Bias-Variance in Machine
Learning



Bias-Variance: Outline

Underfitting/overfitting:
— Why are complex hypotheses bad?

Simple example of bias/variance

Error as bias+variance for regression
— brief comments on how it extends to classification

Measuring bias, variance and error
Bagging - a way to reduce variance
Bias-variance for classification



Bias/Variance is a Way to Understand
Overfitting and Underfitting
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Bias-Variance: An Example



Example

fitted hypothesis

2 = 6 8

y =X + 2 sin(1.5x) + N(0,0.2)

Tom Dietterich, Oregon St



Example

Tom Dietterich, Oregon St

0 2 4 6 g 10
2 4 6 8

y=Xx+ 2 sin(1 .5X) + N(0,0_Z) Same experiment, repeated:
with 50 samples of 20 points each



true function

noise is similar
to error,

The true function f
can’t be fit
perfectly with
hypotheses from
our class H

(lines) = Error,

Fix: more
expressive set of
hypotheses H

We don’ t get the
best hypothesis
from H because
of noise/small
sample size =
Error,

Fix: less
expressive set of
hypotheses H




Bias-Variance Decomposition:
Regression



Bias and variance for regression

* For regression, we can easily decompose
the error of the learned model into two
parts: bias (error 1) and variance (error 2)

— Bias: the class of models can’ t fit the data.
* Fix: a more expressive model class.

— Variance: the class of models could fit the
data, but doesn’ t because it's hard to fit.

* Fix: a less expressive model class.



Bias — Variance decomposition of error

(f(x)+&-hy(x)) |

/ AR

dataset and true learned from D
noise function noise

Fix test case x, then do this experiment:

1. Draw size n sample D=(x,,y,),....(X,¥,)

2. Train linear regressor hy using D

3. Draw one test example (x, f(x)+¢)

4. Measure squared error of h, on that example x

What' s the expected error?
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Bias — Variance decomposition of error

Notation - to simplify this

f=fx)+e y=Yp=hy(x)
. 1 l \
Ep | (f0)+e=hy(0)" |
dataset and true learned from D

noise function hoise

h = ED {hD (X)} long-term expectation of learner’s prediction

on this x averaged over many data sets D




Bias — Variance decomposition of error

Ep { (F-37}
E{ (Lf-h1+h-31)" |

E{Lf—hP +[h-3F +2[f - hl[h-3] |

=E{[f=hI +[h=3F +2fh- fy-h> +h3] |

= E[(f-h) 1+ E[(h-3)"]1+2

E, {(f(x)+€)*E,{h,(0)}}
=E, {(f(x)+€)*hy(x)]

|- BE5 - ELATT ELT)

v
Ly, {ED {hD (x)} *E), {hD (x)}}

=E, AE, {hy(0)}*hy(x)}



Bias — Variance decomposition of error

Ep{ (f-37 } h=E,ih,(x)}
] ) Y = AD EhD
— { ([f—h]+_h—y_) } %E)]/C(x)+g(X)

E
E{[f-hl’ +[h=-3F +2Lf - hllh-3] |
E[(f - h)’1+El(h- )]

Squared difference \ VARIANCE

between best possible Squared difference btwn our long-
prediction for x, f(x), and term expectation for the learners
our “long-term” expectation performance, Ej[hy(x)], and what
for what the learner will do we expect in a representative run
if we averaged over many on a dataset D (hat y)

datasets D, E [hA(X
- olhp(X)] SIAGE
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Bias-variance decomposition

« This is something real that you can (approximately)
measure experimentally

— if you have synthetic data

* Different learners and model classes have different
tradeoffs

— large bias/small variance: few features, highly

regularized, highly pruned decision trees, large-k k-
NN...

— smalll bias/high variance: many features, less
regularization, unpruned trees, small-k k-NN...



