x1!x2!
(

µ1

µ1 + µ2
)x1(

µ2

µ1 + µ2
)x2

×
exp(−(µ1 + µ2))(µ1 + µ2)

x1+x2

(x1 + x2)!

= Bin(x1|x1 + x2,
µ1

µ1 + µ2
)

× Poiss(x1 + x2|µ1 + µ2)

Applying this result to the Poisson likelihood terms in left-
hand-side of Eq. (15) recursively results in its right-hand-
side.


