
Bias-Variance in Machine 
Learning 



Bias-Variance: Outline 

•  Underfitting/overfitting: 
–  Why are complex hypotheses bad? 

•  Simple example of bias/variance 
•  Error as bias+variance for regression 

–  brief comments on how it extends to classification 

•  Measuring bias, variance and error 
•  Bagging - a way to reduce variance 
•  Bias-variance for classification 



Bias/Variance is a Way to Understand 
Overfitting and Underfitting 

Error/Loss on 
training set Dtrain 

Error/Loss on an 
unseen test set Dtest 

high error 
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complex classifier simple classifier 

“too simple” 
“too complex” 



Bias-Variance: An Example 



Example 
Tom Dietterich, Oregon St 



Example 
Tom Dietterich, Oregon St 

Same experiment, repeated:  
with 50 samples of 20 points each 



The true function f 
can’t be fit 
perfectly with 
hypotheses from 
our class H 
(lines) è Error1 

We don’t get the 
best hypothesis 
from H because 
of noise/small 
sample size è 
Error2 

Fix: more 
expressive set of 
hypotheses H 

Fix: less 
expressive set of 
hypotheses H 

noise is similar 
to error1 



Bias-Variance Decomposition: 
Regression 



Bias and variance for regression 

•  For regression, we can easily decompose 
the error of the learned model into two 
parts: bias (error 1) and variance (error 2) 
– Bias: the class of models can’t fit the data.  

•  Fix: a more expressive model class. 

– Variance: the class of models could fit the 
data, but doesn’t because it’s hard to fit. 

•  Fix: a less expressive model class. 



Bias – Variance decomposition of error  
 

learned from D  

( ){ } )()( 2
, xhxfE DD −+εε

true 
function 

dataset and 
noise  

Fix test case x, then do this experiment: 

1. Draw size n sample D=(x1,y1),….(xn,yn) 

2. Train linear regressor hD using D 

3. Draw one test example (x, f(x)+ε) 

4. Measure squared error of hD on that example x 

What’s the expected error? 
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noise 



Bias – Variance decomposition of error  
 

learned from D  

ED,ε  f (x)+ε − hD (x)( )2  { }

true 
function 

dataset and 
noise  
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noise 

)}({ xhEh DD≡

)(ˆˆ xhyy DD ≡=

Notation - to simplify this 
 

f ≡ f (x)+ε

long-term expectation of learner’s prediction 
on this x averaged over many data sets D 



Bias – Variance decomposition of error  
 

ED,ε  ( f − ŷ)2  { }
= E  [ f − h]+[h− ŷ]( )2  { }
= E  [ f − h]2 +[h− ŷ]2 + 2[ f − h][h− ŷ] { }
= E  [ f − h]2 +[h− ŷ]2 + 2[ fh− fŷ− h2 + hŷ] { }
= E[( f − h)2 ]+E[(h− ŷ)2 ]+ 2 E[ fh]−E[ fŷ]−E[h2 ]+E[hŷ]( )  

)}({ xhEh DD≡
)(ˆˆ xhyy DD ≡=

f ≡ f (x)+ε

ED,ε f (x)+ε( )*ED hD (x){ }{ }
= ED,ε f (x)+ε( )*hD (x){ }

ED,ε ED hD (x){ }*ED hD (x){ }{ }
= ED,ε ED hD (x){ }*hD (x){ }



Bias – Variance decomposition of error  
 

ED,ε  ( f − ŷ)2  { }
= E  [ f − h]+[h− ŷ]( )2  { }
= E  [ f − h]2 +[h− ŷ]2 + 2[ f − h][h− ŷ] { }
= E[( f − h)2 ]+E[(h− ŷ)2 ] 

Squared difference btwn our long-
term expectation for the learners 
performance, ED[hD(x)], and what 
we expect in a representative run 

on a dataset D (hat y) 

Squared difference 
between best possible 

prediction for x,  f(x), and 
our “long-term” expectation 
for what the learner will do 
if we averaged over many 

datasets D, ED[hD(x)] 

)}({ xhEh DD≡
)(ˆˆ xhyy DD ≡=

BIAS2 

VARIANCE 
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f ≡ f (x)+ε



bias 

variance 

x=5 



Bias-variance decomposition 

•  This is something real that you can (approximately) 
measure experimentally 
–  if you have synthetic data 