Bias-Variance Decomposition:
Classification



A generalization of bias-variance
decomposition to other loss functions

“Arbitrary” real-valued loss L(y,y’

But L(y,y )=L(y’,y), L(y.,y)=0,
and L(y,y’ )!=0 if yl=y’

Define “optimal prediction”:
y*=argmin , L(ty’)

Claim:

Ep {L(ty) = c,N(x)+Bias(x)+c,Var(x)
where

c=Prply=y" - 1

c,=1ify, =y* -1else

Define “main prediction of learner”
Ym=Ymp = argmin . Ep{L(y,y’)} ~ m=|D|

Define “bias of learner’:

: s For 0/1 loss, the main prediction is
Bias(X)=L(y".ym) the most common class predicted by

Define “variance of learner”  hy(x), weighting h’s by Pr(D)

Var(x)=Ep[L(y,,Y)]
Define “noise for x”:
N(x) = EJL(ty™)]

Domingos, A Unified Bias-Variance Decomposition and its Applications, ICML 2000




Bias and variance

* For classification, we can also decompose
the error of a learned classifier into two
terms: bias and variance
— Bias: the class of models can’ t fit the data.

— Fix: a more expressive model class.

— Variance: the class of models could fit the data,
but doesn’ t because it's hard to fit.

— Fix: a less expressive model class.



Bias-Variance Decomposition:
Measuring



Bias-variance decomposition

« This is something real that you can (approximately)
measure experimentally

— if you have synthetic data
— ...or if you’ re clever

— You need to somehow approximate Efhy(x)}
— l.e., construct many variants of the dataset D



Background: “Bootstrap” sampling

* Input: dataset D
* Output: many variants of D: D,...,D+

e Fort=1,....,T:
-D; ={}
— Fori=1...|D|:

* Pick (x,y) uniformly at random from D (i.e.,
with replacement) and add it to D,

« Some examples never get picked (~37%)
« Some are picked 2x, 3x, ....



Measuring Bias-Variance with
“Bootstrap” sampling

» Create B bootstrap variants of D (approximate many draws of D)
 For each bootstrap dataset

— T, is the dataset; U, are the “out of bag” examples

— Train a hypothesis h, on T,

— Test h, on each x in U

* Now for each (x,y) example we have many predictions
h,(X),h,(X), .... SO we can estimate (ignoring noise)

— variance: ordinary variance of h,(x),....,h (x)
— bias: average(h,(x),...,h (X)) - y



Applying Bias-Variance Analysis

* By measuring the bias and variance on a
problem, we can determine how to
improve our model

— If bias is high, we need to allow our model to
be more complex

— If variance is high, we need to reduce the
complexity of the model
* Bias-variance analysis also suggests a

way to reduce variance: bagging (later)
23



Bagging



Bootstrap Aggregation (Bagging)

« Use the bootstrap to create B variants of D
* Learn a classifier from each variant

* Vote the learned classifiers to predict on a test
example



Bagging (bootstrap aggregation)

* Breaking it down: Note that you can use any
— input: dataset D and YFCL learner you like!

— output: a classifier hp gag

— use bootstrap to construct variants D,,...,D+
— for t=1,...,T: train YFCL on D; to get h,

You can also test h, on the
“out of bag” examples

— to classify x with hpy g6

* classify x with h,,....,h; and predict the most
frequently predicted class for x (majority vote)



Error Rate of C4.5

Experiments

Freund and Schapire
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Tree Induction vs. Logistic Regression: A Learning-Curve Analysis

Claudia Perlich CPERLICH@STERN.NYU.EDU
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Leonard N. Stern School of Business
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New York, NY 10012 Bagged, minimally pruned decision trees



Accuracy

Learning Curve of Californian Housing Data
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Generally, bagged
decision trees
outperform the linear
classifier eventually if
the data is large
enough and clean
enough.

-

Data set Winner AUR | Winner Acc | Max-AUR | Result

Nurse none none 1 | Indistinguishable
Mushrooms | none none 1 | Indistinguishable
Optdigit none none 0.99 | Indistinguishable
Letter—V C4 C4 0.99 | C4 dominates
Letter—A C4 C4 0.99 | C4 crosses
Intrusion C4 C4 0.99 | C4 dominates
DNA C4 C4 0.99 | C4 dominates
Covertype | C4 C4 0.99 | C4 crosses
Telecom C4 C4 0.98 | C4 dominates
Pendigit C4 C4 0.98 | C4 dominates
Pageblock | C4 C4 0.98 | C4 crosses
CarEval none C4 0.98 | C4 crosses

Spam C4 C4 0.97 | C4 dominates
Chess C4 C4 0.95 | C4 dominates
CalHous C4 C4 0.95 | C4 crosses
Ailerons none C4 0.95 | C4 crosses

Firm LR LR 0.93 | LR crosses
Credit C4 C4 0.93 | C4 dominates
Adult LR C4 0.9 | Mixed

Connects C4 none 0.87 | C4 crosses

Move C4 C4 0.85 | C4 dominates
Downsize C4 C4 0.85 | C4 crosses
Coding C4 C4 0.85 | C4 crosses
German LR LR 0.8 | LR dominates
Diabetes LR LR 0.8 | LR dominates
Bookbinder | LR LR 0.8 | LR crosses
Bacteria none C4 0.79 | C4 crosses

Yeast none none 0.78 | Indistinguishable
Patent C4 C4 0.75 | C4 crosses
Contra none none 0.73 | Indistinguishable
IntShop LR LR 0.7 | LR crosses
IntCensor LR LR 0.7 | LR dominates
Insurance none none 0.7 | Indistinguishable
IntPriv LR none 0.66 | LR crosses
Mailing LR none 0.61 | LR dominates
Abalone LR LR 0.56 | LR dominates




Bagging (bootstrap aggregation)

* Experimentally:
— especially with minimal pruning: decision trees
have low bias but high variance.

— bagging usually improves performance for
decision trees and similar methods

— It reduces variance without increasing the bias
(much).



More detail on bias-variance and
bagging for classification

Thanks Tom Dietterich MLSS 2014



A generalization of bias-variance
decomposition to other loss functions

“Arbitrary” real-valued loss L(y,y’

But L(y,y )=L(y’,y), L(y.,y)=0,
and L(y,y’ )!=0 if yl=y’

Define “optimal prediction”:
y*=argmin , L(ty’)

Claim:

Ep {L(ty) = c,N(x)+Bias(x)+c,Var(x)
where

c=Prply=y" - 1

c,=1ify, =y* -1else

Define “main prediction of learner”
Ym=Ymp = argmin . Ep{L(y,y’)} ~ m=|D|

Define “bias of learner’:

: s For 0/1 loss, the main prediction is
Bias(X)=L(y".ym) the most common class predicted by

Define “variance of learner”  hy(x), weighting h’s by Pr(D)

Var(x)=Ep[L(y,,Y)]
Define “noise for x”:
N(x) = EJL(ty™)]

Domingos, A Unified Bias-Variance Decomposition and its Applications, ICML 2000




More detail on Domingos’ s model

* Noisy channel: y; = noise(f(x;))
— f(x;) is true label of x;
— Noise noise(.) may change y 2 y’
* h=hp is learned hypothesis
— from D={(x,,y,),...(X,.,V,)}
* for test case (x* y*), and predicted label
h(x*), loss is L(h(x%),y”)
— For instance, L(h(x*),y*) = 1 if error, else O



More detail on Domingos’ s model

» We want to decompose Ep s{L(h(x*),y*)}
where m is size of D, (x*,y*)~P

» Main prediction of learneris y_(X*)

— Ym(X*) = argmin . Ep o{L(h(x*),y" )}
— y(x*) = “most common” hy(x*) among all
possible D’ s, weighted by Pr(D)