•  Different learners and model classes have different 
tradeoffs 
–  large bias/small variance: few features, highly 

regularized, highly pruned decision trees, large-k k-
NN… 

–  small bias/high variance: many features, less 
regularization, unpruned trees, small-k k-NN… 



Bias-Variance Decomposition: 
Classification 



A generalization of bias-variance 
decomposition to other loss functions 

•  “Arbitrary” real-valued loss L(y,y’)  
But L(y,y’)=L(y’,y), L(y,y)=0,  
and L(y,y’)!=0 if y!=y’ 

•  Define “optimal prediction”:  
y* = argmin y’ L(t,y’) 

•  Define “main prediction of learner” 
ym=ym,D = argmin y’ ED{L(y,y’)} 

•  Define “bias of learner”: 
Bias(x)=L(y*,ym) 

•  Define “variance of learner”  
Var(x)=ED[L(ym,y)] 

•  Define “noise for x”: 
N(x) = Et[L(t,y*)] 

Claim:  
ED,t[L(t,y) = c1N(x)+Bias(x)+c2Var(x) 
where  
c1=PrD[y=y*] - 1 
c2=1 if ym=y*, -1 else 

m=|D| 

Domingos, A Unified Bias-Variance Decomposition and its Applications, ICML 2000 

For 0/1 loss, the main prediction is 
the most common class predicted by 
hD(x), weighting h’s by Pr(D) 



Bias and variance 

•  For classification, we can also decompose 
the error of a learned classifier into two 
terms: bias and variance 
– Bias: the class of models can’t fit the data.  
– Fix: a more expressive model class. 
– Variance: the class of models could fit the data, 

but doesn’t because it’s hard to fit. 
– Fix: a less expressive model class. 



Bias-Variance Decomposition: 
Measuring 



Bias-variance decomposition 

•  This is something real that you can (approximately) 
measure experimentally 
–  if you have synthetic data 
– …or if you’re clever 

–  You need to somehow approximate ED{hD(x)} 
–  I.e., construct many variants of the dataset D 



Background: “Bootstrap” sampling 

•  Input: dataset D 
•  Output: many variants of D: D1,…,DT 

•  For t=1,….,T: 
– Dt  = { } 
– For i=1…|D|: 

• Pick (x,y) uniformly at random from D  (i.e., 
with replacement) and add it to Dt 

• Some examples never get picked (~37%) 
• Some are picked 2x, 3x, …. 



Measuring Bias-Variance with 
“Bootstrap” sampling 

•  Create B bootstrap variants of D (approximate many draws of D) 

•  For each bootstrap dataset 
–  Tb is the dataset; Ub are the “out of bag” examples 
–  Train a hypothesis hb on Tb 

–  Test hb on each x in Ub 

•  Now for each (x,y) example we have many predictions 
h1(x),h2(x), …. so we can estimate (ignoring noise) 

–  variance: ordinary variance of h1(x),….,hn(x) 
–  bias: average(h1(x),…,hn(x)) - y 



Applying Bias-Variance Analysis 

•  By measuring the bias and variance on a 
problem, we can determine how to 
improve our model 
–  If bias is high, we need to allow our model to 

be more complex 
–  If variance is high, we need to reduce the 

complexity of the model 
•  Bias-variance analysis also suggests a 

way to reduce variance: bagging (later) 
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Bagging 



Bootstrap Aggregation (Bagging) 
•  Use the bootstrap to create B variants of D 
•  Learn a classifier from each variant 
•  Vote the learned classifiers to predict on a test 

example 



Bagging (bootstrap aggregation) 
•  Breaking it down: 

–  input: dataset D and YFCL 
–  output: a classifier hD-BAG 

–  use bootstrap to construct variants D1,…,DT 

–  for t=1,…,T: train YFCL on Dt to get ht 

–  to classify x with hD-BAG 

•  classify x with h1,….,hT and predict the most 
frequently predicted class for x (majority vote) 

Note that you can use any 
learner you like! 

You can also test ht on the 
“out of bag” examples 



Experiments 
Freund and Schapire 



Bagged, minimally pruned decision trees 
 





Generally, bagged 
decision trees 

outperform the linear 
classifier eventually if 

the data is large 
enough and clean 

enough. 