 Biasis B(x*) =L(y(x*), f(x*))
» Variance is V(x*) = Ep o{L(hp(X*) , Ym(X*) )
« Noise is N(x*)= L(y* f(x*))



More detail on Domingos’ s model

» We want to decompose Ep s{L(h(x*),y*)}

» Main prediction of learneris y (X)
— “most common” hy(x*) over D ’s for 0/1 loss

» Biasis B(x*) =L(y.,(x*), f(x*))
— main prediction vs true label

 Variance is V(x*) = Ep po{L(hp(X*) , Yn(X7) )
— this hypothesis vs main prediction

» Noise is N(x*)= L(y* f(x*))

— true label vs observed label



More detail on Domingos’ s model

* We will decompose Ep p{L(h(x*),y")} into
— Biasis B(x*) = L(y.(x*), f(x*)
* main prediction vs true label
* this is 0/1, not a random variable

— Variance is V(x*) = Ep ofL(hp(X*) , Yim(X*) )
» this hypothesis vs main prediction
— Noise is N(x*)= L(y*, f(x*))

* true label vs observed label



Case analysis of error

f(x*) = ym?
yes no [bias]
y™ = h(x*)? y™ = h(x*)?
an} yes no [variance]
y* = #(x*)? y* = f(x*)? y* = f(x*)? y* = f(x*)?

yes no [noise] yes no [noise] yes no [noise] yes no [noise]

correct error error correct error correct correct error
[noise] [variance] [noise [bias] [noise [variance [noise

cancels cancels cancels cancels
variance] bias] bias] variance

cancels
bias]



Analysis of error: unbiased case

Variance

1let P(y* = f(x*)) = N(x*) =t but no

ilet P(y" = h(x*)) =V(X*)=o0c

1 If (f(x*) = y™), then we suffer a IgBs if
exactly one of these events og

L(h(x*), y*) = t(1-0) + o(1-1)

Main

s corroat = N(X%) + V(X¥) = 2 N(x*) V(x)

Noise but
no
variance



Analysis of error: biased case

No noise,
no
variance

1Let P(y* = f(x*)) = N(X*) = 1
i1let P(y" = h(x*)) =V(X*)=o
11f (f(x*) = y™m), then we suffer a loss jfeither
goth or neither of these events occurs:
L (h(x*), ¥¥) = 10 + (1—0)(1-1)
Main 1—(t+0—21t0)
prediction = B(x*) — [N(X*) + V(x*) = 2 N(x*) V(x*)]

is wrong

Noise
and
variance



Analysis of error: overall

E[ L(h(x"), y*)] =

if B(x*) = 1: B(x*) — [N(X*) + V(x*) — 2 N(x*) V(x*)]
if B(x*) = 0: B(x*) + [N(x*) + V(x*) — 2 N(x*) V(x*)]

Hopefully we’ll be

in this case more _
often, if we've Interaction terms

chosen a good are usually small
classifier



Analysis of error: without noise
which is hard to estimate anyway

E[L(h(xX"), y") ] =

if B(x*) = 1: B(x*)— V(x*)
if B(x*) = 0: B(x*) + V(x*)

As with regression, we can experimentally approximately
measure bias and variance with bootstrap replicates

Typically break variance down into biased
variance, Vb, and unbiased variance, Vu.




K-NN Experiments

———t-—— B -

L5 20

1 Chess (left): Increasing K primarily reduces Vu

1 Audiology (right): Increasing K primarily
increases B.




Tree Experiments

[

1 Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu




Tree “stump” experiments
(depth 2)

Effect of Bagging for Depth=2

Bias is
reduced (!)

—\w

Mean Error

Bias

Vu Unbiased Varnangce

Vb Biased Variance,

bagged-c4
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Large tree experiments
(depth 10)

Effect of Bagging for Depth=10

Bias is not
changed
much

\ vlean Error

- Bias

Variance is
reduced

S Vu Unbiased Var

dance

~® Vb Biased Variance

~A | S————d =V