Bagging (bootstrap aggregation) 

•   Experimentally: 
– especially with minimal pruning: decision trees 

have low bias but high variance.  
– bagging usually improves performance for 

decision trees and similar methods 
–  It reduces variance without increasing the bias 

(much). 



More detail on bias-variance and 
bagging for classification 

Thanks Tom Dietterich MLSS 2014 



A generalization of bias-variance 
decomposition to other loss functions 

•  “Arbitrary” real-valued loss L(y,y’)  
But L(y,y’)=L(y’,y), L(y,y)=0,  
and L(y,y’)!=0 if y!=y’ 

•  Define “optimal prediction”:  
y* = argmin y’ L(t,y’) 

•  Define “main prediction of learner” 
ym=ym,D = argmin y’ ED{L(y,y’)} 

•  Define “bias of learner”: 
Bias(x)=L(y*,ym) 

•  Define “variance of learner”  
Var(x)=ED[L(ym,y)] 

•  Define “noise for x”: 
N(x) = Et[L(t,y*)] 

Claim:  
ED,t[L(t,y) = c1N(x)+Bias(x)+c2Var(x) 
where  
c1=PrD[y=y*] - 1 
c2=1 if ym=y*, -1 else 

m=|D| 

Domingos, A Unified Bias-Variance Decomposition and its Applications, ICML 2000 

For 0/1 loss, the main prediction is 
the most common class predicted by 
hD(x), weighting h’s by Pr(D) 



More detail on Domingos’s model 

•  Noisy channel: yi = noise(f(xi)) 
–  f(xi) is true label of xi 

– Noise noise(.) may change y à y’ 
•  h=hD is learned hypothesis   

–  from D={(x1,y1),…(xm,ym)} 
•  for test case (x*,y*), and predicted label 

h(x*), loss is L(h(x*),y*) 
– For instance, L(h(x*),y*) = 1 if error, else 0 



More detail on Domingos’s model 

•  We want to decompose ED,P{L(h(x*),y*)} 
where m is size of D, (x*,y*)~P 

•  Main prediction of learner is ym(x*)  
– ym(x*) = argmin y’ ED,P{L(h(x*),y’)} 
– ym(x*) = “most common” hD(x*) among all 

possible D’s, weighted by Pr(D) 
•  Bias is  B(x*) = L(ym(x*) , f(x*)) 
•  Variance is V(x*) = ED,P{L(hD(x*) , ym(x*) ) 
•  Noise is N(x*)= L(y*, f(x*)) 



More detail on Domingos’s model 

•  We want to decompose ED,P{L(h(x*),y*)} 
•  Main prediction of learner is ym(x*)  

– “most common” hD(x*) over D’s for 0/1 loss 
•  Bias is  B(x*) = L(ym(x*) , f(x*)) 

– main prediction vs true label 
•  Variance is V(x*) = ED,P{L(hD(x*) , ym(x*) ) 

–  this hypothesis vs main prediction 
•  Noise is N(x*)= L(y*, f(x*)) 

–  true label vs observed label 



More detail on Domingos’s model 

•  We will decompose ED,P{L(h(x*),y*)} into 
– Bias is  B(x*) = L(ym(x*) , f(x*)) 

•  main prediction vs true label 
•  this is 0/1, not a random variable 

– Variance is V(x*) = ED,P{L(hD(x*) , ym(x*) ) 
•  this hypothesis vs main prediction 

– Noise is N(x*)= L(y*, f(x*)) 
•  true label vs observed label 



Case analysis of error 



Analysis of error: unbiased case 

Main 
prediction 
is correct 

Noise but 
no 

variance 

Variance 
but no 
noise 



Analysis of error: biased case 

Main 
prediction 
is wrong 

Noise 
and 

variance 

No noise, 
no 

variance 



Analysis of error: overall 

Interaction terms 
are usually small 

Hopefully we’ll be 
in this case more 

often, if we’ve 
chosen a good 

classifier 



Analysis of error: without noise 
which is hard to estimate anyway 

As with regression, we can experimentally approximately 
measure bias and variance with bootstrap replicates 

Typically break variance down into biased 
variance, Vb, and unbiased variance, Vu. 

Vb 

Vu 



K-NN Experiments 



Tree Experiments 



Tree “stump” experiments  
(depth 2) 

Bias is 
reduced (!) 



Large tree experiments  
(depth 10) 

Bias is not 
changed 

much 

Variance is 
reduced 


